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Abstract. In this paper, a perturbation iteration method is described for solving differential-
difference equations having boundary layer. Firstly, the given differential-difference equation having
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1. Introduction
Ordinary differential equation which contains a delay parameter is called delay differential
equation. Ordinary differential equation which contains an advance parameter is called
advanced differential equation. Ordinary differential equation which contains both delay
and advance parameters is called differential-difference equation. In the literature, the
expressions “positive shift” and “negative shift” are also used for “advance” and “delay” terms
respectively. If the highest order derivative of the differential-difference equation is multiplied

http://doi.org/10.26713/cma.v11i4.1431 
https://orcid.org/0000-0003-3255-3323
https://orcid.org/0000-0003-1053-0585


618 Perturbation-Iteration Method for Solving Differential-Difference Equations. . . : R. P. Singh and Y. N. Reddy

by small parameter then the solution will exhibit the boundary layer phenomenon. This type of
differential-difference equations arise very frequently in the mathematical modelling of various
practical phenomena for example: in the modelling of the human pupil-light reflex, model
of HIV infection, the study of bi-stable devices in digital electronics, variational problem in
control theory; first exit time problem in modelling of activation of neuronal variability, immune
response, evolutionary biology, dynamics of networks of two identical amplifier, mathematical
ecology, population dynamics, the modelling of biological oscillator and in a variety of models for
physiological process. Solving these problems has become most interesting and challenging task
for researchers.

Lange and Miura [11, 12] have published a series of papers for solving these problems.
Chakravarthy and Reddy [4] have presented an initial value approach for the solution of
singularly perturbation problems. Rao and Chakravarthy [16,17] have constructed a scheme
for solving partial differential-difference equations. Salama and Al-Amery [19] have given
an asymptotic method for solving differential-difference equations. Reddy et al. [18] have
presented a new scheme for solving singularly perturbed differential-difference equations.
Venkat and Palli [20] have described a simple scheme of a non-linear differential-difference
equations. Adilaxmi et al. [1] have presented an initial value technique using exponentially
fitted non-standard finite difference method for singularly perturbed differential-difference
equations. Kadalbajoo et al. [9,10] have described the numerical treatment of boundary value
problems for second order singularly perturbed delay differential equations. Pakdemirli [15]
has described application of the perturbation iteration method to boundary layer type problems.
Awoke and Reddy [2] have discussed the solution of singularly perturbed differential-difference
equations via fitted method. General information and theory of singular perturbation problems
is available in Bellman and Cooke [3], Driver [5], El’sgol’ts and Norkin [7], Hale [8], Nayfeh [13],
O’Malley [14], and van Dyke [6].

Please add here one line introduction of each section.

2. Description of the Perturbation-Iteration Method
2.1 Case I: Delay Differential Equations having Boundary Layer
Consider the delay differential equation of the form:

εy′′(x)+a(x)y′(x−δ)+b(x)y(x)= 0, 0≤ x ≤ 1, (1)

with the boundary conditions

y(0)=α, −δ≤ x ≤ 0, (2)

and

y(1)=β, (3)

where 0< ε¿ 1 is the perturbation parameter, 0< δ=O(ε) is the small delay parameter, a(x)
and b(x) are sufficiently differentiable functions in (0,1) and α,β are constants. Further, it
is established that, when a(x) ≥ M > 0 in [0,1], boundary layer will be at x = 0 and when
a(x)≤ M < 0 in [0,1], boundary layer will be at x = 1, where M is some positive number.
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We have from Taylor series expansion

y′(x−δ)≈ y′(x)−δy′′(x). (4)

Using eq. (4) in eq. (1), we get singularly perturbed ordinary differential equation:

ε′y′′(x)+a(x)y′(x)+b(x)y(x)= 0, (5)

where ε′ = ε−a(x)δ. We re-write eq. (5) as

F(y′′, y′, y,ε′)= ε′y′′(x)+a(x)y′(x)+b(x)y(x)= 0. (6)

Now, we describe the perturbation iteration method for solving the eq. (6). We start with yo

as the initial guess and define:

yn+1 = yn +ε′(yc)n, n = 0,1,2, . . . , (7)

where yc is the correction term. Substituting the eq. (7) in eq. (6) and expanding by the Taylor
series, we get:

