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Spectral Conditions for Composition Operators on

Algebras of Functions

J. Johnson and T. Tonev

Abstract. We establish general sufficient conditions for maps between function

algebras to be composition or weighted composition operators, which extend

previous results in [2, 4, 6, 7]. Let X be a locally compact Hausdorff space and

A⊂ C(X ) a dense subalgebra of a function algebra, not necessarily with unit, such

that X = ∂ A and p(A) = δA, where ∂ A is the Shilov boundary, δA – the Choquet

boundary, and p(A) – the set of p-points of A. If T : A → B is a surjective map

onto a function algebra B ⊂ C(Y ) such that either σπ(T f · T g) ⊂ σπ( f g) for

all f , g ∈ A, or, alternatively, σπ( f g) ⊂ σπ(T f · T g) for all f , g ∈ A, then there

is a homeomorphism ψ: δB → δA and a function α on δB so that (T f )(y) =

α(y) f (ψ(y)) for all f ∈ A and y ∈ δB. If, instead, σπ(T f · T g) ∩σπ( f g) 6= ∅

for all f , g ∈ A, and either σπ( f ) ⊂ σπ(T f ) for all f ∈ A, or, alternatively,

σπ(T f )⊂ σπ( f ) for all f ∈ A, then (T f )(y) = f (ψ(y)) for all f ∈ A and y ∈ δB.

In particular, if A and B are uniform algebras and T : A→ B is a surjective map

with σπ(T f · T g)∩σπ( f g) 6= ∅ for all f , g ∈ A, that has a limit, say b, at some

a ∈ A with a2 = 1, then (T f )(y) = b(y) a(ψ(y)) f (ψ(y)) for every f ∈ A and

y ∈ δB.

1. Introduction

Let A be a function algebra on a locally compact Hausdorff space, that is, A is

an algebra of bounded continuous functions on X , which is closed under the sup-

norm ‖ f ‖ = supx∈X | f (x)| and strongly separates the points of X , namely, for every

x , y ∈ X , x 6= y , there is a function f ∈ A so that f (x) 6= f (y), and for every x ∈ X

there is a function f ∈ A so that f (x) 6= 0. If A is unital, then its maximal ideal

space, MA, and its Shilov boundary, ∂ A, are compact spaces. If A is not unital,

thenMA is a locally compact space and the Gelfand transform bA of A is a subset of

C0(MA), the space of continuous functions onMA that vanish at infinity.
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Denote by σ( f ) the spectrum, by σπ( f ) = {z ∈ σ( f ): |z| = maxu∈σ( f ) |u|} the

peripheral spectrum, and by E( f ) = {x ∈ X : | f (x)| = ‖ f ‖} the maximum modulus

set of f ∈ A. An h ∈ A with ‖h‖ = 1 and |h(x)| < 1 whenever h(x) 6= 1 is said to be

a peaking function of A. The set of all peaking functions of A is denoted by P (A).

The set of all peaking functions h of A such that h(x0) = 1 for a fixed x0 ∈ X will

be denoted by Px0
(A). A point x ∈ X is called a p-point, or a strong boundary point

for A if for every neighborhood V of x there is a peaking function h of B so that

h(x) = 1 and E(h) ⊂ V . The set of all p-points for A is denoted by p(A). If A is

a function algebra then p(A) is a boundary, namely, the Choquet boundary δA of

A. If A is not a function algebra, then the set p(A) is, in general, a proper subset

of δA. Peaking functions can be utilized to find the values of algebra functions on

Choquet boundaries. Namely,

Lemma 1.1 (Strong Multiplicative Bishop’s Lemma [7]). Let A ⊂ C(X ) be a

function algebra on X = ∂ A, not necessarily with unit. If f ∈ A and x0 ∈ X is a

p-point of A with f (x0) 6= 0, then there exists a peaking function h0 ∈ Px0
(A) such

that

σπ( f h0) = { f (x0)}. (1.1)

If U is an open set of X containing x0, then h0 can be chosen so that E( f h0) =

E(h0)⊂ U.

