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1. Introduction
Let C⊂H be a convex and closed set of a real Hilbert space H. The inner product is denoted by
〈·, ·〉 and the norm is denoted by ‖ ·‖. Let f be a bifunction f :H×H→R with EP( f ,C) denotes
the solution set of an equilibrium problem over the set C and p∗ is any random element of
EP( f ,C). Let consider the following definitions of a monotonicity of a bifunction (see [5,6] for
details). Let a bifunction f :H×H→R on C for γ> 0 is said to be:

(i) strongly monotone if

f (x̆, y̆)+ f ( y̆, x̆)≤−γ‖x̆− y̆‖2, ∀ x̆, y̆ ∈C;

(ii) monotone if

f (x̆, y̆)+ f ( y̆, x̆)≤ 0, ∀ x̆, y̆ ∈C;

(iii) strongly pseudomonotone if

f (x̆, y̆)≥ 0 =⇒ f ( y̆, x̆)≤−γ‖x̆− y̆‖2, ∀ x̆, y̆ ∈C;

(iv) pseudomonotone if

f (x̆, y̆)≥ 0 =⇒ f ( y̆, x̆)≤ 0, ∀ x̆, y̆ ∈C;

(v) satisfying the Lipschitz-type condition on C if two real numbers c1, c2 > 0, such that

f (x̆, z̆)− c1‖x̆− y̆‖2 − c2‖ y̆− z̆‖2 ≤ f (x̆, y̆)+ f ( y̆, z̆), ∀ x̆, y̆, z̆ ∈C.

For given C to be a nonempty closed and convex subset of a real Hilbert space H and let
f :H×H→R be a bifunction through f (x̆, x̆)= 0, for every x̆ ∈C. The equilibrium problem [6,8]
for f over C defined as follows:

Find p∗ ∈C such that f (p∗, y̆)≥ 0, ∀ y̆ ∈C. (EP)

Equilibrium problem (EP) had various mathematical problems as a particular case especially
the variational inequality problems (VIP), optimization problems, the fixed point problems,
complementarity problems, the Nash equilibrium of non-cooperative games, saddle point and
vector minimization problems (for further details see e.g., [6,7,12]). To the best of our knowledge,
the term “equilibrium problem” in specific format introduced in 1992 by Muu and Oettli [13]
and has been further studied by Blum and Oettli [6]. The problem of equilibrium is also
acknowledged as the famous Ky Fan inequality [8]. One of the most interesting and effective
research fields in equilibrium problem theory is to construct new iterative schemes and modify
the existing methods and also study their convergence analysis. A number of methods have
previously developed to approximate the solution of an equilibrium problem in both finite and
infinite-dimensional spaces, i.e., the extragradient methods [11,15,16,19,27–31] and others in
[1,2,10,18,21–26].

Hieu [9] proposed an extragradient method to solve strongly pseudomonotone equilibrium
problems in a real Hilbert space. It is mandatory to solve two minimization problems on a
closed convex set for each iteration of the sequence generated by the method in [9], and an
appropriate step size sequence is required for each minimization problem. An iterative sequence
{xn} generated as follows:
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Let xn, yn ∈H such that
xn+1 = argmin

y∈C

{
λn f (yn, y)+ 1

2‖xn − y‖2
}
,

yn+1 = argmin
y∈C

{
λn+1 f (yn, y)+ 1

2‖xn+1 − y‖2
}
,

(1)

where {λn}⊂ (0,+∞) be a non-increasing sequence having following conditions:

(Cd1) : lim
n→+∞λn = 0 and (Cd2) :

+∞∑
n=1

λn =+∞. (2)

In this work, we study well-established projection methods that are easy to implement due to
their easy and smooth numerical calculations. We propose a modified subgradient extragradient
method to resolve strongly pseudomonotone equilibrium problems in real Hilbert space in order
to improve the convergence speed of the iterative sequence. Our result is based on the two-step
inertial subgradient extragradient method for finding a numerical solution to the strongly
pseudomonotone equilibrium problems and the strong convergence of the proposed method
based on the mild conditions.

