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1. Introduction
All graphs G = (V (G),E(G)) discussed in this paper are finite, simple and undirected. Any
undefined term in this paper may be found in [1]. There are plenty of graph polynomials in the
literature of graph theory. These polynomials are studied because some of them are generating
functions of some graph properties, some count the number of occurrences of certain graph
features and some others make an attempt to find complete graph invariants.

Cycle Neighbor Polynomial is essentially a generating function for the number of cycles of
various lengths in a graph G. The motivation for the authors to define this polynomial is many
graphical properties like girth, circumference [5], number of cycles of different lengths, whether
the graph is Hamiltonian, whether it is pancyclic [2], whether it is unicyclic [5], whether it is
acyclic or not, whether it is a bipartite graph etc., can be directly obtained from the polynomial
expression.
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2. Cycle Neighbor Polynomial of Graphs
In this section we introduce a new univariate graph polynomial called cycle neighbor polynomial
of a graph. Also, some properties of cycle neighbor polynomials are observed.

Definition 2.1. Let G(V ,E) be any graph. A vertex of the graph G is said to be a cycle neighbor
free vertex if it does not belong to any cycle of length greater than or equal to three in the
graph G.

Definition 2.2. Let G be any simple graph of order n. The Cycle Neighbor Polynomial (CYNP)
of G denoted by CN[G, x] is defined as

CN[G, x]=
c(G)∑
k=0

ck(G)xk, (2.1)

where c0(G) is the number of cycle neighbor free vertices in G, c(G) is the circumference of G
and ck(G) is the number of cycles of length k in the graph G, where 3≤ g(G)≤ k ≤ c(G)≤ n and
g(G) is the girth of G.

We use the abbreviation CYNP for cycle neighbor polynomial of a graph.

Remark 2.3. (i) For any simple graph G, c1(G)= c2(G)= 0 in CN[G, x].

(ii) If G1 and G2 are isomorphic graphs, then CN[G1, x]=CN[G2, x].

(iii) If H is an induced subgraph of G, then deg(CN[G, x])≥ deg(CN[H, x]).

(iv) c0(G), the constant term in CYNP of G is the number of cycle neighbor free vertices in G.

(v) If a graph G contains no cycle neighbor free vertices, then zero is a root of its CYNP.

Proposition 2.4 follows directly from the definition of CYNP.

Proposition 2.4. Let G(V ,E) be any graph of order n. If CN[G, x] is a nonconstant polynomial
then,

(i) The lowest exponent of x of the nonconstant term in CYNP is the girth of G and the highest
exponent is the circumference of G.

(ii) If ck(G) 6= 0 for all k, where 3≤ k ≤ n then G is pancyclic.

(iii) The degree of the CYNP of G is n if and only if G is Hamiltonian.

Theorem 2.5. Let G be a nontrivial graph of order n. Then CN[G, x] is a constant polynomial if
and only if G is a forest.

Proof. Suppose if possible, CN[G, x] be a nonconstant polynomial of degree m. Then m ≥ 3 and
cm(G) 6= 0. That is, G has at least one cycle of length m. Hence it is not a forest.

Conversely, if G is a forest, then CN[G, x]= c0(G), the number of cycle neighbor free vertices,
a constant polynomial.
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As the maximum number of edges in any acyclic graph of order n is n−1, we have the
following corollary.

Corollary 2.6. Let G(V ,E) be a graph of order n and size m. If m ≥ n, then CN[G, x] is a
nonconstant polynomial.

Proposition 2.7. Let G be any graph. Then deg(CN[G, x]) ≤ n− 1 if and only if G is non
hamiltonian.

Proposition 2.8. The CYNP CN[G, x] of any graph G contains at most n−2 terms.

Proof. The general expression for CYNP of G is CN[G, x] = c0(G)+ c3(G)x3 + c4(G)x4 + . . .+
cc(G)(G)xc(G). If G is non hamiltonian, then c(G)< n and when G is Hamiltonian, c(G)= n and
c0(G)= 0.

According to Whiteny’s Theorem [1], a graph G of order n ≥ 3 is two connected if and only if
any two vertices of G are connected by at least two internally disjoint paths. Therefore, if G is
two connected, every vertex of G belongs to a cycle and hence we have Proposition 2.9.

