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Commutativity Conditions in Algebras with C∗-equalities

M. Oudadess

Abstract. Departing from Fuglede-Putnam-Rosenblum’s theorem, we examine

several commutativity conditions in involutive algebras with C∗-equalities.

Among questions considered are Ogasawara’s theorem on operator algebras and

Radjavi-Rosenthal’s result on an algebra of normal operators. In the frame of

C∗-algebras, conditions of apparently different natures turn out to be equivalent.

Also, remarks are made about Hirshfeld-Zelazko’s problem.

I. Introduction

C. Lepage [19] is the first to consider commutativity conditions in the frame of

general Banach algebras. But there are earlier results in C∗-algebras ([13], [21],

[26], [25]). Fuglede-Putnam-Rosenblum’s theorem (cf. [28], Theorem 12.16)

seems to be the first one, both concerning the content and the technique used;

the latter meaning Rosenblum’s proof of Fuglede-Putnam’ theorem. That proof

makes use of Liouville’s theorem on bounded holomorphic functions while, before,

authors were accustomed to harmonic functions. Still, one has to notice that

Liouville’s theorem has been already used by R. Arens, in even the more general

context of topological algebras [2].

Using Fuglede’s theorem, H. Radjavi and P. Rosenthal show that if a set of

normal operators is a vector space then it is made of pairwise commuting elements

[26].

In another point of view, T. Ogasawara [21] showed that if, in a C∗-algebra, the

square map is monotonic then the algebra is commutative.

The aim of this paper is to reexamine commutativity conditions, among which

the preceding, in involutive algebras where a C∗-equality is involved (C∗-algebras,

locally C∗-algebras, C∗-bornological algebras, . . . ).
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Section III is devoted to Fuglede-Putnam-Rosenblum’s theorem in C∗-algebras.

It is extended to Hausdorff locally C∗-convex algebras (Proposition III.3) and to C∗-

bornological algebras (Remark III.4). So the completion condition is not necessary.

Radjavi-Rsenthal’s result is the subject matter of Section IV. Modulo an

additional condition, that is the algebra structure, we state it for hypo-normal

operators (Proposition IV.2); so also for sub-normal and quasi-normal ones.

In operator algebras, Ogasawara considered a commutativity condition in

relation with the order, that is the monotonicity of the square map [21]. The result

of that author is still valid in locally C∗-convex algebras (Proposition V.4) and in

C∗-bornological algebras (Proposition V.6). This is the content of Section V.

In Section VI, we consider different commutativity conditions in the frame of C∗-

algebras. All of them imply commutativity (not only modulo the Jacobson radical).

So they appear to be equivalent (Proposition VI.3) though being of diferent natures

(topological, spectral, algebraic, . . . ).

Finally (Section VII), few remarks are made on Hirschfeld-Zelazko’s problem.

In C∗-algebras, the answer is positive (Proposition VI.3). In the same frame,

the answer to the involutive version of that problem is negative (Counter-

example VI.2). It appears then that in involutive algebras, Hirschfeld-Zelazko’s

problem can not be reducd to its involutive version. These are partial answers, but

the problem remains open.

II. Preliminaries

In a unital algebra E (real or complex) the set of invertible elements is denoted

by G(E). For a complex algebra, the spectrum of an element x is SpE(x) = {z ∈
C : x − ze /∈ G(E)}. The spectral radius of x is ρ(x) = sup{|z| : z ∈ SpE(x)}. A C∗-

algebra is a complex Banach algebra (E,‖ · ‖) endowed with an involution ∗ such

that ‖x x∗‖ = ‖x‖2, for every x ∈ E. In the unital commutative case, it is known

(Gelfand-Naimark theorem) that (E,‖ ·‖) is isometrically isomorphic to an algebra

C(K) of continuous complex functions on a compact space K . An element x ∈ E is

said to be positive if it is self-adjoint (that is x∗ = x) and Spx ⊂ R+. Then the set

E+ of positive elements in E is a convex cone which is also stable by multiplication.