This paper is organized in the following manner: Section 2 includes some definitions and
basic results that will be needed in this paper. Section 3 gives an inertial-type algorithm with
convergence studies. Section 4 set out some application of our main results. Section 5 sets
out experimental investigations to confirm algorithmic behaviour for both standard problems
designed based on the Nash-Cournot equilibrium model.

2. Preliminaries
In this section, some basic definitions and important lemmas are provided in order to study the
convergence analysis.
A normal cone of C at x̆ ∈C is defined by

NC(x̆)= {w ∈H : 〈w, y̆− x̆〉 ≤ 0, ∀ y̆ ∈C}.

A projection PC(x̆) of x̆ onto a closed, convex subset C of H is

PC(x̆)= argmin
y̆∈C

{‖ y̆− x̆‖}.

Assume that g :C→R is a convex function and subdifferential of g at x̆ ∈C is defined by

∂g(x̆)= {w ∈C : g( y̆)− g(x̆)≥ 〈w, y̆− x̆〉, ∀ y̆ ∈C}.

Lemma 2.1 ([20]). Let C be a non-empty, closed and convex subset of a real Hilbert space H and
g :C→R be a convex, subdifferentiable and lower semicontinuous function on C. Then, p̆ ∈C is a
minimizer of a function g if and only if 0 ∈ ∂g(p̆)+NC(p̆), where ∂g(p̆) and NC(p̆) denotes the
subdifferential of g at p̆ and the normal cone of C at p̆, respectively.

Lemma 2.2 ([4]). For x̆, y̆ ∈H and ð ∈R, then the following relationship is holds:

‖ðx̆+ (1−ð) y̆‖2 = ð‖x̆‖2 + (1−ð)‖ y̆‖2 −ð(1−ð)‖x̆− y̆‖2.

Lemma 2.3 ([3]). Let an, bn and cn are sequences in [0,+∞) and

an+1 ≤ an +bn(an −an−1)+ cn, ∀ n ≥ 1, with
+∞∑
n=1

cn <+∞
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with b > 0 and 0≤ bn ≤ b < 1, ∀ n ∈N. Then, the following results are established.

(i)
+∞∑
n=1

[an −an−1]+ <∞, with [s]+ :=max{s,0};

(ii) lim
n→+∞an = a∗ ∈ [0,∞).

Lemma 2.4 ([14]). Let {φn}, {ψn}⊂ [0,+∞) are sequences and
+∞∑
n=1

φn =+∞ with
+∞∑
n=1

φnψn <+∞,

then liminf
n→+∞ ψn = 0.

3. Main Results
The proposed algorithm is an inertial algorithm solve strongly pseudomonotone equilibrium
problem. However, the advantage of this algorithm is that there is no need to know about the
strongly pseudomonotone constant γ and Lipschitz constants c1, c2.

Assumption 1. Assume that f :H×H→R satisfies the following conditions:
(C1) f (x, x)= 0, ∀ x ∈ C and f is strongly pseudomontone on C;

(C2) f satisfy the Lipschitz-type condition on H with constants c1 and c2;

(C3) f (x, ·) is sub-differentiable and convex on H for each fixed x ∈H.

Algorithm 1 (Two-step algorithm for strongly pseudomonotone equilibrium problem).
Initialization: Choose x−1, x0, y0 ∈ H, 0 ≤ ϑn ≤ ϑ < p

5−2 and a sequence {λn} satisfying the
following conditions:

(Cd1) : lim
n→+∞λn = 0 and (Cd2) :

+∞∑
n=1

λn =+∞.