Let A ⊂ C(X ) and B ⊂ C(Y ) be function algebras, and let ψ: Y → X be a

continuous mapping. A map T : A→ B is called

(i) a ψ-composition operator on Y if (T f )(y) = f (ψ(y)) for all f ∈ A and

y ∈ Y , and

(ii) a weighted ψ-composition operator on Y if there is a continuous function α

on Y so that (T f )(y) = α(y) f (ψ(y)) for all f ∈ A and y ∈ Y .

Clearly, composition operators are algebra isomorphisms. Any weighted composi-

tion operator T = α( f ◦ ψ) is linear, while the operator T/α is linear and

multiplicative.

There is considerable interest in finding conditions for maps between algebras

of functions to be composition type operators (e.g. [1, 3, 4, 6, 7]). In particular,

sufficient conditions for maps between two algebras of functions to be weighted

composition operators “in modulus” are given in [7]. Namely,

Theorem 1.2 ([7]). Let A ⊂ C(X ) and B ⊂ C(Y ) be dense subalgebras of function

algebras on X = ∂ A and Y = ∂ B with p(A) = δA and p(B) = δB. If T : A→ B is a

surjection such that ‖T f ·T g‖ = ‖ f g‖ for all f , g ∈ A, then there is a homeomorphism

ψ: p(B)→ p(A) such that

|(T f )(y)|= | f (ψ(y))| (1.2)

for all f ∈ A and y ∈ p(B).
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In [6] it is shown that if A and B are uniform algebras on compact Hausdorff

spaces X and Y respectively, then a necessary and sufficient condition for a

surjective unital operator T : A→ B to be a composition operator on δB is for T to

be peripherally-multiplicative, i.e. to satisfy the equality σπ(T f · T g) = σπ( f g) for

every f , g ∈ A.

In this paper we establish general sufficient conditions for maps between

function algebras to be composition or weighted composition operator, which

extend the main results in [2, 4, 6, 7].

2. The main theorems

In [4, Corollary 3] it is shown that if T : A→ B is a surjective mapping between

two uniform algebras such that

σπ(T f ) = σπ( f ) (2.1)

for every f ∈ A, and either σπ(T f · T g)⊂ σπ( f g) for all f , g ∈ A, or, alternatively,

σπ( f g) ⊂ σπ(T f · T g) for all f , g ∈ A, then T is a composition operator on δB.

We show that condition (2.1) is not necessary for arbitrary function algebras.

Theorem 2.1. Let A ⊂ C(X ) and B ⊂ C(Y ) be function algebras, not necessarily

with units, where X and Y are locally compact Hausdorff spaces. If T : A → B is a

surjection such that

σπ(T f · T g)⊂ σπ( f g) (2.2)

for all f , g ∈ A, then there exists a homeomorphism ψ: δB → δA and a continuous

function α on δB with α2 = 1 such that

(T f )(y) = α(y) f (ψ(y))

for every y ∈ δB.

Proof. First we show that (T f )(y)2 = f (ψ(y))2 for every f ∈ A and y ∈ δB.

Let f ∈ A and y0 ∈ δB. Equality (2.2) implies that ‖T f · T g‖ = ‖ f g‖ for every

f , g ∈ A. Let ψ: δB → δA be the homeomorphism from Theorem 1.2, such that

|(T f )(y)| = | f (ψ(y))| for all y ∈ δB. Clearly (T f )(y0) = f (ψ(y0)) whenever

f (ψ(y0)) = 0.

