An Accelerated Popov's Subgradient Extragradient Method for Strongly Pseudomonotone Equilibrium Problems in a Real Hilbert Space With Applications

Nopparat Wairojjana ${ }^{10}$, Habib ur Rehman ${ }^{2}$, Nuttapol Pakkaranang ${ }^{2}$ (0) and Chainarong Khanpanuk*3
${ }^{1}$ Applied Mathematics Program, Faculty of Science and Technology, Valaya Alongkorn Rajabhat University under the Royal Patronage (VRU), 1 Moo 20 Phaholyothin Road, Klong Neung, Klong Luang, Pathumthani, 13180, Thailand
${ }^{2}$ Department of Mathematics, Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT) 126 Pracha-Uthit Road, Bang Mod, Thung Khru, Bangkok 10140, Thailand
${ }^{3}$ Department of Mathematics, Faculty of Science and Technology, Phetchabun Rajabhat University, Phetchabun 67000, Thailand

*Corresponding author: iprove2000ck@gmail.com

Abstract

In this paper, we introduce a subgradient extragradient method to find the numerical solution of strongly pseudomonotone equilibrium problems with the Lipschitz-type condition on a bifunction in a real Hilbert space. The strong convergence theorem for the proposed method is precisely established on the basis of the standard cost bifunction assumptions. The application of our convergence results is also considered in the context of variational inequalities. For numerical analysis, we consider the well-known Nash-Cournot oligopolistic equilibrium model to support our well-established convergence results.

Keywords. Subgradient extragradient method; Strongly pseudomonotone equilibrium problems; Lipschitz-type condition; Strong convergence theorem

MSC. 65Y05; 65K15; 68W10; 47H05; 47H10
Received: July 7, 2020
Accepted: November 12, 2020

[^0]
1. Introduction

Let $\mathbb{C} \subset \mathbb{H}$ be a convex and closed set of a real Hilbert space \mathbb{H}. The inner product is denoted by $\langle\cdot, \cdot\rangle$ and the norm is denoted by $\|\cdot\|$. Let f be a bifunction $f: \mathbb{H} \times \mathbb{H} \rightarrow \mathbb{R}$ with $E P(f, \mathbb{C})$ denotes the solution set of an equilibrium problem over the set \mathbb{C} and p^{*} is any random element of $E P(f, \mathbb{C})$. Let consider the following definitions of a monotonicity of a bifunction (see [5, 6] for details). Let a bifunction $f: \mathbb{H} \times \mathbb{H} \rightarrow \mathbb{R}$ on \mathbb{C} for $\gamma>0$ is said to be:
(i) strongly monotone if

$$
f(\breve{x}, \breve{y})+f(\breve{y}, \breve{x}) \leq-\gamma\|\breve{x}-\breve{y}\|^{2}, \quad \forall \breve{x}, \breve{y} \in \mathbb{C} ;
$$

(ii) monotone if

$$
f(\breve{x}, \breve{y})+f(\breve{y}, \breve{x}) \leq 0, \quad \forall \breve{x}, \breve{y} \in \mathbb{C} ;
$$

(iii) strongly pseudomonotone if

$$
f(\breve{x}, \breve{y}) \geq 0 \Longrightarrow f(\breve{y}, \breve{x}) \leq-\gamma\|\breve{x}-\breve{y}\|^{2}, \quad \forall \breve{x}, \breve{y} \in \mathbb{C} ;
$$

(iv) pseudomonotone if

$$
f(\breve{x}, \breve{y}) \geq 0 \Longrightarrow f(\breve{y}, \breve{x}) \leq 0, \quad \forall \breve{x}, \breve{y} \in \mathbb{C} ;
$$

(v) satisfying the Lipschitz-type condition on \mathbb{C} if two real numbers $c_{1}, c_{2}>0$, such that

$$
f(\breve{x}, \breve{z})-c_{1}\|\breve{x}-\breve{y}\|^{2}-c_{2}\|\breve{y}-\breve{z}\|^{2} \leq f(\breve{x}, \breve{y})+f(\breve{y}, \breve{z}), \quad \forall \breve{x}, \breve{y}, \breve{z} \in \mathbb{C} .
$$

For given \mathbb{C} to be a nonempty closed and convex subset of a real Hilbert space \mathbb{H} and let $f: \mathbb{H} \times \mathbb{H} \rightarrow \mathbb{R}$ be a bifunction through $f(\breve{x}, \breve{x})=0$, for every $\breve{x} \in \mathbb{C}$. The equilibrium problem [6, 8] for f over \mathbb{C} defined as follows:

Find $p^{*} \in \mathbb{C}$ such that $f\left(p^{*}, \breve{y}\right) \geq 0, \quad \forall \breve{y} \in \mathbb{C}$.
Equilibrium problem (EP) had various mathematical problems as a particular case especially the variational inequality problems (VIP), optimization problems, the fixed point problems, complementarity problems, the Nash equilibrium of non-cooperative games, saddle point and vector minimization problems (for further details see e.g., [6,7,12]). To the best of our knowledge, the term "equilibrium problem" in specific format introduced in 1992 by Muu and Oettli [13] and has been further studied by Blum and Oettli [6]. The problem of equilibrium is also acknowledged as the famous Ky Fan inequality [8]. One of the most interesting and effective research fields in equilibrium problem theory is to construct new iterative schemes and modify the existing methods and also study their convergence analysis. A number of methods have previously developed to approximate the solution of an equilibrium problem in both finite and infinite-dimensional spaces, i.e., the extragradient methods [11, 15, 16, 19, 27, 31] and others in [$1,2,10,18,21-26]$.

Hieu [9] proposed an extragradient method to solve strongly pseudomonotone equilibrium problems in a real Hilbert space. It is mandatory to solve two minimization problems on a closed convex set for each iteration of the sequence generated by the method in [9], and an appropriate step size sequence is required for each minimization problem. An iterative sequence $\left\{x_{n}\right\}$ generated as follows:

Let $x_{n}, y_{n} \in \mathbb{H}$ such that

$$
\left\{\begin{array}{l}
x_{n+1}=\underset{y \in \mathbb{C}}{\operatorname{argmin}}\left\{\lambda_{n} f\left(y_{n}, y\right)+\frac{1}{2}\left\|x_{n}-y\right\|^{2}\right\} \tag{1}\\
y_{n+1}=\underset{y \in \mathbb{C}}{\operatorname{argmin}}\left\{\lambda_{n+1} f\left(y_{n}, y\right)+\frac{1}{2}\left\|x_{n+1}-y\right\|^{2}\right\}
\end{array}\right.
$$

where $\left\{\lambda_{n}\right\} \subset(0,+\infty)$ be a non-increasing sequence having following conditions:

$$
\begin{equation*}
\text { (Cd1): } \lim _{n \rightarrow+\infty} \lambda_{n}=0 \text { and (Cd2): } \sum_{n=1}^{+\infty} \lambda_{n}=+\infty . \tag{2}
\end{equation*}
$$

In this work, we study well-established projection methods that are easy to implement due to their easy and smooth numerical calculations. We propose a modified subgradient extragradient method to resolve strongly pseudomonotone equilibrium problems in real Hilbert space in order to improve the convergence speed of the iterative sequence. Our result is based on the two-step inertial subgradient extragradient method for finding a numerical solution to the strongly pseudomonotone equilibrium problems and the strong convergence of the proposed method based on the mild conditions.

This paper is organized in the following manner: Section 2 includes some definitions and basic results that will be needed in this paper. Section 3 gives an inertial-type algorithm with convergence studies. Section 4 set out some application of our main results. Section 5 sets out experimental investigations to confirm algorithmic behaviour for both standard problems designed based on the Nash-Cournot equilibrium model.