Set

x1 = argmin
y∈C

{
λ0 f (y0, y)+ 1

2
‖w0 − y‖2

}
, y1 = argmin

y∈C

{
λ1 f (y0, y)+ 1

2
‖w1 − y‖2

}
,

where w0 = x0 +ϑ0(x0 − x−1) and w1 = x1 +ϑ1(x1 − x0).
Iterative steps: Given xn−1, yn−1, xn, yn for n ≥ 1. Construct a half space

Hn = {z ∈H : 〈wn −λnυn−1 − yn, z− yn〉 ≤ 0},

where υn−1 ∈ ∂2 f (yn−1, yn).
Step 1: Compute

xn+1 = (1−βn)wn +βnzn,

where wn = xn +ϑn(xn − xn−1) and

zn = argmin
y∈Hn

{
λn f (yn, y)+ 1

2
‖wn − y‖2

}
.

Step 2: Compute

yn+1 = argmin
y∈C

{
λn+1 f (yn, y)+ 1

2
‖wn+1 − y‖2

}
,

where wn+1 = xn+1 +ϑn+1(xn+1 − xn).
Step 3: If xn+1 = wn = yn, STOP. Otherwise set n := n+1 and go to Step 1.
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Lemma 3.1. Let f :H×H→R be a bifunction satisfying the conditions (C1)-(C3). Assume that
the EP( f ,C) is non-empty. Then, for all p∗ ∈EP( f ,C), we have

‖zn − p∗‖2 ≤ ‖wn − p∗‖2 − (1−4c1λn)‖wn − yn‖2 − (1−2c2λn)‖zn − yn‖2

+4c1λn‖wn − yn−1‖2 −2γλn‖yn − p∗‖2.

Proof. By the use of zn and Lemma 2.1, we have

0 ∈ ∂2

{
λn f (yn, y)+ 1

2
‖wn − y‖2

}
(zn)+NHn(zn).

Thus, for ω ∈ ∂2 f (yn, zn) there exists ω ∈ NHn(zn) such that

λnω+ zn −wn +ω= 0.

This implies that

〈wn − zn, y− zn〉 =λn〈ω, y− zn〉+〈ω, y− zn〉, ∀ y ∈ Hn.

Since ω ∈ NHn(zn) then 〈ω, y− zn〉 ≤ 0 for all y ∈ Hn. It means that

λn〈ω, y− zn〉 ≥ 〈wn − zn, y− zn〉, ∀ y ∈ Hn. (3)

Due to ω ∈ ∂ f (yn, zn), we have

f (yn, y)− f (yn, zn)≥ 〈ω, y− zn〉, ∀ y ∈H. (4)

From (3) and (4) we have

λn f (yn, y)−λn f (yn, zn)≥ 〈wn − zn, y− zn〉, ∀ y ∈ Hn. (5)

Due to zn ∈ Hn implies that 〈wn −λnυn−1 − yn, zn − yn〉 ≤ 0. Thus, we get

λn〈υn−1, zn − yn〉 ≥ 〈wn − yn, zn − yn〉. (6)

Since υn−1 ∈ ∂2 f (yn−1, yn), we have

f (yn−1, y)− f (yn−1, yn)≥ 〈υn−1, y− yn〉, ∀ y ∈H.

By substituting y= zn, we have

f (yn−1, zn)− f (yn−1, yn)≥ 〈υn−1, zn − yn〉, ∀ y ∈H. (7)

From (6) and (7) we obtain

λn
{
f (yn−1, zn)− f (yn−1, yn)

}≥ 〈wn − yn, zn − yn〉. (8)

By substituting y= p∗ into (5), we obtain

λn f (yn, p∗)−λn f (yn, zn)≥ 〈wn − zn, p∗− zn〉, ∀ y ∈ Hn. (9)

Since p∗ ∈ EP( f ,C) then f (p∗, yn) ≥ 0. Thus f (yn, p∗) ≤ −γ‖yn − p∗‖ due to strong pseudo-
monotonicity of a bifunction f . From (8) we get

〈wn − zn, zn − p∗〉 ≥λn f (yn, zn)+γλn‖yn − p∗‖2. (10)

Due to the Lipschitz-type continuity of bifunction f we have

f (yn−1, zn)≤ f (yn−1, yn)+ f (yn, zn)+ c1‖yn−1 − yn‖2 + c2‖yn − zn‖2. (11)