Proposition 2.9. Let G be any graph of order n ≥ 3. If G is two connected, then CN[G, x] is a
polynomial of degree greater than or equal to 3

Remark 2.10. The converse of Proposition 2.9 need not be true. That is there are graphs for
which deg(CN[G, x]) ≥ 3 but G is not two connected. The CYNP of the graph in Figure 1 is
x5 + x6, whose degree is four, even though it is not two connected.

Figure 1

A graph G is bipartite if and only if it has no odd Cycles [1]. Hence the CYNP of bipartite
graphs contain no odd powers of x and we have the result.

Theorem 2.11. A graph is bipartite if and only if CN[G, x] of G is an even polynomial.

A graph G is 2-colorable if and only if it is bipartite [1]. Hence it follows that:

Corollary 2.12. Let G be any graph. Then CN[G, x] is an even polynomial if and only if χ(G)= 2,
where χ(G) is the chromatic number of G.

Let G and H be two disjoint graphs with circumferences c(G) and c(H), respectively. Since
there are no edges between G and H, a cycle of length k, 0≤ k ≤ p where p =max{c(G), c(H)} in
G∪H is either a k-cycle in G or a k-cycle in H. So that we have
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Proposition 2.13. Let G and H be any two graphs and let G∪H be the disjoint union of G and
H. Then CN[G∪H, x]=CN[G, x]+CN[H, x].

Corollary 2.14. If a graph G has n components G1,G2, . . . ,Gn, then CN[G, x] = CN[G1, x]+
CN[G2, x]+ . . .+CN[Gn, x].

3. CYNP of Some Graphs
Proposition 3.1. Let G be a unicyclic graph of order n. If the length of the cycle is m, 3≤ m ≤ n
then the CYNP of G is CN[G, x]= xm + (n−m).

Proof. Since G has only one cycle say Cm of length m and the remaining vertices V (G)−V (Cm)
are cycle neighbor free, the result follows.

Corollary 3.2. Let G ∼= Cn, a cycle on n vertices. Then CN[G, x]= xn.

Definition 3.3 ([4]). A Tadpole graph (or dragon graph) Cn,m, n ≥ 3, m ≥ 1 is obtained by joining
a cycle Cn, n ≥ 3 to a path Pm on m vertices with a bridge.

Corollary 3.4. Let G ∼= Cn,m, then CN[G, x]= xn +m.

Proposition 3.5. For a wheel graph Wn ∼= Cn−1 +K1, n ≥ 4

CN[Wn, x]= (n−1)
n∑

k=3
xk + xn−1 .

Proof. In Wn = Cn−1 +K1, let v ∈V (K1) be the central vertex of Wn. Then v is adjacent to every
vertex of Cn and vertices of Cn has only two neighbors other than v. It can be easily verified
that the number of cycles of length k, in Wn is n−1 for 3 ≤ k ≤ n, k 6= n−1 and there are n

cycles of length n−1. Therefore, CN[Wn, x]= (n−1)
n∑

k=3
xk + xn−1 .

Definition 3.6 ([4]). A Helm graph Hn, n > 3 is obtained from a wheel graph Wn by attaching a
pendant edge at each vertex on the rim of the wheel Wn.

Corollary 3.7. CN[Hn, x]=CN[Wn, x]+ (n−1), n ≥ 4.

Proposition 3.8. For any complete graph Kn, n ≥ 3

CN[Kn, x]= n!
2

[
x3

3(n−3)!
+ x4

4(n−4)!
+ . . .+ xn−2

(n−2)2!
+ xn−1

(n−1)
+ xn

n

]
.

Proof. In Kn every vertex is adjacent to every other vertex. Hence to get the number of k-cycles
of length k, 3 ≤ k ≤ n in Kn, choose k vertices out of n in

(n
k
)

ways and multiply it with the
number of permutations (k!) of these k vertices and divide it by 2k, in order to avoid the
repetition of the cycle count with which each cycle is represented by the permutation. That is in
CN[Kn, x], ck(G)= (n

k
) k!