Recall also that x x∗ is positive, for every x ∈ E. All the needed notions and results,

on C∗-algebras, can be found in [4].

Let (E,τ) be a locally convex algebra (l.c.a.), with a separately continuous

multiplication, whose topology τ is given by a family (pλ)λ∈Λ of seminorms. If

it happens that, for every λ,

pλ(x y)≤ pλ(x)pλ(y); ∀ x , y ∈ E,

then (E,τ) is named a locally m-convex algebra (l.m.c.a.; cf. [12], [20]).

Following the terminology of ([12, pp. 101–102]), if E is an involutive algebra

and p a vector space seminorm on E, we say that p is a C∗-seminorm if p(x∗x) =

[p(x)]2, for every x . An involutive topological algebra whose topology is defined
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by a (saturated) family of C∗-seminorms is called a C∗-convex algebra. A complete

C∗-convex algebra is called a locally C∗-algebra (by A. Inoue). A Fréchet C∗-convex

algebra is a metrizable C∗-convex algebra, that is equivalently a metrizable locally

C∗-algebra, or also a Fréchet locally C∗-algebra.

Let E be a complex algebra which is the union of subalgebras Ei , each one being

a C∗-algebra (Ei,‖x‖i), such that (Ei , f ji), i ≤ j, is an inductive system where f ji is

the canonical injection of Ei into E j . Endowed with the inductive limit bornology

B of the subalgebras Ei, it is said to be a C∗-bornological algebra [24] (C∗-b.a., in

short). We write (E,B) =lim−→(Ei,‖x‖i).

III. Fuglede-Putnam-Rosenblum’s commutativity result

The result alluded to is the following, where B(H) is the algebra of bounded

operators on a Hilbert space H.

Theorem III.1. Let M, N and T be elements of B(H). Suppose that M and N are

normal. If M T = T N, then M∗T = T N ∗.

According to a comment of W. Rudin ([28, p. 381]), Fuglede showed the result

with M = N and Putnam with M 6= N . Then Rosenblum gave a proof that Halmos

([14, p. 304]) qualifies as “. . . a breathtakingly elegant and simple proof”. The two

first authors make use of the spectral resolution of normal operators, while the

third relies on Liouville’s theorem on bounded holomorphic functions.

Apart from standard techniques inB(H), actually in any C∗-algebra, the crucial

argument in Rosenblum’s proof is Liouville’s theorem. This makes it possible to

extend Theorem III.1, stated above, to some non normed algebras. One also

observes that the completion is a redundant hypothesis. The proof goes along the

lines of that given in [28].

Remark III.2. The previous theorem is, up to my knowledge, the seminal commu-

tativity result. It must be the ancestor of the later ones. As examples, we can

mention.

(1) The crutial argument in the proof, that is the use of Liouville’s theorem, must

be at the origin of the now famous inequality of C. Le Page i.e.,

(LP) ‖ab‖ ≤ ‖ba‖, ∀ a, b ∈ E.

Le Page has shown, using the same argument as Rosenblum, that a unital Banach

algebra satifying (LP) is necessarily commutative ([19, p. 235, Proposition 2]).

Thus the so called Le Page argument should be Rosenblum-Le Page one.

(2) The condition M T = T N , led Putnam to introduce bilateral algebras (cf. [15]),

that is

(∀ x , y ∈ E) (∃u ∈ E) : x y = yu
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and

(∀ x , y ∈ E) (∃ v ∈ E) : x y = vx .

(3) Some authors went in another direction [26]: What is about if a subalgebra of

B(H) is entirely made of normal operators? See Section IV.

Now, here is an extension of the theorem mentioned above. It appears that

completeness is not necessary.

Proposition III.3. Let (E, (| · |i)i) be a Hausdorff locally C∗-convex algebra. Consider

x, y and z in E, with x and y normal. If xz = z y, then x∗z = z y∗.

Proof. Recall first that, by a result of Sebestièn ([29, Theorem 2]). Every C∗-

seminorn is automatically submultiplicative. Then, calculations being made in the

locally C∗-algebra bE (the completion of E), the proof goes along the lines of that

given in ([28, p. 300, Theorem 12.6]) inB(H). For any s in E, put v = s− s∗ and

q = exp(v) = ev = Σ
1

n!
vn, in bE.