2. Preliminaries

In this section, some basic definitions and important lemmas are provided in order to study the convergence analysis.
A normal cone of \mathbb{C} at $\breve{x} \in \mathbb{C}$ is defined by

$$
N_{\mathbb{C}}(\breve{x})=\{w \in \mathbb{H}:\langle w, \breve{y}-\breve{x}\rangle \leq 0, \forall \breve{y} \in \mathbb{C}\} .
$$

A projection $P_{\mathbb{C}}(\breve{x})$ of \breve{x} onto a closed, convex subset \mathbb{C} of \mathbb{H} is

$$
P_{\mathbb{C}}(\breve{x})=\underset{\breve{y} \in \mathbb{C}}{\operatorname{argmin}}\{\|\breve{y}-\breve{x}\|\} .
$$

Assume that $g: \mathbb{C} \rightarrow \mathbb{R}$ is a convex function and subdifferential of g at $\breve{x} \in \mathbb{C}$ is defined by

$$
\partial g(\breve{x})=\{w \in \mathbb{C}: g(\breve{y})-g(\breve{x}) \geq\langle w, \breve{y}-\breve{x}\rangle, \forall \breve{y} \in \mathbb{C}\} .
$$

Lemma 2.1 ([|20|). Let \mathbb{C} be a non-empty, closed and convex subset of a real Hilbert space \mathbb{H} and $g: \mathbb{C} \rightarrow \mathbb{R}$ be a convex, subdifferentiable and lower semicontinuous function on \mathbb{C}. Then, $\breve{p} \in \mathbb{C}$ is a minimizer of a function g if and only if $0 \in \partial g(\breve{p})+N_{\mathbb{C}}(\breve{p})$, where $\partial g(\breve{p})$ and $N_{\mathbb{C}}(\breve{p})$ denotes the subdifferential of g at \breve{p} and the normal cone of \mathbb{C} at \breve{p}, respectively.

Lemma 2.2 ([4]). For $\breve{x}, \breve{y} \in \mathbb{H}$ and $\partial \in \mathbb{R}$, then the following relationship is holds:

$$
\|\partial \breve{x}+(1-ð) \breve{y}\|^{2}=ð\|\breve{x}\|^{2}+(1-ð)\|\breve{y}\|^{2}-ð(1-ð)\|\breve{x}-\breve{y}\|^{2} .
$$

Lemma 2.3 ([3]). Let a_{n}, b_{n} and c_{n} are sequences in $[0,+\infty)$ and

$$
a_{n+1} \leq a_{n}+b_{n}\left(a_{n}-a_{n-1}\right)+c_{n}, \quad \forall n \geq 1, \text { with } \sum_{n=1}^{+\infty} c_{n}<+\infty
$$

with $b>0$ and $0 \leq b_{n} \leq b<1, \forall n \in \mathbb{N}$. Then, the following results are established.
(i) $\sum_{n=1}^{+\infty}\left[a_{n}-a_{n-1}\right]_{+}<\infty$, with $[s]_{+}:=\max \{s, 0\}$;
(ii) $\lim _{n \rightarrow+\infty} a_{n}=a^{*} \in[0, \infty)$.

Lemma $2.4([14])$. Let $\left\{\phi_{n}\right\},\left\{\psi_{n}\right\} \subset[0,+\infty)$ are sequences and $\sum_{n=1}^{+\infty} \phi_{n}=+\infty$ with $\sum_{n=1}^{+\infty} \phi_{n} \psi_{n}<+\infty$, then $\liminf _{n \rightarrow+\infty} \psi_{n}=0$.

3. Main Results

The proposed algorithm is an inertial algorithm solve strongly pseudomonotone equilibrium problem. However, the advantage of this algorithm is that there is no need to know about the strongly pseudomonotone constant γ and Lipschitz constants c_{1}, c_{2}.

Assumption 1. Assume that $f: \mathbb{H} \times \mathbb{H} \rightarrow \mathbb{R}$ satisfies the following conditions:
(C1) $f(x, x)=0, \forall x \in C$ and f is strongly pseudomontone on \mathbb{C};
(C2) f satisfy the Lipschitz-type condition on \mathbb{H} with constants c_{1} and c_{2};
(C3) $f(x, \cdot)$ is sub-differentiable and convex on \mathbb{H} for each fixed $x \in \mathbb{H}$.
Algorithm 1 (Two-step algorithm for strongly pseudomonotone equilibrium problem).
Initialization: Choose $x_{-1}, x_{0}, y_{0} \in \mathbb{H}, 0 \leq \vartheta_{n} \leq \vartheta<\sqrt{5}-2$ and a sequence $\left\{\lambda_{n}\right\}$ satisfying the following conditions:

$$
\text { (Cd1): } \lim _{n \rightarrow+\infty} \lambda_{n}=0 \text { and (Cd2): } \sum_{n=1}^{+\infty} \lambda_{n}=+\infty
$$

Set

$$
x_{1}=\underset{y \in \mathbb{C}}{\operatorname{argmin}}\left\{\lambda_{0} f\left(y_{0}, y\right)+\frac{1}{2}\left\|w_{0}-y\right\|^{2}\right\}, \quad y_{1}=\underset{y \in \mathbb{C}}{\operatorname{argmin}}\left\{\lambda_{1} f\left(y_{0}, y\right)+\frac{1}{2}\left\|w_{1}-y\right\|^{2}\right\},
$$

where $w_{0}=x_{0}+\vartheta_{0}\left(x_{0}-x_{-1}\right)$ and $w_{1}=x_{1}+\vartheta_{1}\left(x_{1}-x_{0}\right)$.
Iterative steps: Given $x_{n-1}, y_{n-1}, x_{n}, y_{n}$ for $n \geq 1$. Construct a half space

$$
H_{n}=\left\{z \in \mathbb{H}:\left\langle w_{n}-\lambda_{n} v_{n-1}-y_{n}, z-y_{n}\right\rangle \leq 0\right\},
$$

where $v_{n-1} \in \partial_{2} f\left(y_{n-1}, y_{n}\right)$.
Step 1: Compute

$$
x_{n+1}=\left(1-\beta_{n}\right) w_{n}+\beta_{n} z_{n},
$$

where $w_{n}=x_{n}+\vartheta_{n}\left(x_{n}-x_{n-1}\right)$ and

$$
z_{n}=\underset{y \in H_{n}}{\operatorname{argmin}}\left\{\lambda_{n} f\left(y_{n}, y\right)+\frac{1}{2}\left\|w_{n}-y\right\|^{2}\right\} .
$$

Step 2: Compute

$$
y_{n+1}=\underset{y \in \mathbb{C}}{\operatorname{argmin}}\left\{\lambda_{n+1} f\left(y_{n}, y\right)+\frac{1}{2}\left\|w_{n+1}-y\right\|^{2}\right\},
$$

where $w_{n+1}=x_{n+1}+\vartheta_{n+1}\left(x_{n+1}-x_{n}\right)$.
Step 3: If $x_{n+1}=w_{n}=y_{n}$, STOP. Otherwise set $n:=n+1$ and go to Step 1 .

Lemma 3.1. Let $f: \mathbb{H} \times \mathbb{H} \rightarrow \mathbb{R}$ be a bifunction satisfying the conditions (C1) (C3) Assume that the $E P(f, \mathbb{C})$ is non-empty. Then, for all $p^{*} \in E P(f, \mathbb{C})$, we have

$$
\begin{aligned}
\left\|z_{n}-p^{*}\right\|^{2} \leq & \left\|w_{n}-p^{*}\right\|^{2}-\left(1-4 c_{1} \lambda_{n}\right)\left\|w_{n}-y_{n}\right\|^{2}-\left(1-2 c_{2} \lambda_{n}\right)\left\|z_{n}-y_{n}\right\|^{2} \\
& +4 c_{1} \lambda_{n}\left\|w_{n}-y_{n-1}\right\|^{2}-2 \gamma \lambda_{n}\left\|y_{n}-p^{*}\right\|^{2} .
\end{aligned}
$$

Proof. By the use of z_{n} and Lemma 2.1, we have

$$
0 \in \partial_{2}\left\{\lambda_{n} f\left(y_{n}, y\right)+\frac{1}{2}\left\|w_{n}-y\right\|^{2}\right\}\left(z_{n}\right)+N_{H_{n}}\left(z_{n}\right) .
$$