From (10) and (11) we get

〈wn − zn, zn − p∗〉 ≥λn
{
f (yn−1, zn)− f (yn−1, yn)

}
− c1λn‖yn−1 − yn‖2 − c2λn‖yn − zn‖2 +γλn‖yn − p∗‖2. (12)
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Combining expressions (8) and (12), we obtain

〈wn − zn, zn − p∗〉 ≥ 〈wn − yn, zn − yn〉
− c1λn‖yn−1 − yn‖2 − c2λn‖yn − zn‖2 +γλn‖yn − p∗‖2. (13)

We have the following facts:

−2〈wn − zn, zn − p∗〉 =−‖wn − p∗‖2 +‖zn −wn‖2 +‖zn − p∗‖2,

2〈wn − yn, zn − yn〉 = ‖wn − yn‖2 +‖zn − yn‖2 −‖wn − zn‖2.

We also have the following inequality

‖yn−1 − yn‖2 ≤ (‖yn−1 −wn‖+‖wn − yn‖
)2 ≤ 2‖yn−1 −wn‖2 +2‖wn − yn‖2.

The above two facts and last inequality, completes the proof.

Next, we can prove the strong convergence of Algorithm 1.

Theorem 3.2. Let f :H×H→R be a bifunction satisfying the conditions (C1)-(C3). Assume that
{xn} is a sequences in H generated by Algorithm 1. Moreover, the sequence ϑn is non-decreasing
with 0≤ϑn ≤ϑ<p

5−2 and βn is non-increasing with 0<β≤βn ≤ 1. Then, {xn}, {yn} and {wn}
strongly converge to an element p∗ in EP( f ,C).

Proof. Since λn → 0, there is an n0 ∈N such that

0<λn <
1
2 −2ϑ− 1

2ϑ
2 −δ

b
2 (1−ϑ)2 +2c1(1+ϑ+ϑ2 +ϑ3)

and 0≤ϑn ≤ϑ<
p

5−2, (14)

where 0< δ< 1
2 −2ϑ− 1

2ϑ
2 and b =max{4c1,2c2}. By value of xn+1 gives that

‖xn+1 − p∗‖2 = ‖(1−βn)(wn − p∗)+βn(zn − p∗)‖2

≤ (1−βn)‖wn − p∗‖2 +βn‖zn − p∗‖2

= ‖wn − p∗‖2 −βn(1−4c1λn)‖wn − yn‖2 −βn(1−2c2λn)‖zn − yn‖2

+4c1λnβn‖wn − yn−1‖2 −2γλnβn‖yn − p∗‖2. (15)

By the use of wn and Lemma 2.2, we obtain

‖wn − p∗‖2 = ‖(1+ϑn)(xn − p∗)−ϑn(xn−1 − p∗)‖2

= (1+ϑn+1)‖xn − p∗‖2 −ϑn‖xn−1 − p∗‖2 +ϑn(1+ϑn)‖xn − xn−1‖2. (16)

By the use of wn+1 and Lemma 2.2, we obtain

‖wn+1 − yn‖2 = ‖xn+1 +ϑn+1(xn+1 − xn)− yn‖2

= (1+ϑn+1)‖xn+1 − yn‖2 −ϑn+1‖xn − yn‖2 +ϑn+1(1+ϑn+1)‖xn+1 − xn‖2

≤ (1+ϑn+1)‖xn+1 − yn‖2 +ϑn+1(1+ϑn+1)‖xn+1 − xn‖2

≤ (1+ϑ)
[‖wn − yn‖2 +‖zn − yn‖2]+ϑ(1+ϑ)‖xn+1 − xn‖2. (17)

Combining (15), (16) and (17), we obtain

‖xn+1 − p∗‖2 +4c1λnβn+1‖wn+1 − yn‖2

≤ (1+ϑn+1)‖xn − p∗‖2 −ϑn‖xn−1 − p∗‖2 +ϑ(1+ϑ)‖xn − xn−1‖2

+4c1λnβn‖wn − yn−1‖2 −βn(1−4c1λn)‖wn − yn‖2 −βn(1−2c2λn)‖zn − yn‖2
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+4c1λnβn(1+ϑ)
[‖wn − yn‖2 +‖zn − yn‖2]+4c1λnβnϑ(1+ϑ)‖xn+1 − xn‖2 (18)