One has v∗ =−v and q∗ = e−v = q−1. Hence q∗q = e and qq∗ = e. Then

|q|2
i
= |q∗q|i = 1, ∀ i.

Whence

|es−s∗ |i = 1, ∀ s ∈ E, ∀ i.

Now if xz = z y , then one shows by induction that xkz = z yk, for every positive

integer k. Hence exz = ze y . Whence z = exze−y . The link with x∗ and y∗ is as

follows

ex∗ze−y∗ = ex−x∗exze−y e y−y∗.

So

|ex∗ze−y∗ |i ≤ |z|i , ∀ i.

Finally, put

f (λ) = eλx∗ze−λy∗ , λ ∈ C.

The hypotheses in the theorem are also satisfied by λx and λy , for every λ ∈ C.

Hence

| f (λ)|i ≤ |z|i , ∀ i, ∀ λ.

One then concludes, using Liouville’s theorem. �

Remark III.4. The previous proposition applies of course to any C∗-normed

algebra. Actually, this is the case for any union of C∗-algebras Ei , where the set

of indices (indexes) is a net. Indeed, one has just to consider a C∗-algebra E j

containing the elements x , y , z, x∗ and y∗. So, Fuglede-Putnam-Rosenblum’s

theorem is also valid for C∗-b-a’s.
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IV. Radjavi-Rosenthal’s commutativity result

We have first to recall some definitions. Let B(H) be the algebra of bounded

operators on a Hilbert space H. (1) An operator T is said to be quasi-normal if it

commutes with T ∗ T , that is T (T ∗T ) = (T ∗T )T . Every normal operator is quasi-

normal; the converse is not true. (2) An operator T is subnormal if it has a normal

extension, that is there exists a Hilbert space K and a normal operator S ∈ B(K)
such that H is a subspace of K , H is stable by S and the restriction of S to H is

equal to T . (3) An operator T is hyponormal if T ∗ T ≥ T T ∗. Every quasi-normal

operator is subnormal, and every subnormal operator is hyponormal. None of the

inversion implications is true (cf. [14]).

In [14], Halmos recalls that if an algebra E, of operators, is closed under the

formation of adjoints and consists of normal elements, then it is commutative.

Actually, this fact is entirely algebraic, so it is worthwhile to state it in its general

context; the proof being also short ([14, p. 104]).

Proposition IV.1. Let E be an involutive algebra. If a subalgebra F, of E, is selfadjoint

and made of normal elements, then it is commutative.

Proof. If a+ i b and c+ id are in F , with a, b, c and d hermitian then the latter are

also in F , due to selfadjointness. So this is also the case for a + ic, a+ id, b + ic

and b+ id. Finally, the normality of these elements yields the commutativity. �

Remark IV.2. Let E ⊂ B(H) be a collection of hypo-normal operators. If it is

selfadjoint, then it is made of normal operators. Indeed, one already has T ∗ T ≥ T

T ∗, by definition. Now, by hypothesis, one also has (T ∗)∗ T ∗ ≥ T ∗(T ∗)∗ i.e., T

T ∗ ≥ T ∗T . So T ∗ T = T T ∗.

Actually, if a collection of normal operators is a vector space, then every pair

in that collection is commuting. The proof uses a calculation trick and Fuglede’s

theorem. The result is due to H. Radjavi and P. Rosenthal [26].

Proposition IV.3 ([26]). Let E a vector subspace, of B(H), made of normal

operators. Then every pair, of E, is commuting.

Hints. If S and T are in E, then S+ T and S+ iT are also in E. Hence

U = (S + T )∗(S+ T )− (S+ T )(S+ T )∗ = 0

and

V = (S+ iT )∗(S + iT )− (S+ iT )(S+ iT )∗ = 0.

Thus U + iV = 0. But U + iV = 2(S∗T −ST ∗). Whence S∗T = ST ∗. One concludes

by Fuglede’s theorem.