Suppose f (ψ(y0)) 6= 0. If V ⊂ δB is an arbitrary open neighborhood of y0 in

δA, then, clearly, U = ψ(V ) is an open neighborhood of ψ(y0). By Lemma 1.1

there exists a peaking function h ∈ Pψ(y0)
(A) with σπ( f h) = { f (ψ(y0))} such

that E( f h) = E(h) ⊂ U . Denote k = Th. Note that σπ(T f · k) = { f (ψ(y0))}

since, by (2.2), σπ(T f · k) ⊂ σπ( f h) = { f (ψ(y0))}. Therefore, there is a point

y1 ∈ δB so that (T f · k)(y1) = f (ψ(y0)), i.e. (T f )(y1) k(y1) = f (ψ(y0)).

Since, by (1.2), | f (ψ(y1))||h(ψ(y1))| = |(T f )(y1)||(Th)(y1)| = | f (ψ(y0))| and

σπ( f h) = { f (ψ(y0)}, we deduce that the function f h attains the maximum of

its modulus at ψ(y1). Hence ψ(y1) ∈ E( f h) = E(h) ⊂ U = ψ(V ), thus y1 ∈ V .
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Since V is an arbitrary neighborhood of y0, the continuity of T f and k implies that

(T f )(y0) k(y0) = f (ψ(y0)), and consequently,

(T f )(y0)
2 k(y0)

2 = f (ψ(y0))
2. (2.3)

Equality (2.2) implies that σπ(k
2) = σπ((Th)2) ⊂ σπ(h

2) = {1}, and therefore,

σπ(k
2) = {1}. Since, by (1.2), |(T f )(y0)| = | f (ψ(y0))| we deduce that |k2(y0)| =

1, thus k2(y0) ∈ σπ(k
2) = {1}, and therefore, k(y0)

2 = 1. Hence (2.3) becomes

(T f )(y0)
2 = f (ψ(y0))

2, as claimed.

Consequently, there exists a number α f (y0) = ±1, possibly depending on f ,

such that

(T f )(y0) = α f (y0) f (ψ(y0)). (2.4)

We claim that, in fact, the number α f (y0) does not depend on f ∈ A.

First we show that αh(y0) has the same value for all peaking functions h

in Pψ(y0)
(A). Indeed, if h1,h2 ∈ Pψ(y0)

(A), then, by (2.2), σπ(Th1 · Th2) ⊂

σπ(h1h2) = {1}, and therefore, σπ(Th1·Th2) = {1}. Since |(Th1)(y0) (Th2)(y0)|=

|h1(ψ(y0))||h2(ψ(y0))| = 1, the function Th1 · Th2 attains its maximum modulus

at y0. Hence (Th1)(y0) (Th2)(y0) ∈ σπ(Th1 · Th2) = {1}, and therefore,

(Th1)(y0) (Th2)(y0) = 1. Consequently, by (2.4), the numbers αhi
(y0) =

αhi
(y0)hi(ψ(y0)) = (Thi)(y0), i = 1,2, have the same sign, thus αh1

(y0) =

αh2
(y0).

By Lemma 1.1 there is an h ∈ Pψ(y0)
(A) such that σπ( f h) = { f (ψ(y0))}. Since,

by (2.2), σπ(T f ·Th)⊂ σπ( f h) = { f (ψ(y0))}, we have σπ(T f ·Th) = { f (ψ(y0)}.

Hence |(T f )(y0) (Th)(y0)| = |(T f )(y0)||(Th)(y0)| = | f (ψ(y0))||h(ψ(y0))| =

| f (ψ(y0))|. Consequently, the function T f ·Th attains the maximum of its modulus

at y0, so we must have (T f )(y0) (Th)(y0) ∈ σπ(T f · Th) = { f (ψ(y0))}, thus

(T f )(y0) (Th)(y0) = f (ψ(y0)). Therefore,

α f (y0)αh(y0) =
(T f )(y0)

f (ψ(y0))

(Th)(y0)

h(ψ(y0))
=

1

h(ψ(y0))
= 1.