Thus, for $\omega \in \partial_{2} f\left(y_{n}, z_{n}\right)$ there exists $\bar{\omega} \in N_{H_{n}}\left(z_{n}\right)$ such that

$$
\lambda_{n} \omega+z_{n}-w_{n}+\bar{\omega}=0 .
$$

This implies that

$$
\left\langle w_{n}-z_{n}, y-z_{n}\right\rangle=\lambda_{n}\left\langle\omega, y-z_{n}\right\rangle+\left\langle\bar{\omega}, y-z_{n}\right\rangle, \quad \forall y \in H_{n} .
$$

Since $\bar{\omega} \in N_{H_{n}}\left(z_{n}\right)$ then $\left\langle\bar{\omega}, y-z_{n}\right\rangle \leq 0$ for all $y \in H_{n}$. It means that

$$
\begin{equation*}
\lambda_{n}\left\langle\omega, y-z_{n}\right\rangle \geq\left\langle w_{n}-z_{n}, y-z_{n}\right\rangle, \quad \forall y \in H_{n} . \tag{3}
\end{equation*}
$$

Due to $\omega \in \partial f\left(y_{n}, z_{n}\right)$, we have

$$
\begin{equation*}
f\left(y_{n}, y\right)-f\left(y_{n}, z_{n}\right) \geq\left\langle\omega, y-z_{n}\right\rangle, \quad \forall y \in \mathbb{H} . \tag{4}
\end{equation*}
$$

From (3) and (4) we have

$$
\begin{equation*}
\lambda_{n} f\left(y_{n}, y\right)-\lambda_{n} f\left(y_{n}, z_{n}\right) \geq\left\langle w_{n}-z_{n}, y-z_{n}\right\rangle, \quad \forall y \in H_{n} . \tag{5}
\end{equation*}
$$

Due to $z_{n} \in H_{n}$ implies that $\left\langle w_{n}-\lambda_{n} v_{n-1}-y_{n}, z_{n}-y_{n}\right\rangle \leq 0$. Thus, we get

$$
\begin{equation*}
\lambda_{n}\left\langle v_{n-1}, z_{n}-y_{n}\right\rangle \geq\left\langle w_{n}-y_{n}, z_{n}-y_{n}\right\rangle . \tag{6}
\end{equation*}
$$

Since $v_{n-1} \in \partial_{2} f\left(y_{n-1}, y_{n}\right)$, we have

$$
f\left(y_{n-1}, y\right)-f\left(y_{n-1}, y_{n}\right) \geq\left\langle v_{n-1}, y-y_{n}\right\rangle, \quad \forall y \in \mathbb{H} .
$$

By substituting $y=z_{n}$, we have

$$
\begin{equation*}
f\left(y_{n-1}, z_{n}\right)-f\left(y_{n-1}, y_{n}\right) \geq\left\langle v_{n-1}, z_{n}-y_{n}\right\rangle, \quad \forall y \in \mathbb{H} . \tag{7}
\end{equation*}
$$

From (6) and (7) we obtain

$$
\begin{equation*}
\lambda_{n}\left\{f\left(y_{n-1}, z_{n}\right)-f\left(y_{n-1}, y_{n}\right)\right\} \geq\left\langle w_{n}-y_{n}, z_{n}-y_{n}\right\rangle . \tag{8}
\end{equation*}
$$

By substituting $y=p^{*}$ into (5), we obtain

$$
\begin{equation*}
\lambda_{n} f\left(y_{n}, p^{*}\right)-\lambda_{n} f\left(y_{n}, z_{n}\right) \geq\left\langle w_{n}-z_{n}, p^{*}-z_{n}\right\rangle, \quad \forall y \in H_{n} . \tag{9}
\end{equation*}
$$

Since $p^{*} \in E P(f, \mathbb{C})$ then $f\left(p^{*}, y_{n}\right) \geq 0$. Thus $f\left(y_{n}, p^{*}\right) \leq-\gamma\left\|y_{n}-p^{*}\right\|$ due to strong pseudomonotonicity of a bifunction f. From (8) we get

$$
\begin{equation*}
\left\langle w_{n}-z_{n}, z_{n}-p^{*}\right\rangle \geq \lambda_{n} f\left(y_{n}, z_{n}\right)+\gamma \lambda_{n}\left\|y_{n}-p^{*}\right\|^{2} . \tag{10}
\end{equation*}
$$

Due to the Lipschitz-type continuity of bifunction f we have

$$
\begin{equation*}
f\left(y_{n-1}, z_{n}\right) \leq f\left(y_{n-1}, y_{n}\right)+f\left(y_{n}, z_{n}\right)+c_{1}\left\|y_{n-1}-y_{n}\right\|^{2}+c_{2}\left\|y_{n}-z_{n}\right\|^{2} . \tag{11}
\end{equation*}
$$

From (10) and (11) we get

$$
\begin{align*}
\left\langle w_{n}-z_{n}, z_{n}-p^{*}\right\rangle \geq & \lambda_{n}\left\{f\left(y_{n-1}, z_{n}\right)-f\left(y_{n-1}, y_{n}\right)\right\} \\
& -c_{1} \lambda_{n}\left\|y_{n-1}-y_{n}\right\|^{2}-c_{2} \lambda_{n}\left\|y_{n}-z_{n}\right\|^{2}+\gamma \lambda_{n}\left\|y_{n}-p^{*}\right\|^{2} . \tag{12}
\end{align*}
$$

Combining expressions (8) and (12), we obtain

$$
\begin{align*}
\left\langle w_{n}-z_{n}, z_{n}-p^{*}\right\rangle \geq & \left\langle w_{n}-y_{n}, z_{n}-y_{n}\right\rangle \\
& -c_{1} \lambda_{n}\left\|y_{n-1}-y_{n}\right\|^{2}-c_{2} \lambda_{n}\left\|y_{n}-z_{n}\right\|^{2}+\gamma \lambda_{n}\left\|y_{n}-p^{*}\right\|^{2} . \tag{13}
\end{align*}
$$

We have the following facts:

$$
\begin{aligned}
-2\left\langle w_{n}-z_{n}, z_{n}-p^{*}\right\rangle & =-\left\|w_{n}-p^{*}\right\|^{2}+\left\|z_{n}-w_{n}\right\|^{2}+\left\|z_{n}-p^{*}\right\|^{2} \\
2\left\langle w_{n}-y_{n}, z_{n}-y_{n}\right\rangle & =\left\|w_{n}-y_{n}\right\|^{2}+\left\|z_{n}-y_{n}\right\|^{2}-\left\|w_{n}-z_{n}\right\|^{2} .
\end{aligned}
$$

We also have the following inequality

$$
\left\|y_{n-1}-y_{n}\right\|^{2} \leq\left(\left\|y_{n-1}-w_{n}\right\|+\left\|w_{n}-y_{n}\right\|\right)^{2} \leq 2\left\|y_{n-1}-w_{n}\right\|^{2}+2\left\|w_{n}-y_{n}\right\|^{2}
$$

The above two facts and last inequality, completes the proof.

Next, we can prove the strong convergence of Algorithm 1 .
Theorem 3.2. Let $f: \mathbb{H} \times \mathbb{H} \rightarrow \mathbb{R}$ be a bifunction satisfying the conditions (C1) (C3) Assume that $\left\{x_{n}\right\}$ is a sequences in \mathbb{H} generated by Algorithm 11 Moreover, the sequence ϑ_{n} is non-decreasing with $0 \leq \vartheta_{n} \leq \vartheta<\sqrt{5}-2$ and β_{n} is non-increasing with $0<\beta \leq \beta_{n} \leq 1$. Then, $\left\{x_{n}\right\},\left\{y_{n}\right\}$ and $\left\{w_{n}\right\}$ strongly converge to an element p^{*} in $E P(f, \mathbb{C})$.