F(y′′n, y′n, yn,0)+Fy(y′′n, y′n, yn,0)ε′(yc)n +Fy′(y′′n, y′n, yn,0)ε′(y′c)n

+Fy′′(y′′n, y′n, yn,0)ε′(y′′c )n +Fε′(y′′n, y′n, yn,0)ε′ = 0, (8)

where Fy = ∂F
∂y , Fy′ = ∂F

∂y′ , Fy′′ = ∂F
∂y′′ , Fε′ = ∂F

∂ε′ and all derivatives are evaluated at ε′ = 0.
Clearly, eq. (8) is a variable coefficient non-homogeneous linear second order differential

equation with respect to the unknown (yc)n in its most general form. The Iteration procedure
will start with an initial guess y0, firstly (yc)0 is calculated from eq. (8) and then its value is
substituted in eq. (7) to calculate the value of y1. This iteration process is repeated using eq. (8)
and eq. (7) until a satisfactory result is obtained. To solve the boundary layer problems, for the
outer solution, eq. (5) is iterated. For the inner solution, eq. (5) is expressed in terms of the
boundary layer variable by using the stretching transformation and then transformed equation
is iterated according to eq. (6) to eq. (8). After getting the outer solution and inner solution, we
use matching principle and then obtain the composite solution which will valid throughout the
domain.

Matching Principle. Van Dyke [6] has proposed the Matching Principle, namely: ‘inner limit
of outer solution = outer limit of inner solution’ in overlapping region. That is, the outer solution
is written in terms of the inner variable and the inner solution is written in terms of the outer
variable and then both are equated.

2.2 Case-II: Differential-Difference Equations having Boundary Layer
Consider the differential-difference equation of the form:

εy′′(x)+a(x)y′(x)+b(x)y(x−δ)+ c(x)y(x)+d(x)y(x+η)= 0, (9)

0< x < 1 with the boundary conditions

y(x)=ϕ(x), on −δ≤ x ≤ 0, (10)

y(x)= γ(x), on 1≤ x ≤ 1+η, (11)

with the constant coefficients (i.e. a(x) = a, b(x) = b, c(x) = c, d(x) = d, ϕ(x) = ϕ, γ(x) = γ are
constants) where 0< ε¿ 1 is the perturbation parameter, 0< δ=O(ε) and 0< η=O(ε) are the
delay and advanced parameters, respectively.
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If b(x)+ c(x)+d(x)≤ 0, a(x)−δb(x)+ηd(x)≥ M > 0 in [0,1] then eq. (9) has unique solution and
a boundary layer at x = 0 where M is a positive number.

If b(x)+ c(x)+d(x)≤ 0, a(x)−δb(x)+ηd(x)≤ M < 0 in [0,1] then eq. (9) has unique solution and
a boundary layer at x = 1 where M is a positive number.

Using Taylor series expansion, we have

y(x−δ)≈ y(x)−δy′(x)+ δ2

2
y′′(x), (12)

y(x+η)≈ y(x)+ηy′(x)+ η2

2
y′′(x). (13)

Substituting eqs. (12)-(13) in eq. (9), we get singularly perturbed ordinary differential equation

ε′y′′(x)+a′(x)y′(x)+b′(x)y(x)= 0, (14)

where

ε′ = ε+b(x)
δ2

2
+d(x)

η2

2
, (15)

a′(x)= a(x)−δb(x)+ηd(x), (16)

b′(x)= b(x)+ c(x)+d(x). (17)

Perturbation iteration method with mutatis mutandis is applied for solving the eq. (14).

3. Numerical Experiments
In this section, three model examples are solved and the solutions are compared with the
exact/available solutions.

Example 3.1. Consider the delay differential equation having left boundary layer:

εy′′(x)+ y′(x−δ)− y(x)= 0, 0≤ x ≤ 1; (18)

with the boundary conditions

y(0)= 1, −δ≤ x ≤ 0, (19)

and

y(1)= 1. (20)

Using eq. (4) in eq. (18), we get singularly perturbed ordinary differential equation:

ε′y′′(x)+ y′(x)− y(x)= 0. (21)

whereε′ = ε−δ.