Hence α f (y0) = αh(y0), thus the number α f (y0) has the same value for all

f ∈ A with f (ψ(y0)) 6= 0. Consequently, the function α(y) = α f (y), y ∈ δB,

f ∈ A, f (ψ(y)) 6= 0, is well defined, and α2 = α2
h
= 1. Now (2.4) becomes

(T f )(y0) = α(y0) f (ψ(y0)), as desired.

To show that α is continuous at any y ∈ δB, let f ∈ A with f (ψ(y)) 6= 0 and let

V ⊂ δB be a neighborhood of y such that f ◦ψ 6= 0 on V . Since T f , f and ψ are

continuous on V , so is the function α = T f /( f ◦ψ). In particular, α is continuous

at y ∈ V . �

For surjections T : A−1→ B−1 between the sets of invertible elements of uniform

algebras a similar result is proven in [3]. Alternatively, we have:

Theorem 2.2. Let A ⊂ C(X ) and B ⊂ C(Y ) be function algebras, not necessarily

with units, where X and Y are locally compact Hausdorff spaces. If T : A→ B is a
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surjection such that

σπ( f g) ⊂ σπ(T f · T g) (2.5)

for all f , g ∈ A, then there exists a homeomorphism ψ: δB → δA and a continuous

function α on δB with α2 = 1 such that

(T f )(y) = α(y) f (ψ(y))

for every y ∈ δB.

Proof. As before we show first that (T f )(y)2 = f (ψ(y))2 for every f ∈ A and

y ∈ δB. Let f ∈ A and y0 ∈ δB. The equality (2.5) implies that ‖T f · T g‖ = ‖ f g‖

for every f , g ∈ A, and therefore, Theorem 1.2 applies. Let ψ: δB → δA be

the homeomorphism from Theorem 1.2, such that |(T f )(y)| = | f (ψ(y))| for all

y ∈ δB and f ∈ A. Clearly (T f )(y0) = f (ψ(y0)) whenever (T f )(y0) = 0.

Suppose (T f )(y0) 6= 0 and let V ⊂ δB be an open neighborhood of y0.

By Lemma 1.1 there exists a peaking function k ∈ Py0
(B) such that σπ(T f ·

k) = {(T f )(y0)} and E(T f · k) = E(k) ⊂ V . Hence for every h ∈ T−1(k)

we have σπ( f h) ⊂ σπ(T f · k) = {(T f )(y0)}, i.e. σπ( f h) = {(T f )(y0)}.

Therefore, there is a point x1 ∈ δA so that ( f h)(x1) = (T f · k)(y0) =

(T f )(y0). The surjectivity of ψ implies that there is an y1 ∈ δB so that x1 =

ψ(y1). Hence f (ψ(y1))h(ψ(y1)) = (T f )(y0). Since σπ( f h) = {(T f )(y0)} and

|(T f )(y1)||k(y1)|= | f (ψ(y1))||h(ψ(y1))|= |(T f )(y0)| by (1.2), the function T f ·k

attains the maximum of its modulus at y1. Consequently, y1 ∈ E(T f · k) = E(k) ⊂

V . Since V is an arbitrary neighborhood of y0, the continuity of f , ψ and h imply

f (ψ(y0))h(ψ(y0)) = (T f )(y0) and therefore

(T f )(y0)
2 = f (ψ(y0))

2 h(ψ(y0))
2. (2.6)

Since, by (1.2), |(T f )(y0)| = | f (ψ(y0))| we have |h(ψ(y0))| = 1. The condition

(2.5) implies that σπ(h
2) ⊂ σπ(k

2) = {1}, thus σπ(h
2) = {1}, hence h(ψ(y0))

2 ∈

σπ(h
2) = {1}, and, therefore, h(ψ(y0))

2 = 1. Hence (2.6) becomes (T f )(y0)
2 =

f (ψ(y0))
2, as claimed.