Proof. Since $\lambda_{n} \rightarrow 0$, there is an $n_{0} \in \mathbb{N}$ such that

$$
\begin{equation*}
0<\lambda_{n}<\frac{\frac{1}{2}-2 \vartheta-\frac{1}{2} \vartheta^{2}-\delta}{\frac{b}{2}(1-\vartheta)^{2}+2 c_{1}\left(1+\vartheta+\vartheta^{2}+\vartheta^{3}\right)} \quad \text { and } \quad 0 \leq \vartheta_{n} \leq \vartheta<\sqrt{5}-2, \tag{14}
\end{equation*}
$$

where $0<\delta<\frac{1}{2}-2 \vartheta-\frac{1}{2} \vartheta^{2}$ and $b=\max \left\{4 c_{1}, 2 c_{2}\right\}$. By value of x_{n+1} gives that

$$
\begin{align*}
\left\|x_{n+1}-p^{*}\right\|^{2}= & \left\|\left(1-\beta_{n}\right)\left(w_{n}-p^{*}\right)+\beta_{n}\left(z_{n}-p^{*}\right)\right\|^{2} \\
\leq & \left(1-\beta_{n}\right)\left\|w_{n}-p^{*}\right\|^{2}+\beta_{n}\left\|z_{n}-p^{*}\right\|^{2} \\
= & \left\|w_{n}-p^{*}\right\|^{2}-\beta_{n}\left(1-4 c_{1} \lambda_{n}\right)\left\|w_{n}-y_{n}\right\|^{2}-\beta_{n}\left(1-2 c_{2} \lambda_{n}\right)\left\|z_{n}-y_{n}\right\|^{2} \\
& +4 c_{1} \lambda_{n} \beta_{n}\left\|w_{n}-y_{n-1}\right\|^{2}-2 \gamma \lambda_{n} \beta_{n}\left\|y_{n}-p^{*}\right\|^{2} . \tag{15}
\end{align*}
$$

By the use of w_{n} and Lemma 2.2, we obtain

$$
\begin{align*}
\left\|w_{n}-p^{*}\right\|^{2} & =\left\|\left(1+\vartheta_{n}\right)\left(x_{n}-p^{*}\right)-\vartheta_{n}\left(x_{n-1}-p^{*}\right)\right\|^{2} \\
& =\left(1+\vartheta_{n+1}\right)\left\|x_{n}-p^{*}\right\|^{2}-\vartheta_{n}\left\|x_{n-1}-p^{*}\right\|^{2}+\vartheta_{n}\left(1+\vartheta_{n}\right)\left\|x_{n}-x_{n-1}\right\|^{2} . \tag{16}
\end{align*}
$$

By the use of w_{n+1} and Lemma 2.2, we obtain

$$
\begin{align*}
\left\|w_{n+1}-y_{n}\right\|^{2} & =\left\|x_{n+1}+\vartheta_{n+1}\left(x_{n+1}-x_{n}\right)-y_{n}\right\|^{2} \\
& =\left(1+\vartheta_{n+1}\right)\left\|x_{n+1}-y_{n}\right\|^{2}-\vartheta_{n+1}\left\|x_{n}-y_{n}\right\|^{2}+\vartheta_{n+1}\left(1+\vartheta_{n+1}\right)\left\|x_{n+1}-x_{n}\right\|^{2} \\
& \leq\left(1+\vartheta_{n+1}\right)\left\|x_{n+1}-y_{n}\right\|^{2}+\vartheta_{n+1}\left(1+\vartheta_{n+1}\right)\left\|x_{n+1}-x_{n}\right\|^{2} \\
& \leq(1+\vartheta)\left[\left\|w_{n}-y_{n}\right\|^{2}+\left\|z_{n}-y_{n}\right\|^{2}\right]+\vartheta(1+\vartheta)\left\|x_{n+1}-x_{n}\right\|^{2} . \tag{17}
\end{align*}
$$

Combining (15), (16) and (17), we obtain

$$
\begin{aligned}
& \left\|x_{n+1}-p^{*}\right\|^{2}+4 c_{1} \lambda_{n} \beta_{n+1}\left\|w_{n+1}-y_{n}\right\|^{2} \\
& \quad \leq\left(1+\vartheta_{n+1}\right)\left\|x_{n}-p^{*}\right\|^{2}-\vartheta_{n}\left\|x_{n-1}-p^{*}\right\|^{2}+\vartheta(1+\vartheta)\left\|x_{n}-x_{n-1}\right\|^{2} \\
& \quad+4 c_{1} \lambda_{n} \beta_{n}\left\|w_{n}-y_{n-1}\right\|^{2}-\beta_{n}\left(1-4 c_{1} \lambda_{n}\right)\left\|w_{n}-y_{n}\right\|^{2}-\beta_{n}\left(1-2 c_{2} \lambda_{n}\right)\left\|z_{n}-y_{n}\right\|^{2}
\end{aligned}
$$

Communications in Mathematics and Applications, Vol. 11, No. 4, pp. 513.526, 2020

$$
\begin{align*}
& +4 c_{1} \lambda_{n} \beta_{n}(1+\vartheta)\left[\left\|w_{n}-y_{n}\right\|^{2}+\left\|z_{n}-y_{n}\right\|^{2}\right]+4 c_{1} \lambda_{n} \beta_{n} \vartheta(1+\vartheta)\left\|x_{n+1}-x_{n}\right\|^{2} \tag{18}\\
\leq & \left(1+\vartheta_{n+1}\right)\left\|x_{n}-p^{*}\right\|^{2}-\vartheta_{n}\left\|x_{n-1}-p^{*}\right\|^{2}+\vartheta(1+\vartheta)\left\|x_{n}-x_{n-1}\right\|^{2} \\
& +4 c_{1} \lambda_{n} \beta_{n}\left\|w_{n}-y_{n-1}\right\|^{2}+4 c_{1} \lambda_{n} \vartheta(1+\vartheta)\left\|x_{n+1}-x_{n}\right\|^{2} \\
& -\frac{1}{2}\left(1-b \lambda_{n}-4 c_{1} \lambda_{n}(1+\vartheta)\right)\left\|x_{n+1}-w_{n}\right\|^{2}, \tag{19}
\end{align*}
$$

where $b=\max \left\{4 c_{1}, 2 c_{2}\right\}$ and

$$
\left\|x_{n+1}-w_{n}\right\|^{2}=\gamma_{n}^{2}\left\|z_{n}-w_{n}\right\|^{2}
$$

By using Cauchy inequality, we have

$$
\begin{align*}
\left\|x_{n+1}-w_{n}\right\|^{2} & =\left\|x_{n+1}-x_{n}-\vartheta_{n}\left(x_{n}-x_{n-1}\right)\right\|^{2} \\
& =\left\|x_{n+1}-x_{n}\right\|^{2}+\vartheta_{n}^{2}\left\|x_{n}-x_{n-1}\right\|^{2}-2 \vartheta_{n}\left\langle x_{n+1}-x_{n}, x_{n}-x_{n-1}\right\rangle \tag{20}\\
& \geq\left\|x_{n+1}-x_{n}\right\|^{2}+\vartheta_{n}^{2}\left\|x_{n}-x_{n-1}\right\|^{2}-2 \vartheta_{n}\left\|x_{n+1}-x_{n}\right\|\left\|x_{n}-x_{n-1}\right\| \\
& \geq\left(1-\vartheta_{n}\right)\left\|x_{n+1}-x_{n}\right\|^{2}+\left(\vartheta_{n}^{2}-\vartheta_{n}\right)\left\|x_{n}-x_{n-1}\right\|^{2} . \tag{21}
\end{align*}
$$