The outer solution: We re-write eq. (21) as:

F(y′′, y′, y,ε′)= ε′y′′(x)+ y′(x)− y(x)= 0. (22)

For this problem, boundary layer is located at x = 0. Therefore, the outer solution will not satisfy
the condition at x = 0. Substituting eq. (22) in eq. (8) and we get:

y′n − yn −ε′(yc)n +ε′(y′c)n +ε′y′′n = 0, n = 0,1,2, . . . . (23)

Initial guess is taken as:

y0 = 1. (24)
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Substituting eq. (24) into eq. (23) for n = 0 and solving for (yc)0 we get

(yc)0 = c1ex − 1
ε′

. (25)

Therefore, from eq. (7) we get y1 as

y1 = y0 +ε′(yc)0 = c1ε
′ex. (26)

Applying the right-side boundary condition (i.e. y(1) = 1) we get the value of arbitrary
constant c1.

y1 = e(x−1). (27)

Similarly for n = 1, we get the y2 is

y2 = e(x−1) +ε′e(x−1)(1− x). (28)

This solution does not satisfy the boundary condition given at left-side i.e. y2(0) 6= 0.

The inner solution: To obtain the inner solution, we use the stretching transformation

ξ= x
ε′

. (29)

Substituting eq. (29) in eq. (21), we get the equation:

F(Y ′′,Y ′,Y ,ε′)=Y ′′+Y ′−ε′Y = 0 , (30)

where Y =Y (ξ). Substituting eq. (30) in eq. (8) and re-arranging the terms we get:

Y ′′
n +Y ′

n +ε′(Y ′
C)n +ε′(Y ′′

C )n −ε′Yn = 0, n = 0,1,2, . . . . (31)

We take the initial guess as:

Y0 = 1 (for n = 0). (32)

Then, we get the successive two iterations as:

Y1 = 1+ε′c3(1− e−ξ)+ε′ξ , (33)

Y2 = 1+ε′c3(1− e−ξ)+ε′ξ+ε′
[
c6(1− e−ξ)+ε′ξ

{
c3

(
1+ e−ξ

2

)
+ ξ

2
−1

}]
. (34)

The arbitrary constants involved in eq. (33) and eq. (34) are determined by the Matching
Principle.

(y2)i = e(ξε′−1) +ε′e(ξε′−1)(1−ξε′). (35)

Taking approximation up to two terms for fixed value of ξ we have

(y2)i ∼= e−1(1+ξε′)+ε′e−1 + . . . . (36)

By writing eq. (36) in terms of variable x.

(y2)i ∼= e−1(1+ x)+ε′e−1 + . . . . (37)

Inner solution, in terms of the outer variable x, becomes:

(Y2)o = 1+ε′c3(1− e−x/ε′)+ x+ε′
[
c6(1− e−x/ε′)+ x

{
c3

(
1+ e−

x
ε′

2

)
+ x

2ε′
−1

}]
. (38)

Taking approximation up to two terms only, as terms e−x/ε′ and x2 can be neglected, we get:

(Y2)o = (1+ε′c3)(1+ x)+ε′c6 . (39)
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From eq. (37) and eq. (39), we get:

1+ε′c3 = e−1 and c6 = e−1. (40)

Therefore, inner and outer solutions, in terms of original variable x can be written as

Y2 = 1+ (e−1 −1)(1− e−
x
ε′ )+ x+ε′

[
e−1(1− e−x/ε′)+ x

{ (e−1 −1)
ε′

(
1+ e−

x
ε′

2

)
+ x

2ε′
−1

}]
, (41)

y2 = e(x−1) +ε′e(x−1)(1− x). (42)

The solution which is valid throughout the domain, is given by

y=Y2 + y2 − (y2)i. (43)

Substituting eq. (41), eq. (42) and eq. (37) in eq. (43), we get the composite expansion as:

y= ex−1 − e(− x
ε′−1) + e−

x
ε′ +ε′e−1(1− e−

x
ε′ )+ x

e(− x
ε′−1)

2
− x

e−
x
ε′

2
. (44)

The exact solution of eq. (18) is

y= (1− em2)em1x + (em1 −1)em2x

(em1 − em2)
, (45)

where

m1 = −1−p
1+4(ε−δ)

2(ε−δ)
, (46)

m2 = −1+p
1+4(ε−δ)

2(ε−δ)
. (47)

Results are shown in Tables 1 and 2, and the layer behaviour in Figures 1 and 2.