We extend the above mentioned result to hypo-normal operators modulo an

additional condition, that is the algebra structure of the considered collection.
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Proposition IV.4. A subalgebra E, ofB(H), entirely made of hypo-normal operators

is commutative.

Proof. For any hypo-normal operator A, one has ‖A‖ = ρ(A) (cf. [14]). So, this is

also the case for the elements of the ‖ ·‖-closure E of E, which is a Banach algebra.

The latter is then without quasi-nilpotent elements. Hence, it is semi-simple. One

concludes by a result of ([22, Théorème II.4]), for E satisfies the Le Page inequality.

It is even a uniform algebra. �

Question IV.5. Is the vector space structure sufficient, as in Radjavi-Rosenthal’s

theorem?

Remark IV.6. As in Rosenblum’s proof, the one of the previous result avoids the

spectral resolution of normal operators, used by Fuglede and Putnam.

Modulo an other extra condition, Radjavi-Rosenthal’s result can be stated in a

more general setting.

Proposition IV.7. Let (E,‖ · ‖) be a C∗-normed Q-algebra. Then any subalgebra F,

of E, entirely made of hypo-normal elements is necessarily commutative.

Proof. Consider the C∗-algebra (bE,‖ ·‖), the completion of (E,‖ ·‖). Since (E,‖ ·‖)
is a Q-algebra, an element which is hypo-normal in E is also so in bE. Now, for any

element in F , one has ‖x‖ = ρ(x). This remains true for the ‖ · ‖-closure F of F .

The latter is then without quasi-nilpotent elements. Hence it is semisimple. One

then concludes by a result of ([22, p. 10, Théorème II.4]), for E satisfies the Le

Page inequality. �

Remark IV.8. The proof given in ([14, p. 110]), to show that for a hypo-normal

operator A, one has ‖A‖ = ρ(A) uses the inner product 〈 , 〉 on the Hilbert space

H. If A quasi-normal, one can give an alternative proof. Indeed, by definition, A

commutes with A∗A. Hence

(A∗A)(A∗A) = A∗(AA∗A) = A∗(A∗AA) = (A∗)2(A)2.

One then shows by induction that

(A∗A)n = (A∗)n(A)n, ∀ n ∈ N.

Whence

ρ(A∗A) ≤ ρ(A∗)ρ(A) = ρ2(A).

But

ρ(A∗A) = ‖A∗A‖ = ‖A‖2.

Thus ‖A‖ ≤ ρ(A). So ‖A‖ = ρ(A), since one already has ρ(A) ≤ ‖A‖.
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V. Ogasawara’s commutativity condition

Ogasawara showed ([21, (b) of the Theorem]) that a C∗-algebra is commutative

whenever it satisfies the following condition

(Og) 0≤ x ≤ y =⇒ 0≤ x2 ≤ y2.

The idea could reasonbly have been suggested by the Gelfand-Naimark theorem,

that is a unital commutative C∗-algebra is isometrically isomorphic to an algebra

C(K) of complex continuous functions on a compact space K . Also, here is a

counter-example, due to my colleague R. Choukri, showing that the condition (Og)

is not satisfied in non commutative C∗-algebras.

Counter-example V.1. Take the matrices

A=

�
1 1

1 1

�
, B =

�
1 1

1 2

�
and B− A=

�
0 0

0 1

�
.

One has

SpA= {0,2} ⊂ R+,SpB =

�
3+
p

5

2
,
3−
p

5

2

�
⊂ R+ and Sp(B−A) = {0,1} ⊂ R+.

Hence 0≤ A≤ B. One also has

A2 =

�
2 2

2 2

�
, B2 =

�
2 3

3 5

�
and B2 − A2 =

�
0 1

1 3

�
.

So

Sp(B2− A2) =

�
3+
p

13

2
,
3−
p

13

2

�
, with

3−
p

13

2
< 0.