From (19) and (21), we have

$$
\begin{align*}
& \left\|x_{n+1}-p^{*}\right\|^{2}-\vartheta_{n+1}\left\|x_{n}-p^{*}\right\|^{2}+4 c_{1} \lambda_{n} \beta_{n+1}\left\|w_{n+1}-y_{n}\right\|^{2} \\
& \leq\left\|x_{n}-p^{*}\right\|^{2}-\vartheta_{n}\left\|x_{n-1}-p^{*}\right\|^{2}+\vartheta(1+\vartheta)\left\|x_{n}-x_{n-1}\right\|^{2}+4 c_{1} \lambda_{n} \beta_{n}\left\|w_{n}-y_{n-1}\right\|^{2} \\
& \quad+4 c_{1} \lambda_{n} \vartheta(1+\vartheta)\left\|x_{n+1}-x_{n}\right\|^{2}-\sigma_{n}\left[(1-\vartheta)\left\|x_{n+1}-x_{n}\right\|^{2}+\left(\vartheta^{2}-\vartheta\right)\left\|x_{n}-x_{n-1}\right\|^{2}\right], \tag{22}
\end{align*}
$$

where $\sigma_{n}:=\frac{1}{2}\left(1-b \lambda_{n}-4 c_{1} \lambda_{n}(1+\vartheta)\right) \geq 0$, for all $n \geq n_{0}$. Let consider that

$$
\begin{equation*}
\Phi_{n}=\left\|x_{n}-p^{*}\right\|^{2}-\vartheta_{n}\left\|x_{n-1}-p^{*}\right\|^{2}+4 c_{1} \lambda_{n} \beta_{n}\left\|w_{n}-y_{n-1}\right\|^{2} . \tag{23}
\end{equation*}
$$

The expression (22) implies that

$$
\begin{equation*}
\Phi_{n+1} \leq \Phi_{n}+R_{n}\left\|x_{n}-x_{n-1}\right\|^{2}-Q_{n}\left\|x_{n+1}-x_{n}\right\|^{2}, \tag{24}
\end{equation*}
$$

where $R_{n}:=\vartheta(1+\vartheta)+\sigma_{n} \vartheta(1-\vartheta) \geq 0$ for all $n \geq n_{0}$, and

$$
Q_{n}:=\sigma_{n}(1-\vartheta)-4 c_{1} \lambda_{n} \vartheta(1+\vartheta) .
$$

Furthermore, we also take

$$
\Psi_{n}=\left\|x_{n}-p^{*}\right\|^{2}-\vartheta_{n}\left\|x_{n-1}-p^{*}\right\|^{2}+4 c_{1} \lambda_{n} \beta_{n}\left\|w_{n}-y_{n-1}\right\|^{2}+R_{n}\left\|x_{n}-x_{n-1}\right\|^{2} .
$$

It follows from (14) and (24) such that

$$
\begin{equation*}
\Psi_{n+1}-\Psi_{n} \leq-\delta\left\|x_{n+1}-x_{n}\right\|^{2} \leq 0, \quad n \geq n_{0} . \tag{25}
\end{equation*}
$$

The above means that $\left\{\Psi_{n}\right\}$ is nonincreasing for $n \geq n_{0}$. By Ψ_{n} we have

$$
\begin{align*}
\left\|x_{n}-p^{*}\right\|^{2} & \leq \Psi_{n}+\alpha_{n}\left\|x_{n-1}-p^{*}\right\|^{2} \\
& \leq \Psi_{n_{0}}+\alpha\left\|x_{n-1}-p^{*}\right\|^{2} \\
& \leq \cdots \leq \Psi_{n_{0}}\left(\alpha^{n-n_{0}}+\cdots+1\right)+\alpha^{n-n_{0}}\left\|x_{n_{0}}-p^{*}\right\|^{2} \\
& \leq \frac{\Psi_{n_{0}}}{1-\alpha}+\alpha^{n-n_{0}}\left\|x_{n_{0}}-p^{*}\right\|^{2} . \tag{26}
\end{align*}
$$

By the use of Ψ_{n+1} and (25) we obtain

$$
\begin{aligned}
-\Psi_{n+1} & \leq \alpha_{n+1}\left\|x_{n}-p^{*}\right\|^{2} \\
& \leq \alpha\left\|x_{n}-p^{*}\right\|^{2}
\end{aligned}
$$

$$
\begin{align*}
& \leq \alpha \frac{\Psi_{n_{0}}}{1-\alpha}+\alpha^{n-n_{0}+1}\left\|x_{n_{0}}-p^{*}\right\|^{2} \\
& \leq \alpha \frac{\Psi_{n_{0}}}{1-\alpha}+\left\|x_{n_{0}}-p^{*}\right\|^{2} . \tag{27}
\end{align*}
$$

It is the result from (25) and (27) that

$$
\begin{align*}
\delta \sum_{n=n_{0}}^{k}\left\|x_{n+1}-x_{n}\right\|^{2} & \leq \Psi_{n_{0}}-\Psi_{k+1} \\
& \leq \Psi_{n_{0}}+\alpha \frac{\Psi_{n_{0}}}{1-\alpha}+\left\|x_{n_{0}}-p^{*}\right\|^{2} \\
& \leq \frac{\Psi_{n_{0}}}{1-\alpha}+\left\|x_{n_{0}}-p^{*}\right\|^{2} \tag{28}
\end{align*}
$$

By letting $k \rightarrow \infty$ implies that

$$
\begin{equation*}
\sum_{n}\left\|x_{n+1}-x_{n}\right\|^{2}<+\infty \text { implies that }\left\|x_{n+1}-x_{n}\right\| \rightarrow 0, \text { as } n \rightarrow \infty . \tag{29}
\end{equation*}
$$

From the expressions (20) and (29) we obtain

$$
\begin{equation*}
\left\|x_{n+1}-w_{n}\right\| \rightarrow 0 \text { as } n \rightarrow \infty \tag{30}
\end{equation*}
$$

By (27) implies that

$$
\begin{equation*}
-\Phi_{n+1} \leq \alpha \frac{\Psi_{n_{0}}}{1-\alpha}+\left\|x_{n_{0}}-p^{*}\right\|^{2}+R_{n+1}\left\|x_{n+1}-x_{n}\right\|^{2} \tag{31}
\end{equation*}
$$

Since $0<\beta \leq \beta_{n} \leq 1$ with $0 \leq \alpha_{n} \leq \alpha<\sqrt{5}-2$, we can re-write (19) for $n \geq n_{0}$, such that

$$
\begin{align*}
& \beta\left(1-b \lambda_{n_{0}}-4 c_{1} \lambda_{n_{0}}(1+\alpha)\right)\left[\left\|w_{n}-y_{n}\right\|^{2}+\left\|z_{n}-y_{n}\right\|^{2}\right] \\
& \quad \leq \Phi_{n}-\Phi_{n+1}+\alpha(1+\alpha)\left\|x_{n}-x_{n-1}\right\|^{2}+4 c_{1} \lambda_{n} \alpha(1+\alpha)\left\|x_{n+1}-x_{n}\right\|^{2} . \tag{32}
\end{align*}
$$

Fix $k>n_{0}$ and (32) for $n=n_{0}, n_{0}+1, \cdots, k$. Summing up them, we obtain

$$
\begin{align*}
& \beta\left(1-b \lambda_{n_{0}}-4 c_{1} \lambda_{n_{0}}(1+\alpha)\right) \sum_{n=n_{0}}^{k}\left[\left\|w_{n}-y_{n}\right\|^{2}+\left\|z_{n}-y_{n}\right\|^{2}\right] \\
& \quad \leq \Phi_{1}-\Phi_{k+1}+\alpha(1+\alpha) \sum_{n=n_{0}}^{k}\left\|x_{n}-x_{n-1}\right\|^{2}+4 c_{1} \lambda_{n_{0}} \alpha(1+\alpha) \sum_{n=n_{0}}^{k}\left\|x_{n+1}-x_{n}\right\|^{2} \\
& \quad \leq \Phi_{1}+\alpha \frac{\Psi_{n_{0}}}{1-\alpha}+\left\|x_{n_{0}}-p^{*}\right\|^{2}+\left(2 \alpha+\alpha^{2}\right)\left\|x_{k+1}-x_{k}\right\|^{2} \\
& \quad+\alpha(1+\alpha) \sum_{n=n_{0}}^{k}\left\|x_{n}-x_{n-1}\right\|^{2}+4 c_{1} \lambda_{n_{0}} \alpha(1+\alpha) \sum_{n=n_{0}}^{k}\left\|x_{n+1}-x_{n}\right\|^{2} \\
& \quad=M_{3} . \tag{33}
\end{align*}
$$