Table 1. Results for Example 3.1 with h = 0.01, ε= 0.001 and δ= 0.0001

x Present solution Exact solution

0.0 1.00000000 1.00000000

0.02 0.37564219 0.37564167

0.04 0.38322397 0.38322325

0.06 0.39095892 0.39095785

0.08 0.39885013 0.39884855

0.1 0.40690075 0.40689852

0.2 0.44966005 0.44965201

0.3 0.49691639 0.49689768

0.4 0.54914272 0.54910754

0.5 0.60686175 0.60680316

0.6 0.67065113 0.67056097

0.7 0.74114931 0.74101790

0.8 0.81906184 0.81887787

0.9 0.90516850 0.90491871

1.0 1.00033109 1.00000000
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Figure 1. Example 3.1 with h = 0.01, ε= 0.001 and δ= 0.0001

Table 2. Results for Example 3.1 with h = 0.01, ε= 0.0001 and δ= 0.00001

x Present solution Exact solution
0.0 1.00000000 1.00000000
0.02 0.37534420 0.37534419
0.04 0.38292599 0.38292596
0.06 0.39066094 0.39066087
0.08 0.39855215 0.39855203
0.1 0.40660276 0.40660258
0.2 0.44936207 0.44936131
0.3 0.49661841 0.49661658
0.4 0.54884474 0.54884126
0.5 0.60656376 0.60655794
0.6 0.67035315 0.67034417
0.7 0.74085132 0.74083821
0.8 0.81876386 0.81874548
0.9 0.90487052 0.90484556
1.0 1.00003310 1.00000000

 

 

Figure 2. Example 3.1 with h = 0.01, ε= 0.0001 and δ= 0.00001
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Example 3.2. Now, we consider the delay differential equation having right boundary layer

εy′′(x)− y′(x−δ)− y(x)= 0, 0≤ x ≤ 1, (48)

with the boundary conditions

y(0)= 1, −δ≤ x ≤ 0, (49)

and

y(1)=−1. (50)

Using eq. (4) into eq. (48), we get singularly perturbed ordinary differential equation

ε′y′′(x)− y′(x)− y(x)= 0, (51)

where ε′ = ε+δ.

The outer solution: To obtain the outer solution, we write eq. (51) as:

F(y′′, y′, y,ε′)= ε′y′′(x)− y′(x)− y(x)= 0. (52)

In this problem, boundary layer is at x = 1. Therefore, the outer solution will not satisfy the
boundary condition at x = 1. Substituting eq. (52) in eq. (8) and get

−y′n − yn −ε′(yc)n −ε′(y′c)n +ε′y′′n = 0, n = 0,1,2, . . . (53)

Initial guess is taken as:

y0 = 1. (54)

Substituting eq. (54) in eq. (53) for n = 0 and solving we get:

The first iteration solution as

y1 = e−x. (55)

Similarly, the second iteration result for n = 1, we get y2 as

y2 = e−x +ε′xe−x. (56)

This solution does not satisfy the boundary condition at right side i.e. y2(1) 6= −1.

The inner solution: To obtain the inner solution, we use the stretching variable as

ξ= 1− x
ε′

. (57)

Substituting eq. (57) in eq. (51), we get

F(Y ′′,Y ′,Y ,ε′)=Y ′′+Y ′−ε′Y = 0, (58)

where Y =Y (ξ). Substituting eq. (58) in eq. (8) and re-arranging terms, we get:

Y ′′
n +Y ′

n +ε′(Y ′
C)n +ε′(Y ′′

C )n −ε′Yn = 0, n = 0,1,2, . . . . (59)

Initial guess is taken as:

Y0 =−1 (for n = 0). (60)
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Then, we get the successive two iterations as:

Y1 =−1+ε′c3(1− e−ξ)−ε′ξ, (61)

Y2 =−1+ε′c3(1− e−ξ)−ε′ξ+ε′
[
c6(1− e−ξ)+ε′ξ

{
c3

(
1+ e−ξ

2

)
− ξ

2
+1

}]
. (62)

The arbitrary constants involved in eq. (61) and eq. (62) are determined by the Matching
Principle.