≤ (1+ϑn+1)‖xn − p∗‖2 −ϑn‖xn−1 − p∗‖2 +ϑ(1+ϑ)‖xn − xn−1‖2

+4c1λnβn‖wn − yn−1‖2 +4c1λnϑ(1+ϑ)‖xn+1 − xn‖2

− 1
2

(1−bλn −4c1λn(1+ϑ))‖xn+1 −wn‖2, (19)

where b =max{4c1,2c2} and

‖xn+1 −wn‖2 = γ2
n‖zn −wn‖2.

By using Cauchy inequality, we have

‖xn+1 −wn‖2 = ‖xn+1 − xn −ϑn(xn − xn−1)‖2

= ‖xn+1 − xn‖2 +ϑ2
n‖xn − xn−1‖2 −2ϑn〈xn+1 − xn, xn − xn−1〉 (20)

≥ ‖xn+1 − xn‖2 +ϑ2
n‖xn − xn−1‖2 −2ϑn‖xn+1 − xn‖‖xn − xn−1‖

≥ (1−ϑn)‖xn+1 − xn‖2 + (ϑ2
n −ϑn)‖xn − xn−1‖2. (21)

From (19) and (21), we have

‖xn+1 − p∗‖2 −ϑn+1‖xn − p∗‖2 +4c1λnβn+1‖wn+1 − yn‖2

≤ ‖xn − p∗‖2 −ϑn‖xn−1 − p∗‖2 +ϑ(1+ϑ)‖xn − xn−1‖2 +4c1λnβn‖wn − yn−1‖2

+4c1λnϑ(1+ϑ)‖xn+1 − xn‖2 −σn
[
(1−ϑ)‖xn+1 − xn‖2 + (ϑ2 −ϑ)‖xn − xn−1‖2], (22)

where σn := 1
2 (1−bλn −4c1λn(1+ϑ))≥ 0, for all n ≥ n0. Let consider that

Φn = ‖xn − p∗‖2 −ϑn‖xn−1 − p∗‖2 +4c1λnβn‖wn − yn−1‖2 . (23)

The expression (22) implies that

Φn+1 ≤Φn +Rn‖xn − xn−1‖2 −Qn‖xn+1 − xn‖2, (24)

where Rn :=ϑ(1+ϑ)+σnϑ(1−ϑ)≥ 0 for all n ≥ n0, and

Qn :=σn(1−ϑ)−4c1λnϑ(1+ϑ).

Furthermore, we also take

Ψn = ‖xn − p∗‖2 −ϑn‖xn−1 − p∗‖2 +4c1λnβn‖wn − yn−1‖2 +Rn‖xn − xn−1‖2.

It follows from (14) and (24) such that

Ψn+1 −Ψn ≤−δ‖xn+1 − xn‖2 ≤ 0, n ≥ n0. (25)

The above means that {Ψn} is nonincreasing for n ≥ n0. By Ψn we have

‖xn − p∗‖2 ≤Ψn +αn‖xn−1 − p∗‖2

≤Ψn0 +α‖xn−1 − p∗‖2

≤ ·· · ≤Ψn0(αn−n0 +·· ·+1)+αn−n0‖xn0 − p∗‖2

≤ Ψn0

1−α +αn−n0‖xn0 − p∗‖2. (26)

By the use of Ψn+1 and (25) we obtain

−Ψn+1 ≤αn+1‖xn − p∗‖2

≤α‖xn − p∗‖2
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≤α Ψn0

1−α +αn−n0+1‖xn0 − p∗‖2

≤α Ψn0

1−α +‖xn0 − p∗‖2. (27)

It is the result from (25) and (27) that

δ
k∑

n=n0

‖xn+1 − xn‖2 ≤Ψn0 −Ψk+1

≤Ψn0 +α
Ψn0

1−α +‖xn0 − p∗‖2

≤ Ψn0

1−α +‖xn0 − p∗‖2. (28)