Consequently, there is a number α f (y0) = ±1, possibly dependent on f , such

that

(T f )(y0) = α f (y0) f (ψ(y0)). (2.7)

We claim that α f (y0) does not depend on f ∈ A. First we show that αh(y0) has

the same value for any h ∈ T−1(k) such that k ∈ Py0
(B). If k1, k2 ∈ Py0

(B) and

hi ∈ T−1(ki), i = 1,2, then σπ(h1h2) ⊂ σπ(Th1 · Th2) = σπ(k1k2) = {1}, thus

σπ(h1h2) = {1}. Since |h1(ψ(y0))||h2(ψ(y0))| = |(Th1)(y0) (Th2)(y0)| = 1 we

deduce that h1(ψ(y0))h2(ψ(y0)) ∈ σπ(h1h2) = {1}, hence h1(ψ(y0))h2(ψ(y0))

= 1. By (2.7), αhi
(y0)hi(ψ(y0)) = (Thi)(y0) = ki(y0) = 1. Consequently, the

numbers αhi
(y0) = 1/hi(ψ(y0)), i = 1,2, have the same sign and therefore,

αh1
(y0) = αh2

(y0).
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Now let f ∈ A be arbitrary. According to Lemma 1.1 there exists a k ∈ Py0
(B)

such that σπ(T f · k) = {(T f )(y0)}. Let h ∈ T−1(k). Equality (2.5) implies that

σπ( f h)⊂ σπ(T f · k) = {(T f )(y0)}, hence σπ( f h) = {(T f )(y0)}. Therefore,

| f (ψ(y0))h(ψ(y0))|= | f (ψ(y0))||h(ψ(y0))|= |(T f )(y0) (Th)(y0)|= |(T f )(y0)|.

It follows that the function f h attains the maximum of its modulus at ψ(y0), so

we must have f (ψ(y0))h(ψ(y0)) ∈ σπ( f h), thus, f (ψ(y0))h(ψ(y0)) = (T f )(y0).

Therefore,

α f (y0)αh(y0) =
(T f )(y0)

f (ψ(y0))

(Th)(y0)

h(ψ(y0))
= (Th)(y0) = k(y0) = 1.

Hence α f (y0) = αh(y0), thus the number α f (y0) has the same value for all f ∈ A

with (T f )(y0) 6= 0.

Consequently, the function α(y) = α f (y), y ∈ δB, f ∈ A, (T f )(y) 6= 0, is well

defined. Now (2.7) becomes (T f )(y0) = α(y0) f (ψ(y0)). The proof completes as

in Theorem 2.1. �

More generally, we have the following

Theorem 2.3. Let X be a locally compact Hausdorff space and A ⊂ C(X ) a dense

subalgebra of a function algebra, not necessarily with unit, such that X = ∂ A and

p(A) = δA. If T : A→ B is a surjection onto a function algebra B ⊂ C(Y ) such that

either

(a) σπ(T f · T g)⊂ σπ( f g) for all f , g ∈ A, or,

(b) σπ( f g) ⊂ σπ(T f · T g) for all f , g ∈ A,

then T is a weighted composition operator on δB. That is, there is a homeomorphism

ψ: δB→ δA and a function α on δB with α2 = 1 so that (T f )(y) = α(y) f (ψ(y))

for all f ∈ A and y ∈ δB. In particular, A is necessarily a function algebra and T/α

is linear and multiplicative operator, i.e. an algebra isomorphism.

More general, weakly peripherally-multiplicative operators, that satisfy the

condition σπ(T f · T g) ∩ σπ( f g) 6= ∅ for all f , g ∈ A, are considered in [4]. It

is not known, though, whether every weakly peripherally-multiplicative operator

T : A→ B is a weighted composition operator. However, if T preserves, in addition,

the peripheral spectra of all algebra elements, then T is necessarily a composition

operator [4, Proposition 2]. Namely,

Proposition 2.4 ([4]). If a weakly peripherally-multiplicative surjective map

T : A → B between uniform algebras preserves the peripheral spectra of algebra

elements, i.e.