Matching Principle. Taking approximation up to two terms only for fixed value of ξ we have:

(Y2)i ∼= e−1(2− x)+ε′e−1 + . . . . (63)

From eq. (62), inner solution, in terms of the outer variable x becomes:

(Y2)o =−1+ε′c3
(
1−e−

(1−x)
ε′

)− (1−x)+ε′
[
c6

(
1−e−

(1−x)
ε′

)+ (1− x)
{

c3

(
1+ e−

(1−x)
ε′

2

)
− (1− x)

2ε′
+1

}]
. (64)

Taking approximation up to two terms only as the terms e−
(1−x)
ε′ and (1− x)2 can be neglected,

we get:

(Y2)o = (ε′c3 −1)(2− x)+ε′c6. (65)

Equating eq. (63) and eq. (65)

ε′c3 −1= e−1 and c6 = e−1. (66)

Therefore, inner and outer solutions, in terms of original variable x can be written as

Y2 =−1+ (e−1 +1)
(
1− e−

(1−x)
ε′

)− (1− x)

+ε′
[
e−1(1− e−

(1−x)
ε′

)+ (1− x)
{ (e−1 +1)

ε′
(
1+ e−

(1−x)
ε′

2

)
− (1− x)

2ε′
+1

}]
, (67)

y2 = e−x +ε′xe−x. (68)

The solution which is valid throughout the domain, is given by

y=Y2 + y2 − (y2)i. (69)

Substituting eq. (67), eq. (68) and eq. (63) in eq. (69), we get the composite expansion as

y= e−x +ε′xe−x − e−
(1−x)
ε′

[
1+ e−1 +ε′e−1 − (1− x)(1+ e−1)

2

]
. (70)

The exact solution of eq. (48) is

y= (1+ em2)em1x − (em1 +1)em2x

(em2 − em1)
, (71)

where

m1 = 1−p
1+4(ε+δ)

2(ε+δ)
, (72)

m2 = 1+p
1+4(ε+δ)

2(ε+δ)
. (73)

Results are shown in Tables 3 and 4 and the layer behaviour in Figures 3 and 4.
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Table 3. Results for Example 3.2 with h = 0.01, ε= 0.002 and δ= 0.0003

x Present solution Exact solution

0.0 1.00000000 1.00000000

0.1 0.90499124 0.90504460

0.2 0.81900912 0.81910573

0.3 0.74119603 0.74132722

0.4 0.67077586 0.67093420

0.5 0.60704621 0.60722537

0.6 0.54937142 0.54956605

0.7 0.49717624 0.49738178

0.8 0.44994005 0.45015270

0.9 0.40719171 0.40740827

0.92 0.39914232 0.39935933

0.94 0.39125205 0.39146941

0.96 0.38351776 0.38373533

0.98 0.37592583 0.37592964

1.0 −1.00000000 −1.00000000

 

 

Figure 3. Example 3.2 with h = 0.01, ε= 0.002 and δ= 0.0003
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Table 4. Results for Example 3.2 with h = 0.01, ε= 0.002 and δ= 0.00001

x Present solution Exact solution

0.0 1.00000000 1.00000000

0.1 0.90501748 0.90501858

0.2 0.81905660 0.81905863

0.3 0.74126048 0.74126328

0.4 0.67085362 0.67085704

0.5 0.60713415 0.60713808

0.6 0.54946691 0.54947125

0.7 0.49727704 0.49728169

0.8 0.45004429 0.45004917

0.9 0.40729782 0.40730286

0.92 0.39924864 0.39925371

0.94 0.39135854 0.39136362

0.96 0.38362436 0.38362946

0.98 0.37598453 0.37598413

1.0 −1.00000000 −1.00000000

 

 

Figure 4. Example 3.2 with h = 0.01, ε= 0.002 and δ= 0.00001

Example 3.3. Consider the differential-differential equation having left boundary layer