By letting $k \rightarrow+\infty$ implies that

$$
\begin{equation*}
\sum_{n}\left\|z_{n}-y_{n}\right\|^{2}<+\infty \quad \text { and } \quad \sum_{n}\left\|w_{n}-y_{n}\right\|^{2}<+\infty \tag{34}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|z_{n}-y_{n}\right\|=\lim _{n \rightarrow \infty}\left\|w_{n}-y_{n}\right\|=0 \tag{35}
\end{equation*}
$$

By using (17), (29) and (34) gives that

$$
\begin{equation*}
\sum_{n}\left\|w_{n+1}-y_{n}\right\|^{2}<+\infty \tag{36}
\end{equation*}
$$

By using expressions (15), (16), (29), (36) and Lemma 2.3 implies that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n}-p^{*}\right\|=l . \tag{37}
\end{equation*}
$$

Next, we show that the sequence $\left\{x_{n}\right\}$ strongly converges to p^{*}. For all $n \geq n_{0}$, the expression (15) gives that

$$
\begin{align*}
2 \gamma \lambda_{n}\left\|y_{n}-p^{*}\right\|^{2} \leq & -\left\|x_{n+1}-p^{*}\right\|^{2}+\left(1+\alpha_{n}\right)\left\|x_{n}-p^{*}\right\|^{2}-\alpha_{n}\left\|x_{n-1}-p^{*}\right\|^{2} \\
& +\alpha_{n}\left(1+\alpha_{n}\right)\left\|x_{n}-x_{n-1}\right\|^{2}+4 c_{1} \lambda_{n}\left\|w_{n}-y_{n-1}\right\|^{2} \\
\leq & \left(\left\|x_{n}-p^{*}\right\|^{2}-\left\|x_{n+1}-p^{*}\right\|^{2}\right)+2 \alpha\left\|x_{n}-x_{n-1}\right\|^{2} \\
& +\left(\alpha_{n}\left\|x_{n}-p^{*}\right\|^{2}-\alpha_{n-1}\left\|x_{n-1}-p^{*}\right\|^{2}\right)+4 c_{1} \lambda_{n}\left\|w_{n}-y_{n-1}\right\|^{2} . \tag{38}
\end{align*}
$$

From expression (38) implies that

$$
\begin{align*}
& \sum_{n=n_{0}}^{k} 2 \gamma \lambda_{n}\left\|y_{n}-p^{*}\right\|^{2} \\
& \quad \leq\left(\left\|x_{n_{0}}-p^{*}\right\|^{2}-\left\|x_{k+1}-p^{*}\right\|^{2}\right)+2 \alpha \sum_{n=n_{0}}^{k}\left\|x_{n}-x_{n-1}\right\|^{2} \\
& \quad+\left(\alpha_{k}\left\|x_{k}-p^{*}\right\|^{2}-\alpha_{n_{0}-1}\left\|x_{n_{0}-1}-p^{*}\right\|^{2}\right)+\frac{4 c_{1}}{2 c_{2}+4 c_{1}} \sum_{n=n_{0}}^{k}\left\|w_{n}-y_{n-1}\right\|^{2} \\
& \leq\left\|x_{n_{0}}-p^{*}\right\|^{2}+\alpha\left\|x_{k}-p^{*}\right\|^{2}+2 \alpha \sum_{n=n_{0}}^{k}\left\|x_{n}-x_{n-1}\right\|^{2}+\frac{4 c_{1}}{2 c_{2}+4 c_{1}} \sum_{n=n_{0}}^{k}\left\|w_{n}-y_{n-1}\right\|^{2} \\
& \leq M_{4} \tag{39}
\end{align*}
$$

for some $M_{4} \geq 0$. It gives that

$$
\begin{equation*}
\sum_{n=1}^{+\infty} 2 \gamma \lambda_{n}\left\|y_{n}-p^{*}\right\|^{2}<+\infty \tag{40}
\end{equation*}
$$

By Lemma 2.4 and (40) such that

$$
\begin{equation*}
\liminf \left\|y_{n}-p^{*}\right\|=0 \tag{41}
\end{equation*}
$$

Finally, (37) and (41) gives $\lim _{n \rightarrow \infty}\left\|x_{n}-p^{*}\right\|=0$. This complete the proof.

4. Application to Variational Inequality Problem

An operator $F: \mathbb{C} \rightarrow \mathbb{H}$ is define by
(1) strongly pseudomonotone on \mathbb{C} if for $\eta>0$ such that

$$
\left\langle F\left(x_{1}\right), x_{2}-x_{1}\right\rangle \geq 0 \Longrightarrow\left\langle F\left(x_{2}\right), x_{1}-x_{2}\right\rangle \leq-\eta\left\|x_{1}-x_{2}\right\|^{2}, \quad \forall x_{1}, x_{2} \in \mathbb{C} ;
$$

(2) L-Lipschitz continuous on \mathbb{C} if

$$
\left\|F\left(x_{1}\right)-F\left(x_{2}\right)\right\| \leq L\left\|x_{1}-x_{2}\right\|, \quad \forall x_{1}, x_{2} \in \mathbb{C} .
$$

A variational inequality problem is defined as follows:

$$
p^{*} \in \mathbb{C} \text { such that }\left\langle F\left(p^{*}\right), y-p^{*}\right\rangle \geq 0, \quad \forall y \in \mathbb{C} .
$$

Note. If $f(x, y):=\langle F(x), y-x\rangle$ for all $x, y \in \mathbb{C}$, then equilibrium problem turn to variational
inequality problem with $\frac{L}{2}=c_{1}=c_{2}$. The value of z_{n} rewritten as

$$
\begin{align*}
z_{n} & =\underset{y \in H_{n}}{\operatorname{argmin}}\left\{\lambda_{n} f\left(y_{n}, y\right)+\frac{1}{2}\left\|w_{n}-y\right\|^{2}\right\} \\
& =\underset{y \in H_{n}}{\operatorname{argmin}}\left\{\lambda_{n}\left\langle F\left(y_{n}\right), y-y_{n}\right\rangle+\frac{1}{2}\left\|w_{n}-y\right\|^{2}\right\} \\
& =\underset{y \in H_{n}}{\operatorname{argmin}}\left\{\lambda_{n}\left\langle F\left(y_{n}\right), y-w_{n}\right\rangle+\frac{1}{2}\left\|w_{n}-y\right\|^{2}+\lambda_{n}\left\langle F\left(y_{n}\right), w_{n}-y_{n}\right\rangle\right\} \\
& =\underset{y \in H_{n}}{\operatorname{argmin}}\left\{\frac{1}{2}\left\|y-\left(w_{n}-\lambda_{n} F\left(y_{n}\right) \|^{2}\right\}-\frac{\lambda_{n}^{2}}{2}\right\| F\left(y_{n}\right) \|^{2}\right. \\
& =P_{H_{n}}\left(w_{n}-\lambda_{n} F\left(y_{n}\right)\right) . \tag{42}
\end{align*}
$$

Corollary 4.1. Assume that $F: \mathbb{C} \rightarrow \mathbb{H}$ is strongly pseudomonotone and L-Lipschitz continuous on \mathbb{C} with solution set $\operatorname{VI}(F, \mathbb{C})$ is non-empty. Choose x_{-1}, x_{0}, y_{0} and compute

$$
x_{1}=P_{\mathbb{C}}\left(w_{0}-\lambda_{0} F\left(y_{0}\right)\right), \quad y_{1}=P_{\mathbb{C}}\left(w_{1}-\lambda_{1} F\left(y_{0}\right)\right),
$$

where $w_{0}=x_{0}+\vartheta_{0}\left(x_{0}-x_{-1}\right)$ and $w_{1}=x_{1}+\vartheta_{1}\left(x_{1}-x_{0}\right)$.
(i) Given $x_{n-1}, x_{n}, y_{n-1}, y_{n}$ for $n \geq 1$. Set $w_{n}=x_{n}+\vartheta_{n}\left(x_{n}-x_{n-1}\right)$ and compute

$$
x_{n+1}=\left(1-\beta_{n}\right) w_{n}+\beta_{n} z_{n}
$$

where $z_{n}=P_{H_{n}}\left(w_{n}-\lambda_{n} F\left(y_{n}\right)\right)$ and

$$
H_{n}=\left\{z \in \mathbb{H}:\left\langle w_{n}-\lambda_{n} F w_{n}-y_{n}, z-y_{n}\right\rangle \leq 0\right\} .
$$