σπ(T f ) = σπ( f ) (2.8)

for all f ∈ A, then it is a composition operator on δB, i.e. an isometric algebra

isomorphism.
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Below we expand this result for algebras of functions and simultaneously relax

the condition (2.8).

Theorem 2.5. Let X be a locally compact Hausdorff space and A⊂ C(X ) is a dense

subalgebra of a function algebra, not necessarily with unit, such that X = ∂ A and

p(A) = δA. If T : A→ B is a surjection onto a function algebra B ⊂ C(Y ) such that

σπ(T f · T g)∩σπ( f g) 6= ∅ for all f , g ∈ A (2.9)

and either

(a) σπ( f ) ⊂ σπ(T f ) for all f ∈ A, or,

(b) σπ(T f )⊂ σπ( f ) for all f ∈ A,

then T is a bijective composition operator on δB with respect to a homeomorphism

ψ: δB→ δA. That is,

(T f )(y) = f (ψ(y))

for all f ∈ A and y ∈ δB. In particular, A is necessarily a function algebra and T is

an algebra isomorphism.

Proof. Let y0 ∈ p(B) = δB. Condition (2.9) implies that ‖T f · T g‖ = ‖ f g‖ for

every f , g ∈ A. Let ψ: δB → δA be the homeomorphism from Theorem 1.2, such

that |(T f )(y)|= | f (ψ(y))| for all y ∈ δB and f ∈ A. Clearly (T f )(y0) = f (ψ(y0))

whenever (T f )(y0) = 0.

Let (T f )(y0) 6= 0 and let V ⊂ δB be an open neighborhood of y0.

Case (a): According to Lemma 1.1, there exists a peaking function k ∈ Py0
(B) such

that σπ(T f · k) = {(T f )(y0)} and E(T f · k) = E(k) ⊂ V . Note that if h ∈ T−1(k)

then (T f )(y0) ∈ σπ( f h) since, by (a), σπ(T f · k)∩σπ( f h) 6= ∅. Therefore, there

is a point x1 ∈ δA so that (T f · k)(y0) = ( f h)(x1). Since ψ is surjective, there is

an y1 ∈ δB so that x1 =ψ(y1). Hence

(T f )(y0) = (T f )(y0) k(y0) = f (ψ(y1))h(ψ(y1)). (2.10)

By (1.2), |(T f )(y0)| = |(T f )(y0)||k(y0)| = | f (ψ(y1))||h(ψ(y1))| = |(T f )(y1)|

|k(y1)|. Hence y1 ∈ E(T f · k) = E(k) ⊂ V . Therefore, |h(ψ(y1))| = |k(y1)| = 1.

Condition (a) implies that σπ(h) ⊂ σπ(k) = {1}, thus h(ψ(y1)) ∈ σπ(h), hence

h(ψ(y1)) = 1. Now the equality (2.10) becomes (T f )(y0) = f (ψ(y1)). Since V

was an arbitrary neighborhood of y0, the continuity of f and ψ yield (T f )(y0) =

f (ψ(y0)) as desired.

Case (b): Note that U =ψ(V ) is an open neighborhood of ψ(y0) in δA. By Lemma

1.1 there exists a peaking function h ∈ Pψ(y0)
(A) such that σπ( f h) = { f (ψ(y0))}

and E( f · h) = E(h) ⊂ U . If Th = k, then f (ψ(y0)) ∈ σπ(T f · k) since, by

(2.9), σπ(T f · k) ∩ σπ( f h) 6= ∅. Therefore, there is a point y1 ∈ p(B) so that