εy′′(x)+ y′(x)−3y(x)+2y(x+η)= 0, 0≤ x ≤ 1, (74)

with the boundary conditions

y(0)= 1, −δ≤ x ≤ 0, (75)

and

y(1)= 1, 1≤ x ≤ 1+η, (76)
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Using Taylor’s series expansion, we have:

y(x+η)= y(x)+ηy′(x)+ η2

2
y′′(x). (77)

Substitute eq. (77) in eq. (74), we get singularly perturbed ordinary differential equation as:

ε′y′′(x)+ (1+2η)y′(x)− y(x)= 0, (78)

where ε′ = ε+η2.

The outer solution: To obtain the outer solution, we write eq. (78) as:

F(y′′, y′, y,ε′)= ε′y′′(x)+ (1+2η)y′(x)− y(x)= 0. (79)

In this problem, boundary layer is located at x = 0. Therefore, the outer solution will not satisfy
the boundary condition at x = 0.

Substituting eq. (79) in eq. (8) and get:

(1+2η)y′n − yn −ε′(yc)n + (1+2η)ε′(y′c)n +ε′y′′n = 0, n = 0,1,2, . . . . (80)

Initial guess is taken as:

y0 = 1. (81)

Substituting eq. (81) in eq. (80) for n = 0 and solving we get:

The first iteration solution is

y1 = e
(x−1)

(1+2η) . (82)

Similarly, the second iteration result for n = 1, we get y2 is

y2 = e
(x−1)

(1+2η) +ε′ (1− x)
(1+2η)3 e

(x−1)
(1+2η) . (83)

This solution does not satisfy the boundary condition at left side i.e. y2(0) 6= 1.

The inner solution: To obtain the inner solution, the stretching variable is defined as

ξ= x
ε′

. (84)

Substitute eq. (84) into eq. (78), the transformed equation is considered as

F(Y ′′,Y ′,Y ,ε′)=Y ′′+ (1+2η)Y ′−ε′Y = 0, (85)

where Y =Y (ξ). Substitute eq. (85) into eq. (8) and re-arrange the terms, then:

Y ′′
n + (1+2η)Y ′

n + (1+2η)ε′(Y ′
C)n +ε′(Y ′′

C )n −ε′Yn = 0, n = 0,1,2, . . . . (86)

Initial guess is taken as:

Y0 = 1 (for = 0). (87)

Following the same procedure, the successive two iteration are

Y1 = 1+ε′c3(1− e−(1+2η)ξ)+ε′ ξ

(1+2η)
, (88)
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Y2 = 1+ε′c3(1− e−(1+2η)ξ)+ε′ ξ

(1+2η)

+ε′
[
c6(1− e−(1+2η)ξ)+ε′ ξ

(1+2η)

{
c3

(
1+ e−(1+2η)ξ

2

)
+ ξ

2(1+2η)
− 1

(1+2η)2

}]
. (89)

The arbitrary constants involved in eq. (88) and eq. (89) are determined by the Matching
Principle.

Matching Principle. Taking approximation up to two terms only for fixed value of ξ.

(y2)i ∼= e−
1

(1+2η)
(
1+ x

(1+2η)

)
+ε′ e−

1
(1+2η)

(1+2η)3 + . . . . (90)

From eq. (89), inner solution in terms of the outer variable x is

(Y2)o = 1+ε′c3

(
1− e−(1+2η)x/ε′

)
+ x

(1+2η)

+ε′
[
c6

(
1− e−(1+2η)x/ε′

)
+ x

(1+2η)

{
c3

(
1+ e−(1+2η)x/ε′

2

)
+ x/ε′

2(1+2η)
− 1

(1+2η)2

}]
. (91)

Taking approximation upto two terms only, as the terms e−
(1+2η)(x)

ε′ and x2 can be neglected, we
get:

(Y2)o =
(
1+ x

(1+2η)

)
(1+ε′c3)+ε′c6. (92)

Equating eq. (90) and eq. (92)

ε′c3 +1= e−
1

(1+2η) and c6 = e−
1

(1+2η)

(1+2η)3 . (93)

Therefore, inner and outer solutions, in terms of original variable x can be written as