By letting k →∞ implies that∑
n
‖xn+1 − xn‖2 <+∞ implies that ‖xn+1 − xn‖→ 0, as n →∞. (29)

From the expressions (20) and (29) we obtain

‖xn+1 −wn‖→ 0 as n →∞. (30)

By (27) implies that

−Φn+1 ≤α
Ψn0

1−α +‖xn0 − p∗‖2 +Rn+1‖xn+1 − xn‖2. (31)

Since 0<β≤βn ≤ 1 with 0≤αn ≤α<p
5−2, we can re-write (19) for n ≥ n0, such that

β(1−bλn0 −4c1λn0(1+α))
[‖wn − yn‖2 +‖zn − yn‖2]

≤Φn −Φn+1 +α(1+α)‖xn − xn−1‖2 +4c1λnα(1+α)‖xn+1 − xn‖2. (32)

Fix k > n0 and (32) for n = n0,n0 +1, · · · ,k. Summing up them, we obtain

β(1−bλn0 −4c1λn0(1+α))
k∑

n=n0

[
‖wn − yn‖2 +‖zn − yn‖2

]
≤Φ1 −Φk+1 +α(1+α)

k∑
n=n0

‖xn − xn−1‖2 +4c1λn0α(1+α)
k∑

n=n0

‖xn+1 − xn‖2

≤Φ1 +α
Ψn0

1−α +‖xn0 − p∗‖2 + (2α+α2)‖xk+1 − xk‖2

+α(1+α)
k∑

n=n0

‖xn − xn−1‖2 +4c1λn0α(1+α)
k∑

n=n0

‖xn+1 − xn‖2

= M3. (33)

By letting k →+∞ implies that∑
n
‖zn − yn‖2 <+∞ and

∑
n
‖wn − yn‖2 <+∞, (34)

and

lim
n→∞‖zn − yn‖ = lim

n→∞‖wn − yn‖ = 0. (35)

By using (17), (29) and (34) gives that∑
n
‖wn+1 − yn‖2 <+∞. (36)
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By using expressions (15), (16), (29), (36) and Lemma 2.3 implies that

lim
n→∞‖xn − p∗‖ = l. (37)

Next, we show that the sequence {xn} strongly converges to p∗. For all n ≥ n0, the expression
(15) gives that

2γλn‖yn − p∗‖2 ≤−‖xn+1 − p∗‖2 + (1+αn)‖xn − p∗‖2 −αn‖xn−1 − p∗‖2

+αn(1+αn)‖xn − xn−1‖2 +4c1λn‖wn − yn−1‖2

≤ (‖xn − p∗‖2 −‖xn+1 − p∗‖2)+2α‖xn − xn−1‖2

+ (αn‖xn − p∗‖2 −αn−1‖xn−1 − p∗‖2)+4c1λn‖wn − yn−1‖2. (38)

From expression (38) implies that
k∑

n=n0

2γλn‖yn − p∗‖2

≤ (‖xn0 − p∗‖2 −‖xk+1 − p∗‖2)+2α
k∑

n=n0

‖xn − xn−1‖2

+ (αk‖xk − p∗‖2 −αn0−1‖xn0−1 − p∗‖2)+ 4c1

2c2 +4c1

k∑
n=n0

‖wn − yn−1‖2

≤ ‖xn0 − p∗‖2 +α‖xk − p∗‖2 +2α
k∑

n=n0

‖xn − xn−1‖2 + 4c1

2c2 +4c1

k∑
n=n0

‖wn − yn−1‖2

≤ M4, (39)

for some M4 ≥ 0. It gives that
+∞∑
n=1

2γλn‖yn − p∗‖2 <+∞. (40)

By Lemma 2.4 and (40) such that

liminf ‖yn − p∗‖ = 0. (41)

Finally, (37) and (41) gives lim
n→∞‖xn − p∗‖ = 0. This complete the proof.