(T f · k)(y1) = f (ψ(y0)). Hence

f (ψ(y0)) = f (ψ(y0))h(ψ(y0)) = (T f )(y1) k(y1). (2.11)
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By (1.2), | f (ψ(y0))| = |(T f )(y1)||k(y1)| = | f (ψ(y1))||(Th)(y1)| = | f (ψ(y1))|

|h(ψ(y1))|. Henceψ(y1) ∈ E( f ·h) = E(h)⊂ U =ψ(V ), thus y1 ∈ V . We have that

|h(ψ(y1))| = |(Th)(y1)| = |k(y1)| = 1. Since, by condition (b), σπ(k) ⊂ σπ(h) =

{1}, we deduce that k(y1) ∈ σπ(k) = {1}, hence k(y1) = 1. Then the equality

(2.11) becomes f (ψ(y0)) = (T f )(y1). Since V was an arbitrary neighborhood of

y0, the continuity of T f yields (T f )(y0) = f (ψ(y0)) as claimed. �

In [2] it is shown that a surjective weakly peripherally-multiplicative map T

between uniform algebras is a composition operator if conditions (a) or (b) in

Theorem 2.5 are replaced by the single condition T to be continuous at the unity.

Below we generalize this result.

Recall that a set E ⊂ X is called a peak set for a function algebra A⊂ C(X ) if E

is the maximum modulus set of a peaking function, i.e. if E = E(h), h ∈ P (A). It is

known that if λ ∈ σπ( f ) for some f ∈ A, then f −1(λ) is a peak set for A (e.g. [5]).

Theorem 2.6. Let A and B be uniform algebras on compact Hausdorff spaces X and

Y . If T : A→ B is a surjective map such that

(i) σπ(T f · T )∩σπ( f g) 6=∅ for all f , g ∈ A and

(ii) There exist an a ∈ A with a2 = 1 such that T has a limit, say b, at a,

then b2 = 1 and (T f )(y) = b(y) a(ψ(y)) f (ψ(y)) for every f ∈ A and y ∈ δB, i.e.

the map f 7→ b T (a f ) is an isometric algebra isomorphism.

Proof. Condition (i) implies that ‖T f · T g‖ = ‖ f g‖ for all f , g ∈ A. In particular,

‖(T f )2‖ = ‖ f 2‖ and therefore, ‖T f ‖ = ‖ f ‖ for every f ∈ A.

We claim that σπ( f ) ⊂ σπ(b T (a f )) for every f ∈ A. Let f ∈ A and λ ∈ σπ( f ).

If λ = 0, then ‖ f ‖ = 0 and so f = 0, thus a f = 0 and hence ‖T (a f )‖ = 0.

Consequently, b T (a f ) = 0 and, therefore, λ ∈ σπ(b T (a f )).

If λ 6= 0, then f −1(λ) is a peak set in X , so there exists a peaking function

h ∈ P (A) such that E(h) = f −1(λ). Define hn = a n+h

n+1
. Clearly, ahn ∈ P (A)

for every n. Note that since (ahn)
−1(1) = f −1(λ) for every n, we have that

σπ(ahn f ) = {λ}. Condition (i) implies that λ ∈ σπ(Thn · T (a f )) for every

n. Since hn converges uniformly to a, we must have Thn → b and therefore

λ ∈ σπ(b T (a f )). Consequently,

σπ( f ) ⊂ σπ(b T (a f )) (2.12)

as claimed. Theorem 2.5 implies that the map f 7→ b T (a f ) is a ψ-composition

operator on δB. Hence b(y) (T (a f )(y) = f (ψ(y)), and therefore, T ( f )(y) =

b(y) a(ψ(y)) f (ψ(y)) for all y ∈ δB and f ∈ A.

To show that b2 = 1, let y ∈ δB and consider the set K = b−1(b(y)).

Since y ∈ δB, K is a peak set and, therefore, there exists a peaking function

k ∈ P (B) with E(k) = K . Let h ∈ A be such that T (ah) = k. According to (2.12),

σπ(h) ⊂ σπ(b T (ah)) = σπ(bk) = {b(y)}. Hence σπ(h
2) = σπ((ah)2) = {b(y)2},
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so by (a), {b(y)2} ∈ σπ(T (ah)2) = σπ(k
2) = {1} since k ∈ P (B). Therefore

b(y)2 = 1 for every y ∈ δB. �
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