2k = n!
2k(n−k)! .
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Therefore, CN[Kn, x]= n!
2

[
x3

3(n−3)! + x4

4(n−4)! + . . .+ xn−2

(n−2)2! + xn−1

(n−1) + xn

n

]
.

Definition 3.9 ([4]). A Lollipop graph Ln,m, n ≥ 3, m ≥ 1 is obtained by joining a complete
graph Kn, n ≥ 3 to a path Pm on m vertices with a bridge.

Corollary 3.10. CN[Ln,m, x]=CN[Kn, x]+m.

Definition 3.11 ([4]). A Windmill graph W (m)
n , is the graph obtained by taking m copies of the

complete graph Kn, n ≥ 3 with a common vertex. W (m)
3 is also called the friendship graph and it

is denoted by Fm.

Corollary 3.12. CN[W (m))
n , x]= mCN[Kn, x].

Corollary 3.13. CN[Fm, x]= mx3.

Definition 3.14 ([3]). A Shell graph Sn ∼= Pn−1 +K1, which can also be defined as the graph
obtained from the cycle Cn by adding the edges corresponding to the n−3 concurrent chords of
the cycle. The vertex at which all chords are concurrent is called the apex of the shell.

Proposition 3.15. CN[Sn, x]= (n−2)x3 + (n−3)x4 + (n−4)x5 + . . .+2xn−1 + xn.

Proof. Let v1,v2, . . . ,vn−1 be the vertices of Pn−1 and let v be the vertex of K1. Every cycle of
length k, 3 ≤ k ≤ n contains the consecutive vertices vi,vi+1, . . . ,vi+(k−2), 1 ≤ i ≤ n− k of Pn−1.
Hence the number of such cycles of length k is n− (k−1), 3≤ k ≤ n. Therefore, it follows that,

CN[Sn, x]= (n−2)x3 + (n−3)x4 + (n−4)x5 + . . .+2xn−1 + xn .

Definition 3.16 ([6]). A bow graph is a double shell with same apex in which each shell has
any order.

Corollary 3.17. Let BN be a bow graph of order N ≥ 5, which includes shells Sn and Sm such
that N = m+n−1, then

CN[BN , x]=CN[Sn, x]+CN[Sm, x].

Proof. BN includes the shells Sn and Sm with the same apex v, so that v is a cut vertex of BN .
Hence there are no cycles which have edges on both sides of v in BN . Hence the result.

Definition 3.18 ([8]). A butterfly graph BF is a bow graph with exactly two pendant edges at
the apex.

Corollary 3.19. If BF is a butterfly graph with N ≥ 7 vertices, then

CN[BF, x]=CN[BN−2, x]+2 .
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4. Graphs with the Maximum and Minimum Number of Terms
in the CYNP

The CYNP of any graph of order n has at most n−2 terms and at least one term. In this section,
we characterize connected graphs having maximum and minimum number of terms in its cycle
neighbor polynomial.

Theorem 4.1. Let G be a connected graph of order n, n ≥ 4. Then CN[G, x] has exactly n−2
terms if and only if G is pancyclic or G ∼= Hn−1,1, where Hn−1,1 is a graph consisting of a pancyclic
graph H on n−1 vertices and a vertex (K1) connected to any one of the vertices of H by a bridge.

Proof. If G is pancyclic or G ∼= Hn−1,1, then it is clear that CN[G, x] has exactly (n−2) terms.
Now, assume that for the graph G, CN[G, x] has exactly (n−2) terms. Suppose if possible, G

is neither pancyclic nor G ∼= Hn−1,1 but CN[G, x] contains (n−2) terms. Since G is not pancyclic,
G does not contain at least one cycle of length l for 3≤ l ≤ n.

Claim: l 6= n.
Suppose if possible l = n. Then G must contain cycles of all lengths k, 3≤ k ≤ n−1. Otherwise,
the number of terms in CN[G, x] will be less than (n − 2), contradicting our assumption.
Therefore, G must be a connected graph of order n and contains cycles of all lengths k,
3≤ k ≤ n−1. Hence G ∼= Hn−1,1, another contradiction to the assumption that G not isomorphic
to Hn−1,1. Therefore l 6= n.