4. Application to Variational Inequality Problem
An operator F :C→H is define by

(1) strongly pseudomonotone on C if for η> 0 such that

〈F(x1), x2 − x1〉 ≥ 0=⇒〈F(x2), x1 − x2〉 ≤−η‖x1 − x2‖2, ∀ x1, x2 ∈C;

(2) L-Lipschitz continuous on C if

‖F(x1)−F(x2)‖ ≤ L‖x1 − x2‖, ∀ x1, x2 ∈C.

A variational inequality problem is defined as follows:

p∗ ∈C such that 〈F(p∗), y− p∗〉 ≥ 0, ∀ y ∈C.

Note. If f (x, y) := 〈F(x), y− x〉 for all x, y ∈ C, then equilibrium problem turn to variational
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inequality problem with L
2 = c1 = c2. The value of zn rewritten as

zn = argmin
y∈Hn

{
λn f (yn, y)+ 1

2
‖wn − y‖2

}
= argmin

y∈Hn

{
λn〈F(yn), y− yn〉+ 1

2
‖wn − y‖2

}
= argmin

y∈Hn

{
λn〈F(yn), y−wn〉+ 1

2
‖wn − y‖2 +λn〈F(yn),wn − yn〉

}

= argmin
y∈Hn

{
1
2
‖y− (wn −λnF(yn)‖2

}
− λ2

n

2
‖F(yn)‖2

= PHn(wn −λnF(yn)). (42)

Corollary 4.1. Assume that F :C→H is strongly pseudomonotone and L-Lipschitz continuous
on C with solution set VI(F,C) is non-empty. Choose x−1, x0, y0 and compute

x1 = PC(w0 −λ0F(y0)), y1 = PC(w1 −λ1F(y0)),

where w0 = x0 +ϑ0(x0 − x−1) and w1 = x1 +ϑ1(x1 − x0).
(i) Given xn−1, xn, yn−1, yn for n ≥ 1. Set wn = xn +ϑn(xn − xn−1) and compute

xn+1 = (1−βn)wn +βnzn,

where zn = PHn(wn −λnF(yn)) and

Hn = {z ∈H : 〈wn −λnFwn − yn, z− yn〉 ≤ 0}.

(ii) Compute

yn+1 = PC(wn+1 −λn+1F(yn)),

where wn+1 = xn+1 +ϑn+1(xn+1 − xn) and βn ∈ (0,1] with λn satisfy the condition (2). Moreover,
c1 = c2 = L

2 and 0≤ ϑn ≤ ϑ<p
5−2. Then the sequence {xn}, {wn} and {yn} strongly converge to

the solution p∗ of VI(F,C).

5. Numerical Illustration
Numerical findings are presented in this segment to demonstrate the performance of our
proposed methodology. The MATLAB code have been operating in MATLAB edition 9.5 (R2018b)
on the Intel(R) Core(TM)i5-6200 Processor PC @ 2.30GHz 2.40GHz, RAM 8.00 GB.

5.1 Nash-Cournot oligopolistic equilibrium model
We take into account the enhanced version of the Nash-Cournot oligopolistic equilibrium
model [17]. Assume there are n companies that manufacture the same commodity. Let x
represent a vector where each element xi specifies the quantity of the commodity generated by
the company i. The price function P for each individual company is define as Pi(S)=φi −ψiS,

where φi > 0, ψi > 0 and S =
m∑

i=1
xi. The function of income Fi(x) = Pi(S)xi − ti(xi), while ti(xi)

is the value tax and fee for producing xi. The strategy framework for the entire concept is
taking the form of C :=C1×C2×·· ·×Cn, where Ci = [xmin

i , xmax
i ]. In addition, each firm strives

to achieve its optimum profit by taking into account the subsequent amount of demand on
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the basis that the output of all the other companies would be an input parameter. A point
p∗ ∈C=C1 ×C2 ×·· ·×Cn is an equilibrium point of the model if

Fi(p∗)≥ Fi(p∗[xi]), ∀ xi ∈Ci, ∀ i = 1,2, · · · ,n,

where p∗[xi] represent the vector get from p∗ by taking x∗i with xi . Let f (x, y) :=ϕ(x, y)−ϕ(x, x)

with ϕ(x, y) :=−
n∑

i=1
Fi(x[yi]), and the problem of finding the Nash equilibrium point is

Find p∗ ∈C : f (p∗, y)≥ 0, ∀ y ∈C.