(ii) Compute

$$
y_{n+1}=P_{\mathbb{C}}\left(w_{n+1}-\lambda_{n+1} F\left(y_{n}\right)\right),
$$

where $w_{n+1}=x_{n+1}+\vartheta_{n+1}\left(x_{n+1}-x_{n}\right)$ and $\beta_{n} \in(0,1]$ with λ_{n} satisfy the condition (2). Moreover, $c_{1}=c_{2}=\frac{L}{2}$ and $0 \leq \vartheta_{n} \leq \vartheta<\sqrt{5}-2$. Then the sequence $\left\{x_{n}\right\}$, $\left\{w_{n}\right\}$ and $\left\{y_{n}\right\}$ strongly converge to the solution p^{*} of $\operatorname{VI}(F, \mathbb{C})$.

5. Numerical Illustration

Numerical findings are presented in this segment to demonstrate the performance of our proposed methodology. The MATLAB code have been operating in MATLAB edition 9.5 (R2018b) on the Intel(R) Core(TM)i5-6200 Processor PC @ 2.30 GHz 2.40 GHz , RAM 8.00 GB.

5.1 Nash-Cournot oligopolistic equilibrium model

We take into account the enhanced version of the Nash-Cournot oligopolistic equilibrium model [17]. Assume there are n companies that manufacture the same commodity. Let x represent a vector where each element x_{i} specifies the quantity of the commodity generated by the company i. The price function P for each individual company is define as $P_{i}(S)=\phi_{i}-\psi_{i} S$, where $\phi_{i}>0, \psi_{i}>0$ and $S=\sum_{i=1}^{m} x_{i}$. The function of income $F_{i}(x)=P_{i}(S) x_{i}-t_{i}\left(x_{i}\right)$, while $t_{i}\left(x_{i}\right)$ is the value tax and fee for producing x_{i}. The strategy framework for the entire concept is taking the form of $\mathbb{C}:=\mathbb{C}_{1} \times \mathbb{C}_{2} \times \cdots \times \mathbb{C}_{n}$, where $\mathbb{C}_{i}=\left[x_{i}^{\min }, x_{i}^{\max }\right]$. In addition, each firm strives to achieve its optimum profit by taking into account the subsequent amount of demand on
the basis that the output of all the other companies would be an input parameter. A point $p^{*} \in \mathbb{C}=\mathbb{C}_{1} \times \mathbb{C}_{2} \times \cdots \times \mathbb{C}_{n}$ is an equilibrium point of the model if

$$
F_{i}\left(p^{*}\right) \geq F_{i}\left(p^{*}\left[x_{i}\right]\right), \quad \forall x_{i} \in \mathbb{C}_{i}, \forall i=1,2, \cdots, n,
$$

where $p^{*}\left[x_{i}\right]$ represent the vector get from p^{*} by taking x_{i}^{*} with x_{i}. Let $f(x, y):=\varphi(x, y)-\varphi(x, x)$ with $\varphi(x, y):=-\sum_{i=1}^{n} F_{i}\left(x\left[y_{i}\right]\right)$, and the problem of finding the Nash equilibrium point is

Find $p^{*} \in \mathbb{C}: f\left(p^{*}, y\right) \geq 0, \quad \forall y \in \mathbb{C}$.
The bifunction f could be taken in the following form

$$
f(x, y)=\langle P x+Q y+q, y-x\rangle,
$$

while $q \in \mathbb{R}^{n}$ and P, Q are matrices of order n and Q is symmetric positive semi-definite and $Q-P$ is symmetric negative definite through Lipschitz constants $c_{1}=c_{2}=\frac{1}{2}\|P-Q\|$ (see [16]). Two matrices P, Q are randomly generated ${ }^{11}$ and vector q randomly generated $[-n, n]$. The feasible set $\mathbb{C} \subset \mathbb{R}^{n}$ is

$$
\mathbb{C}:=\left\{x \in \mathbb{R}^{n}:-2 \leq x_{i} \leq 5\right\} .
$$

We use $x_{-1}=x_{0}=y_{0}=(1,1, \cdots, 1,1)^{T}$. The findings are seen in the Table 1,2 with with Algorithm 1 (Algo1) and Algorithm 3.1 (Algo3.1) in [9].

Table 1. Experiment 5.1: Comparison of Algorithm 1 and Algorithm 3.1 in [9|

					Algo3.1		Algo1	
n	λ_{n}	ϑ_{n}	β_{n}	TOL	Iter.	CPU(s)	Iter.	CPU(s)
5	$(n+1)^{-1}$	0.12	0.80	10^{-6}	270	3.6617	190	2.4359
10	$(n+1)^{-1}$	0.12	0.80	10^{-6}	365	5.2656	240	4.1639
20	$(n+1)^{-1}$	0.12	0.80	10^{-6}	441	6.9567	342	5.7361
50	$(n+1)^{-1}$	0.12	0.80	10^{-6}	586	7.5834	416	6.1619

Table 2. Experiment 5.1. Comparison of Algorithm 1 and Algorithm 3.1 in [9]

				Algo3.1		Algo1		
n	λ_{n}	ϑ_{n}		TOL	Iter.	CPU(s)	Iter.	CPU(s)
5	$(n+1)^{-1}$	0.12	0.85	10^{-9}	1192	25.3000	788	20.5985
5	$(n+1)^{-0.5}$	0.12	0.85	10^{-9}	2631	53.2534	1630	41.4862
5	$(n+1)^{-1} \log ^{1}(n+3)$	0.12	0.85	10^{-9}	1305	27.5130	1010	25.1062
5	$(n+1)^{-1} \log ^{0.5}(n+3)$	0.12	0.85	10^{-9}	1935	42.7673	1554	36.4381
5	$\log ^{-2}(n+3)$	0.12	0.80	10^{-9}	2596	58.4369	2133	50.6567
5	$\log ^{-1}(n+3)$	0.12	0.80	10^{-9}	3186	72.7256	2411	54.3991

Discussion About Numerical Experiments: The following observation was obtained from Table 1-2
(i) No previous knowledge for Lipschitz-constant c_{1}, c_{2} is needed for Matlab running equations.

[^1](ii) Indeed, the convergence rate of algorithms probably depends on the convergence rate of the step-size sequences λ_{n}. For certain instances, the step-size sequence converges quickly to zero which would be more efficient for our situation.
(iii) The convergence rate of the iterative sequence often depends on the nature of the problem and the scale of the problem.
(iv) Due to the variable step-size sequence, a different step-size value that is not suitable for the current iteration of the process also creates ambiguity and hump in the actions of the iterative sequence.

6. Conclusion

This paper proposes a new algorithms to solve problems of strong pseudomonotone equilibrium. The primary advantage of this algorithm is that the stepsize, in this case, is independent of the constants of the Lipschitz type and strongly pseudomonotone. The reasonable explanation is that we use a stepsize sequence that is non-summable and non-increasing. Numerical experiments have also been considered for looking at the overall impact of the stepsize sequence on the convergence of an iterative sequence.

Acknowledgements

The first author would like to thank Valaya Alongkorn Rajabhat University under the Royal Patronage (VRU). The fourth author would like to thanks Phetchabun Rajabhat University.

Competing Interests

The authors declare that they have no competing interests.

Authors' Contributions

All the authors contributed significantly in writing this article. The authors read and approved the final manuscript.