Ogasawara gives two totally different proofs. The first uses the spectral

resolution of positive operators and a result of Sherman. The second is mostly

algebraic and uses only well known facts in C∗-algebras. It is based on a clever

handling of inequalities. We give just hints about the second proof. A detailed one

is given in ([21, pp. 308–309]).

Theorem V.2 ([21]). Let (E,‖ · ‖) be a C∗-algebra. If it satisfies

(Og) 0≤ x ≤ y =⇒ 0≤ x2 ≤ y2,

then it is commutative.

Hints. One can argue only with positive elements. Now, for a ≥ 0 and b ≥ 0,

one has a+ b ≥ a − b and a+ b ≥ b− a. Hence, by the condition (Og), one has

(a + b)2 ≥ (b− a)2. Whence ab + ba ≥ 0. One also can write ab = c + id, with

c ≥ 0 and d∗ = d. Then ab+ ba = c. Thus ab = c = ba, if d = 0. So, the task is

to prove that d = 0. Suppose that d 6= 0. After short but cleaver calculations, one

obtains c2 ≥ d2. One also proves that (c2−d2)2 ≥ (cd+dc)2. Now, let α > 0 be the

largest positive number such that c2 ≥ αd2. This number α is also the greatest one

satisfying (c2 − d2)2 ≥ α(cd + dc)2. Finally, one obtains a contradiction, showing

that c2 ≥ (1+α2)
1

2 d2.
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Remark V.3. The first step in the proof of the previous theorem is that (a+ b)2 ≥
(b− a)2, for all positive elements a and b in E. This inequality is implemented by

Ogasawara’s condition (Og). Counter-example V.1 shows that the condition (Og) is

not stisfied in non commutative C∗-algebras. The referee, using the same counter-

example, obtains that the implemented inequality above is not also satisfied.

Indeed, taking again

A=

�
1 1

1 1

�
and B =

�
1 1

1 2

�
, in M2(C)

one has

C = (A+ B)2 − (A− B)2 =

�
8 10

10 12

�

with spC = {10+
p

104,10−
p

104}.

The proof given in the C∗-algebra case can be reproduced in the frame of locally

C∗-algebras. The ingredients needed are still true. They are collected and very well

presented in ([12, pp. 125–130]).

Proposition V.4. Let (E, (| · |i)i) be a locally C∗-algebra. If

0≤ a ≤ b =⇒ 0≤ a2 ≤ b2, ∀ a, b,

then E is commutative.

Remark V.5. In order to give a shorter proof, one is tempted to use the Arens-

Michael decomposition (according to Mallios’ terminology) of a locally C∗-algebra.

Due to Apostol’s result [1], every factor (Ei ,‖ · ‖i) is already a C∗-algebra; so the

canonical map πi : E → Ei is onto. Thus, one may use Ogasawara’s result. But I

could not go further in this direction.

Another class of algebras strongly related to C∗-algebras is the one of ‘algèbres

bornologiques stellaires’ introduced by H. Hogbé-Nlend [18]. To point out the

importance of the C∗-equality, I named them [24] C∗-bornological algebras (C∗-b-

a, in short). Let (E,B) be a bornological algebra, that is B is a bound structure

such that the algebra operations are bounded. Endow it with an involution. Then

(E,B) is a C∗-b-a if and only if it is a bornological inductive limit of C∗-algebras

(Ei ,‖ · ‖i) such that the canonical maps f ji : Ei → E j, i ≤ j, are one-to-one ([18,

p. 46]).

Proposition V.6. Let (E,B) = lim−→(Ei ,‖ · ‖i) be a C∗-b-a. If

0≤ x ≤ y =⇒ 0≤ x2 ≤ y2, ∀ x , y ∈ E

then E is commutative.

Proof. It is reduced to the C∗-algebra case, for [24] (see also [23])

SpE x = SpE j x , ∀ j ∈ I(x), where I(x) = {i ∈ I : x ∈ Ei}. �
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VI. Various conditions in C∗-algebras

It is known that a non unital Banach algebra satisfying the Le Page inequality

(LP) is commutative modulo its Jacobson radical ([22, Théorème II.4]). But a C∗-

algebra is always semisimple. Hence the algebra itself is commutative. Now before

considering the conditions alluded to in the heading of this section, we first observe

that the Le Page inequality can be relaxed in the frame of C∗-algebras.