So let l = k, 3≤ k ≤ n−1. When G contain no cycles of length k, in order for CN[G, x] to have
(n−2) terms, G must contain a Hamilton cycle and therefore, G contains no cycle neighbor free
vertices. Hence the cycle neighbor polynomial of G has no constant term and hence CN[G, x]
has less than (n−2) terms, a contradiction.

Since a Lollipop graph Ln−1,1, n ≥ 4 is obtained by attaching complete graphs on one and n−1
vertices (K1 and Kn−1) by a bridge, where Kn−1 is pancyclic, we have the following corollary:

Corollary 4.2. The CYNP of Lollipop graph on n ≥ 4 vertices contains n−1 terms.

Definition 4.3 ([7]). A cactus graph is a connected graph in which no two cycles have an edge
in common.

Definition 4.4. A k-cycle neighbor graph is a cactus graph G in which the length of every cycle
in G is k and every vertex belongs at least one cycle of G.

Theorem 4.5. Let G be a connected graph of order n. Then the CYNP of G has exactly one term
if and only if one of the following conditions holds.

(i) G is a tree

(ii) G is k-cycle neighbor graph.
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Proof. If (i) holds, then trivially, CN[G, x]= n, and when (ii) holds, every vertex of G belongs to
atleast one cycle of G, hence G contains no cycle neighbor free vertices and the lengths of all
cycles in G are k, therefore CN[G, x]= ck(G)xk, where ck(G) is the number of k-cycles in G.

Conversely, suppose that CN[G, x]= ck(G)xk , k 6= 1 or 2. If k = 0, then CN[G, x]= c0(G), and
since G is connected, it is a tree. If k 6= 0, then 3≤ k ≤ n. Hence G has ck(G) cycles of length k.
Also, since G is connected, each of these ck(G) cycles are connected to m other k-cycles either
by a common vertex or by a bridge, where 1≤ m ≤ (ck(G)−1). But no pair of these cycles have
an edge in common. Otherwise, these two cycles will then form a new cycle of length greater
than k, which contradicts CN[G, x]= ck(G)xk.

Corollary 4.6. If G is not connected, the CYNP of G contains exactly one term if and only if

(i) G is a forest

(ii) Each component of G is k-cycle neighbor graph for the same value of k, k = 3,4,5, . . . .

5. Cycles and Trees Which Have the Same CYNP as Their
Complements

In this section we prove that among all connected acyclic graphs, only paths on n vertices,
n = 2,3 or 4 and among all cycles Cn, only C5 have the same CYNP as their complements.

Theorem 5.1. Let T be any tree on n ≥ 2 vertices and let T be the complement of T . Then
CN[T, x] and CN[T, x] are the same if and only if T ∼= Pn, path on n vertices, where n = 2,3 or 4.

Proof. When T ∼= Pn, n = 2,3 or 4, T is also acyclic with the same order. Hence CN[T, x] =
CN[T, x].

If T is a tree on n > 4 vertices, we have the following cases:

Case (i): T is a path.
Suppose that T ∼= Pn, n ≥ 5. Then T has exactly two pendant vertices. For n ≥ 5, the support
vertices of the pendant vertices are distinct and nonadjacent. These support vertices together
with the pendant vertices will form a cycle of length 4 in T .

Case (ii): T is not a path.
In this case, T has three or more pendant vertices. These pendant vertices will be adjacent in T
and will form a cycle in T . Hence in both cases T is not acyclic and CN[T, x] 6=CN[T, x].

Theorem 5.2. Let Cn be any cycle, n ≥ 3. Then CN[Cn, x]=CN[Cn, x] if and only if n = 5.

Proof. For n = 5, Cn is self complementary. Since isomorphic graphs have the same cycle
neighbor polynomial, CN[C5, x]=CN[C5, x]. Now, let CN[Cn, x]=CN[Cn, x]. Suppose if possible,
CN[Cn, x]=CN[Cn, x] holds for n 6= 5. For n = 3 and 4, Cn is acyclic, a contradiction. When n > 5,
Cn contains triangles whereas Cn does not, again a contradiction. Hence CN[Cn, x]=CN[Cn, x]
if and only if Cn is of length five.
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6. Some Graph Modifications Which Do Not Affect The CYNP
In this section, we consider some graph modifications like edge removal, edge addition, edge
contraction and a special case of vertex identification under which the cycle neighbor polynomial
of a graph will be unaffected.