The bifunction f could be taken in the following form

f (x, y)= 〈Px+Q y+ q, y− x〉,
while q ∈ Rn and P , Q are matrices of order n and Q is symmetric positive semi-definite
and Q − P is symmetric negative definite through Lipschitz constants c1 = c2 = 1

2‖P −Q‖
(see [16]). Two matrices P,Q are randomly generated1 and vector q randomly generated [−n,n].
The feasible set C⊂Rn is

C := {x ∈Rn :−2≤ xi ≤ 5}.

We use x−1 = x0 = y0 = (1,1, · · · ,1,1)T . The findings are seen in the Table 1–2 with with
Algorithm 1(Algo1) and Algorithm 3.1 (Algo3.1) in [9].

Table 1. Experiment 5.1: Comparison of Algorithm 1 and Algorithm 3.1 in [9]

Algo3.1 Algo1
n λn ϑn βn TOL Iter. CPU(s) Iter. CPU(s)
5 (n+1)−1 0.12 0.80 10−6 270 3.6617 190 2.4359

10 (n+1)−1 0.12 0.80 10−6 365 5.2656 240 4.1639
20 (n+1)−1 0.12 0.80 10−6 441 6.9567 342 5.7361
50 (n+1)−1 0.12 0.80 10−6 586 7.5834 416 6.1619

Table 2. Experiment 5.1: Comparison of Algorithm 1 and Algorithm 3.1 in [9]

Algo3.1 Algo1
n λn ϑn βn TOL Iter. CPU(s) Iter. CPU(s)
5 (n+1)−1 0.12 0.85 10−9 1192 25.3000 788 20.5985
5 (n+1)−0.5 0.12 0.85 10−9 2631 53.2534 1630 41.4862
5 (n+1)−1 log1(n+3) 0.12 0.85 10−9 1305 27.5130 1010 25.1062
5 (n+1)−1 log0.5(n+3) 0.12 0.85 10−9 1935 42.7673 1554 36.4381
5 log−2(n+3) 0.12 0.80 10−9 2596 58.4369 2133 50.6567
5 log−1(n+3) 0.12 0.80 10−9 3186 72.7256 2411 54.3991

Discussion About Numerical Experiments: The following observation was obtained from
Table 1–2.

(i) No previous knowledge for Lipschitz-constant c1, c2 is needed for Matlab running
equations.

1Choosing two diagonal matrices randomly A1 and A2 with entries from [1,n] and [−n,0], respectively. Two
random orthogonal matrices B1 and B2 are able to generate a positive semi definite matrix M1 = B1 A1BT

1 and
negative semi definite matrix M2 = B2 A2BT

2 . Finally, set Q = M1 +MT
1 , S = M2 +MT

2 and P =Q−S.
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(ii) Indeed, the convergence rate of algorithms probably depends on the convergence rate of
the step-size sequences λn. For certain instances, the step-size sequence converges quickly
to zero which would be more efficient for our situation.

(iii) The convergence rate of the iterative sequence often depends on the nature of the problem
and the scale of the problem.

(iv) Due to the variable step-size sequence, a different step-size value that is not suitable for
the current iteration of the process also creates ambiguity and hump in the actions of the
iterative sequence.

6. Conclusion
This paper proposes a new algorithms to solve problems of strong pseudomonotone equilibrium.
The primary advantage of this algorithm is that the stepsize, in this case, is independent of
the constants of the Lipschitz type and strongly pseudomonotone. The reasonable explanation
is that we use a stepsize sequence that is non-summable and non-increasing. Numerical
experiments have also been considered for looking at the overall impact of the stepsize sequence
on the convergence of an iterative sequence.
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