Proposition VI.1. Let (E,‖ · ‖) be a C∗-algebra (unital or not). If

‖ab‖ ≤ ‖ab‖, ∀ a ∈ E+, ∀ b ∈ E

then E is commutative.

Proof. It is known (cf. [4]) that a C∗-algebra E is generated by E2 = {x y : x , y ∈
E}. So it is sufficient to show that each product x y commutes with every positive

element p. Now, for any complex number λ = α+ iβ , put f (λ) = e−λp x yeλp. As

in [22], calculations are conducted in the unitization E1 of E. One has

‖ f (λ)‖ ≤ ‖ei(−β)p‖‖eiβp‖‖e−αp x yeαp‖.
It is known that there is an M > 0 such that ‖ei(−β)p‖ ≤ M and ‖eiβp‖ ≤ M . Also,

e−αp is a positive element. Then

‖ f (λ)‖ ≤ M2‖x y‖, ∀ λ.

The proof is finished by the argument of Rosenblum-Le Page. �

Remark VI.2. If ρ is submultiplicative in a Banach algebra, then the latter is

commutative modulo its Jacobson radical ([22, Théorème II.4]). If it is a C∗-

algebra, then it is commutative. Actually, one observes that

‖x‖2 = ‖x∗ x‖ = ρ(x∗x)≤ ρ(x∗)ρ(x) = ρ2(x).

Hence ‖ · ‖ ≤ ρ(·). So ‖ · ‖ = ρ(·).

In the sequel, we will need the following definitions. Recall that an algebra E is

said to be right-sided (or right-lateral) if

(∀ x , y ∈ E) (∃u ∈ E) : x y = yu.

Left-sidedness and two-sidedness (bilaterality) are then selfexplanatory.

Now, it is worthwhile to put together apparently different but however

equivalent conditions. Every one of them implies commutativity.

Proposition VI.3. Let (E,‖·‖) be C∗-algebra (unital or not). The following conditions

are equivalent

(C1) ‖ab‖ ≤ α‖ab‖, ∀ a ∈ E, ∀ b ∈ E; where α ∈ R∗
+

.

(C2) ‖ab‖ ≤ α‖ab‖, ∀ a ∈ E+, ∀ b ∈ E; where α ∈ R∗
+

.

(C3) 0≤ x ≤ y =⇒ 0≤ x2 ≤ y2, ∀ x , y ∈ E.

(C4) E is without nilpotent elements.
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(C5) E is without quasi-nilpotent elements.

(C6) ρ(ab) ≤ αρ(a)ρ(b), ∀ a, b ∈ E; where α ∈ R∗
+

.

(C7) E is unilateral (left or right).

(C8) E is bilateral.

(C9) H(E) is a real subalgebra of E; where H = {x ∈ E : x∗ = x}.
(C10) E is commutative.

Proof. Each one of these conditions implies commutativity.

(C1) In any Banach algebra, E2 = {x y : x , y ∈ E} is contained in the center of E

([22, Théorème II.1]). But here E is generated by E2, for E is a C∗-algebra.

(C2) Proposition VI.1.

(C3) Ogasawara’s theorem [21].

(C4) Cf. [4]

(C5) E is without nilpotent elements (cf. (C4)).

(C6) Any complex Banach algebra satisfying this inequality is commutative

modulo its Jacobson rdical [16]; and every C∗-algebra is semisimple.

(C7) Any unilateral Banach algebra is commutative modulo its Jacobson rdical

[5]. But a C∗-algebra is semisimple.

(C8) A bilateral algebra is unilateral (cf. (C7); See also [5]).

(C9) For arbitrary hermitian elements h and k, one must have (hk)∗ = hk. Hence

kh= hk. �

Remark VI.4. It appears that conditions of different natures (topological, spectral,

algebraic, . . . ) are, in fact equivalent. This is certainly due to the very nice setting

we are working in. But still, what are the very specific properties which are

decisive? As a speculation, I suggest a deep geomerical aspect, that is the shape of

the unit ball or the sphere.