References

[1] P. N. Anh and L. T. H. An, The subgradient extragradient method extended to equilibrium problems, Optimization 64 (2015), 225 - 248, DOI: 10.1080/02331934.2012.745528.
[2] P. N. Anh, T. N. Hai and P. M. Tuan, On ergodic algorithms for equilibrium problems, Journal of Global Optimization 64 (2016), 179 - 195, DOI: 10.1007/s10898-015-0330-3.
[3] F. Alvarez and H. Attouch, An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping, Set-Valued Analysis 9 (2001) $3-11$, DOI: $10.1023 / \mathrm{A}: 1011253113155$.
[4] H. H. Bauschke and P. L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces, Springer, New York (2011), DOI: 10.1007/978-1-4419-9467-7.
[5] M. Bianchi and S. Schaible, Generalized monotone bifunctions and equilibrium problems, Journal of Optimization Theory and Applications 90 (1996), 31 - 43, DOI: 10.1007/bf02192244.
[6] E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems, The Mathematics Student 63 (1994), 123 - 145, URL: http://www.indianmathsociety.org.in/ ms1991-99contents.pdf
[7] F. Facchinei and J.-S. Pang, Finite-Dimensional Variational Inequalities and Complementarity Problems, Springer-Verlag, New York (2007), URL: https://www.springer.com/gp/book/ 9780387955803.
[8] K. Fan, A minimax inequality and applications, in Inequalities III, O. Shisha (editor), Academic Press, New York (1972).
[9] D. V. Hieu, Convergence analysis of a new algorithm for strongly pseudomontone equilibrium problems, Numerical Algorithms 77 (2018), 983 - 1001, DOI: 10.1007/s11075-017-0350-9.
[10] D. V. Hieu, New extragradient method for a class of equilibrium problems in Hilbert spaces, Applicable Analysis 97 (2017), 811 - 824, DOI: 10.1080/00036811.2017.1292350.
[11] D. V. Hieu, P. K. Quy and L. V. Vy, Explicit iterative algorithms for solving equilibrium problems, Calcolo 56 (2019), Article number: 11, DOI: 10.1007/s10092-019-0308-5.
[12] I. Konnov, Equilibrium Models and Variational Inequalities, Elsevier, Amsterdam (2007).
[13] L. D. Muu and W. Oettli, Convergence of an adaptive penalty scheme for finding constrained equilibria, Nonlinear Analysis: Theory, Methods \& Applications 18 (1992), 1159 - 1166, DOI: 10.1016/0362-546x(92)90159-c.
[14] E. Ofoedu, Strong convergence theorem for uniformly L-lipschitzian asymptotically pseudocontractive mapping in real Banach space, Journal of Mathematical Analysis and Applications 321 (2006), 722 - 728, DOI: 10.1016/j.jmaa.2005.08.076.
[15] T. D. Quoc, P. N. Anh and L. D. Muu, Dual extragradient algorithms extended to equilibrium problems, Journal of Global Optimization 52 (2011), 139 - 159, DOI: 10.1007/s10898-011-9693-2,
[16] D. Q. Tran, M. L. Dung and V. H. Nguyen, Extragradient algorithms extended to equilibrium problems, Optimization 57 (2008), 749 - 776, DOI: $10.1080 / 02331930601122876$.
[17] L. D. Muu, V. H. Nguyen and N. V. Quy On Nash-Cournot oligopolistic market equilibrium models with concave cost functions, Journal of Global Optimization 41 (2005), 351 - 364, DOI: 10.1007/s10898-007-9243-0,
[18] P. Santos and S. Scheimberg, An inexact subgradient algorithm for equilibrium problems, Computational \& Applied Mathematics 30 (2011), 91 - 107, DOI: 10.1590/S180703022011000100005
[19] S. Takahashi and W. Takahashi, Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces, Journal of Mathematical Analysis and Applications 331 (2007), 506 - 515, DOI: 10.1016/j.jmaa.2006.08.036.
[20] J. V. Tiel, Convex Analysis: An Introductory Text, Wiley, New York (1984).
[21] H. ur Rehman, P. Kumam, A. B. Abubakar and Y. J. Cho, The extragradient algorithm with inertial effects extended to equilibrium problems, Computational and Applied Mathematics 39 (2020), Article number: 100, 1 - 26, DOI: 10.1007/s40314-020-1093-0.
[22] H. ur Rehman, P. Kumam, I. K. Argyros, N. A. Alreshidi, W. Kumam and W. Jirakitpuwapat, A self-adaptive extra-gradient methods for a family of pseudomonotone equilibrium programming with application in different classes of variational inequality problems, Symmetry 12 (2020), 523, DOI: $10.3390 /$ sym12040523.
[23] H. ur Rehman, P. Kumam, I. K. Argyros, W. Deebani and W. Kumam, Inertial extragradient method for solving a family of strongly pseudomonotone equilibrium problems in real Hilbert spaces with application in variational inequality problem, Symmetry 12 (2020), 503, DOI: 10.3390/sym12040503.
[24] H. ur Rehman, P. Kumam, I. K. Argyros, M. Shutaywi and Z. Shah, Optimization based methods for solving the equilibrium problems with applications in variational inequality problems and solution of Nash equilibrium models, Mathematics 8 (2020), 822, DOI: 10.3390/math8050822.
[25] H. ur Rehman, P. Kumam, Y. J. Cho and P. Yordsorn, Weak convergence of explicit extragradient algorithms for solving equilibirum problems, Journal of Inequalities and Applications 2019 (2019), Article number: 282, 1 - 25, DOI: 10.1186/s13660-019-2233-1.
[26] H. ur Rehman, P. Kumam, Y. J. Cho, Y. I. Suleiman and W. Kumam, Modified Popov's explicit iterative algorithms for solving pseudomonotone equilibrium problems, Optimization Methods and Software (2020), 1 - 32, DOI: 10.1080/10556788.2020.1734805,
[27] H. ur Rehman, P. Kumam, W. Kumam, M. Shutaywi and W. Jirakitpuwapat, The inertial subgradient extra-gradient method for a class of pseudo-monotone equilibrium problems, Symmetry 12 (2020), 463, DOI: $10.3390 /$ sym12030463.
[28] H. ur Rehman, P. Kumam, M. Shutaywi, N. A. Alreshidi and W. Kumam, Inertial optimization based two-step methods for solving equilibrium problems with applications in variational inequality problems and growth control equilibrium models, Energies 13 (2020), 3292, DOI: 10.3390/en13123292.
[29] H. ur Rehman, N. Pakkaranang, A. Hussain and N. Wairojjana, A modified extra-gradient method for a family of strongly pseudomonotone equilibrium problems in real Hilbert spaces, Journal of Mathematics and Computer Science 22 (2020), 38 - 48, DOI: $10.22436 / \mathrm{jmcs} .022 .01 .04$
[30] N. Wairojjana, H. ur Rehman, I. K. Argyros and N. Pakkaranang, An accelerated extragradient method for solving pseudomonotone equilibrium problems with applications, Axioms 9 (2020), 99, DOI: 10.3390/axioms9030099,
[31] N. Wairojjana, H. ur Rehman, M. D. la Sen and N. Pakkaranang, A general inertial projectiontype algorithm for solving equilibrium problem in Hilbert spaces with applications in fixed-point problems, Axioms 9 (2020), 101, DOI: 10.3390/axioms9030101.

[^0]: Copyright © 2020 Nopparat Wairojjana, Habib ur Rehman, Nuttapol Pakkaranang and Chainarong Khanpanuk. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

[^1]: ${ }^{1}$ Choosing two diagonal matrices randomly A_{1} and A_{2} with entries from [1, n] and [$-n, 0$], respectively. Two random orthogonal matrices B_{1} and B_{2} are able to generate a positive semi definite matrix $M_{1}=B_{1} A_{1} B_{1}^{T}$ and negative semi definite matrix $M_{2}=B_{2} A_{2} B_{2}^{T}$. Finally, set $Q=M_{1}+M_{1}^{T}, S=M_{2}+M_{2}^{T}$ and $P=Q-S$.