Theorem 6.1. Let G be any graph. Then CN[G, x] = CN[G \ e, x] if and only if e is a cut edge
of G.

Proof. Suppose that CN[G, x] = CN[G \ e, x]. If e = uv is not a cut edge, then there are one or
more internally disjoint paths joining u and v other than e. Hence it is clear that e belongs to a
cycle of G and the removal of e from G will affect at least one of the coefficients ck(G), where
3≤ k ≤ c(G). Therefore, CN[G, x] 6=CN[G \ e, x].

Conversely, if e is a cut edge of G, both G and G \ e will have the same number of
cycles of different lengths and the same number of cycle neighbor free vertices. Therefore,
CN[G, x]=CN[G \ e, x].

Theorem 6.2. For any edge e in G, the complement of G, CN[G, x]=CN[G+ e, x] if and only if
e is an edge joining different components of G.

Proof. If e is an edge joining different components of a graph G, then e is a cut edge of G+ e
and hence by Theorem 6.1, CN[G+ e, x]=CN[G, x].

Conversely, let CN[G, x] = CN[G+ e, x]. Suppose if possible, e is not an edge joining different
components of G. Let G1 be any component of G. Since e ∈ E(G) without loss of generality, let
e ∈ E(G1). Also, since G1 is a connected component of G, e in G1 + e is either an edge of a cycle
in G1 or a chord of a cycle in G1. In both cases, the number of cycles in G and G+ e are different
which contradicts CN[G, x]=CN[G+ e, x].

Definition 6.3 ([8]). Edge contraction is an operation which removes an edge e from G and
simultaneously merging the two vertices that it previously joined. The resulting graph is
denoted by G/e.

Theorem 6.4. Let G be any triangle free graph, then CN[G, x]=CN[G/e, x] if and only if e is a
cut edge of G and both end points of e are not cycle neighbor free vertices.

Proof. If e is a cut edge of G such that both end points of e are not cycle neighbor free vertices
of G then both G and G/e have the same number of cycle neighbor free vetices and the same
number of cycles of different lengths k for all possible values of k.

Conversely, let CN[G, x] = CN[G/e, x]. If e is not a cut edge, then e belongs to at least one
cycle of G. Also, since G is triangle free, the length of one or more cycles in G will be diminished
in G/e, a contradiction to the assumption that CN[G, x]=CN[G/e, x].
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Theorem 6.5. Suppose that G and H are graphs with disjoint vertex sets and let G.H be a
graph obtained by identifying a vertex of G with a vertex of H. Then CN[G.H, x] = CN[G∪H, x]
if and only if both the vertices v1 ∈V (G) and v2 ∈V (H) which are being identified in G.H belongs
to some cycles of G and H, respectively.

Proof. Let G and H be any two vertex disjoint graphs and let v1 ∈V (G) and v2 ∈V (H). Consider
the following cases:

Case (i): Both v1 and v2 are cycle neighbor free vertices in G and H, respectively. Then clearly
CN[G.H, x]=CN[G∪H, x]−1.

Case (ii): One of v1 ∈V (G) or v2 ∈V (H) is a cycle neighbor free vertex. Then also CN[G.H, x]=
CN[G∪H, x]−1.

Case (iii): Let v1 belongs to a cycle of G and v2 belongs to a cycle of H. Then the identification of
the vertices v1 in G and v2 in H will not affect the number of cycles in G and H and therefore
CN[G.H, x]=CN[G∪H, x]. This completes the proof.

7. Conclusion
In this paper, a new univariate graph polynomial viz., cycle neighbor polynomial of a graph is
introduced. This polynomial is a generating function of the number of cycles of various lengths
in a graph. That is cycle neighbor polynomial of a graph directly encodes the number of cycles
of different lengths together with the number of cycle neighbor free vertices in the graph. The
concept of cycle neighbor polynomial of a graph is interesting and important because it reveals
many graph properties of the underlying graph.
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