Remark VI.5. In the previous proposition, we have taken the simplest expressions

for (C1), (C2) and (C6), just to point out the phenomenon. For more general

formulations, see [8], [9], [10], for example.

VII. The involutive Hirschfeld-Zelazko’s problem

In 1968 Hirschfeld and Zelazko stated [16] the following problem

(H-Z). Is a Banach algebra (E,‖ · ‖) commutative, whenever the norm ‖ · ‖ and the

spectral radius ρ(·) are equivalent on every commutative subalgebra?

As far as I know, this problem is still open. So one can state its analogue in the

involutive case.

(∗-H-Z) Is an involutive Banach algebra (E,‖ ·‖) commutative, whenever the norm

‖ · ‖ and the spectral radius ρ(·) are equivalent on every involutive commutative

subalgebra?
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We consider the above mentioned problems in the frame of C∗-algebras. The

answer for the first (Hirschfeld-Zelazko’s problem) is positive.

Proposition VII.2. Let (E,‖ ·‖) be a C∗-algebra (unital or not). If the norm ‖ ·‖ and

the spectral radius ρ(·) are equivalent on every commutative subalgebra, then E is

commutative.

Proof. Given x ∈ E, consider the maximal (closed) commutative subalgebra F , of

E, that contains x . It is known that ρE(x) = ρF (x). But, on F , the norm ‖·‖ and the

spectral radius ρ(·) are equivalent. So E is without quasi-nilpotent elements, hence

also without nilpotent elements. Whence the commutativity of E (cf. [4]). �

The answer for the second problem is negative.

Counter-example VII.3. Let (E,‖ · ‖) be a non commutative C∗-algebra and F

an involutive commutative subalgebra of E. Taking its closure, if need be, we can

suppose it closed. So, actually, it is a sub-C∗-algebra of E. Since it is commutative,

it is made of normal elements. Thus, on F , one even has ‖ · ‖ = ρ(·).

Remark VII.4. This counter-example shows that, in involutive algebras,

Hirschfeld-Zelazko’s problem can not be reduced to its involutive version.

VIII. Supplement

The referee has kindly brought to attention four more papers on commutativity

conditions in C∗-algebras. Here, they are. Notice that the characterizations inthere

can be added in Proposition VI.3.

(1) M.J. Crabb, J. Duncan and C.M. Mcgregor exhibit a condition involving the

norm and both addition and multiplication (Theorem 2, Characterizations of

commutativity for C∗-algebras, Glasgow Math. J. 15(1974), 172–175).

Theorem 1. Let (A,‖ · ‖) be a C∗-algebra. It is commutative if and only if

‖a+ b‖ ≤ 1+ ‖ab‖
for all self-adjoint elements a, b ∈ A with ‖a‖ = ‖b‖ = 1.

(2) G. Ji and J. Tomiyama came with a characterization using the exponential

function (Corollary 1, On Characterizations of commutativity of C∗-algebras, Proc.

Amer. Math. Soc. 131(12) (2003), 3845–3849.

Corollary 1. Let (A,‖ · ‖) be a C∗-algebra. The following are equivalent

(i) A is commutative;

(ii) exp(a+ b) = exp(a)exp(b) for every pair of positive elements a, b ∈ A.

(3) W. Wu has obtained the same result as in (2) (Corollary 2, An order

characterization of commutativity for C∗-algebras, Proc. Amer. Math. Soc. 129(4)

(2000), 983–987).
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(4) M. Joita displays a condition where appear the involution and the absolute

value (2.5 Theorem, On the Cauchy-Shwarz inequality in a C∗-algebra, Math.

Reports 3(3) (53), 243–246).

Corollary 2. Let (A,‖ · ‖) be a C∗-algebra. The A is commutative if and only if

x∗ y + y∗x ≤ |x | |y |+ |y ||x |
for every x , y ∈ A.
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