Y2 = 1+ (e−
1

(1+2η) −1)(1− e−(1+2η)x/ε′)+ x
(1+2η)

+ε′
[ e−

1
(1+2η)

(1+2η)3 (1− e−(1+2η)x/ε′)

+ x
(1+2η)

{ (e−
1

(1+2η) −1)
ε′

(
1+ e−(1+2η)x/ε′

2

)
+ x/ε′

2(1+2η)
− 1

(1+2η)2

}]
. (94)

y2 = e
(x−1)

(1+2η) +ε′ (1− x)
(1+2η)3 e

(x−1)
(1+2η) . (95)

The solution which is valid throughout the domain is given by

y=Y2 + y2 − (y2)i. (96)

Substituting eq. (94), eq. (95) and eq. (90) in eq. (96), we get the composite expansion is

y= e
(x−1)

(1+2η) − e(− (1+2η)x
ε′ − 1

(1+2η) )
(
1− x

2(1+2η)

)
+ e−

(1+2η)x
ε′ +ε′ e−

1
(1+2η)

(1+2η)3 (1− e−
(1+2η)x

ε′ )− xe−
(1+2η)x

ε′

2(1+2η)
. (97)

The exact solution of eq. (74) is

y= (−1+ em2)em1x + (1− em1)em2x

(em2 − em1)
, (98)

Communications in Mathematics and Applications, Vol. 11, No. 4, pp. 617–633, 2020



630 Perturbation-Iteration Method for Solving Differential-Difference Equations. . . : R. P. Singh and Y. N. Reddy

where

m1 =
−(1+2η)+

√
(1+2η)2 +4ε

2ε
, (99)

m2 =
−(1+2η)−

√
(1+2η)2 +4ε

2ε
. (100)

Results are shown in Tables 5 and 6 and the layer behaviour in Figures 5 and 6.

Table 5. Results for Example 3.3 with h = 0.01, ε= 0.001 and η= 0.0001

x Present solution Exact solution

0.0 1.00000000 1.00000000

0.02 0.37575238 0.37575175

0.04 0.38333412 0.38333326

0.06 0.39106900 0.39106774

0.08 0.39896009 0.39895828

0.1 0.40701057 0.40700802

0.2 0.44976858 0.44975957

0.3 0.49702255 0.49700169

0.4 0.54924522 0.54920605

0.5 0.60695903 0.60689388

0.6 0.67074139 0.67064117

0.7 0.74123039 0.74108437

0.8 0.81913123 0.81892684

0.9 0.90522324 0.90494576

1.0 1.00036773 1.00000000

 

 

 

Figure 5. Example 3.3 with h = 0.01, ε= 0.001 and η= 0.0001
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Table 6. Results for Example 3.3 with h = 0.01, ε= 0.002 and η= 0.0003

x Present solution Exact solution

0.0 1.00000000 1.00000000

0.02 0.37629483 0.37629214

0.04 0.38384827 0.38384539

0.06 0.39158298 0.39157932

0.08 0.39947386 0.39946906

0.1 0.40752404 0.40751778

0.2 0.45027947 0.45026025

0.3 0.49752869 0.49748577

0.4 0.54974403 0.54966452

0.5 0.60744744 0.60731605

0.6 0.67121575 0.67101434

0.7 0.74168640 0.74139363

0.8 0.81956385 0.81915465

0.9 0.90562658 0.90507163

1.0 1.00073490 1.00000000

 

 

Figure 6. Example 3.3 with h = 0.01, ε= 0.002 and η= 0.0003

4. Discussion and Conclusions
We have described the Perturbation iteration method for solving differential-difference equations
having boundary layer. Firstly, the given differential-difference equation having boundary layer
is converted into a singularly perturbed differential equation using Taylor’s transformations.
Then perturbation iteration method applied to solve the resulting singularly perturbed
differential equation.We have implemented this on three model examples, (i) a delay differential
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equation having left boundary layer, (ii) a delay differential equation having right boundary
layer and (iii) a differential-difference equation having left boundary layer. Computational
results and layer behaviour are presented in tables and figures and for different values of the
parameters. It is observed from tables that our solutions approximate the exact solutions very
well.
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