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1. Introduction
Consider a finite set of n points in the plane (space), then locus of points such that the sum of
the squares of distances to the given points is constant, is a circle (sphere), whose center is at
the centroid of the given points [1,2].

Denote by M(d1,d2, . . . ,dn,L) an arbitrary point in the plane (space) of a regular polygon
(Platonic solid) of distances d1,d2, . . . ,dn to the vertices A1, A2, . . . , An, then:

n∑
1

d2
i = n(R2 +L2), (∗)

where R is the radius of circumscribed circle (sphere) of the regular polygon (Platonic solid) and
L is the distance between the point M and the centroid O.
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The symmetric equation exists for an equilateral triangle and an arbitrary point
M(d1,d2,d3,L) in the plane of the triangle

3(d4
1 +d4

2 +d4
3 +a4)= (d2

1 +d2
2 +d2

3 +a2)2, (∗∗)

where a is the side of the triangle [8,11].
The arbitrary point is always considered in the plane of the regular polygon, and in the

space of the Platonic solid, respectively.
From relations (∗) and (∗∗) follows:

3∑
1

d2
i = 3(R2 +L2),

3∑
1

d4
i = 3

(
(R2 +L2)2 +2R2L2).

For a given equilateral triangle, the side a as well as the circumradius R are fixed so that

Theorem 1.1. The locus of points such that
3∑
1

d4
i = const

is a circle, center of which is the centroid.

As we see, the distances are considered to the second and the fourth powers. Naturally, we
are interested to know what happens if we consider the distances of higher powers.

2. Preliminaries

For an equilateral triangle the expression
3∑
1

d6
i , contains α-the angle between R and L, so the

locus is not a circle, but for a square case the answer is surprising: the locus of points such that
4∑
1

d6
i = const

is a circle.
Generally, the locus is a circle (sphere) if and only if the sum of power distances can be

expressed in terms of L and some fixed element (with length) of a given regular polygon (Platonic
solid). The fixed element is possible to express in terms of R, so we denote such sums by the
symbol

∑
[R,L], or

∑(2m)
[R,L]-to indicate the like powers of the distances.

Denote by Pn(R) and Tn(R) a regular polygon and Platonic solid, respectively, with an n
number of the vertices and circumscribed radius R. The value of the

∑
[R,L] remains constant

when the point M moves on the circle C(O,L) (sphere S(O,L)). So

Definition 2.1.
∑

[R,L]-is the sum of like powers of the distances d1, . . . ,dn from an arbitrary
point M(d1, . . . ,dn,L) to the vertices Pn(R) (Tn(R)) the value of which is constant for any point
of the C(O,L) (S(O,L)).

It is clear, the sum of odd power contains radicals and never will be
∑

[R,L].
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For establishing common properties of the Pn and Tn discussing average of
∑

[R,L] is much
preferred

S(2m)
n = 1

n

∑(2m)
[R,L] .

Definition 2.2. The cyclic averages S(2m)
n (S(2m)

[n] ) of a regular polygon (Platonic solid) is the
average of the sum

∑(2m)
[R,L].

We call such averages the cyclic averages, because as we prove the cyclic averages of equal
powers of various Pn (Tn) for fixed R and L are the same (if they exist):

S(2m)
n1

= S(2m)
n2

,

if n1 ≤ n2.
On the other hand for any given Pn the number of S(2m)

n (as well as
∑(2m)

[R,L]) is defined
uniquely, so the number of the cyclic averages is characteristic of the regular polygon.

For example, 2 cyclic averages exist for a regular 3-gon:

S(2)
3 and S(4)

3 ,

while for a regular 4-gon — 3 cyclic averages:

S(2)
4 , S(4)

4 and S(6)
4 .

They are in relations:

S(2)
3 = S(2)

4 and S(4)
3 = S(4)

4 .

To demonstrate the efficiency of cyclic averages the analogue of the relation (∗∗) will be
obtained for the square. Firstly, we turn (∗∗) in terms of R and the cyclic averages — S(2)

3 , S(4)
3 :

d4
1 +d4

2 +d4
3

3
+3R4 =

(d2
1 +d2

2 +d2
3

3
+R2

)2
,

then replace with

S(2)
3 = S(2)

4 , S(4)
3 = S(4)

4 and R = ap
2

;

we get

Theorem 2.1. For an arbitrary point M(d1, . . . ,d4,L) in the plane of a square:

4(d4
1 +d4

2 +d4
3 +d4

4 +3a4)= (d2
1 +d2

2 +d2
3 +d2

4 +2a2)2,

where a is the side of the square.

3. Circle as Locus of Constant
∑

[R,L] Sums
Theorem 3.1. For an arbitrary point M(d1,d2, . . . ,dn,L) in the plane of regular polygon Pn(R):

n∑
i=1

d2m
i = n

[
(R2 +L2)m +

bm
2 c∑

k=1

(
m
2k

)(
2k
k

)
R2kL2k(R2 +L2)m−2k

]
,

where m = 1, . . . ,n−1.

First we need to prove two lemmas.
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Lemma 3.1. For arbitrary positive integers m and n, such that m < n, the following condition
n∑

k=1
cos

(
m

(
α− (k−1)

2π
n

))
= 0

is satisfied, where α is an arbitrary angle.

Denote

T = eimα+ eim(α− 2π
n ) + eim(α−2 2π

n ) +·· ·+ eim(α−(n−1) 2π
n ).

The real part of T is

Re(T)=
n∑

k=1
cos

(
m

(
α− (k−1)

2π
n

))
.

The formula of the sum of geometric progression gives

T = eimα
(
1+ e−im 2π

n + (
e−im 2π

n
)2 +·· ·+ (

e−im 2π
n

)n−1
)
= eimα 1− (e−im 2π

n )n

1− e−im 2π
n

,

e−im2π = cos(−2πm)+ isin(−2πm)= 1.

Since m < n, e−im 2π
n 6= 1. So T = 0, i.e. Re(T)= 0, which proves Lemma 3.1.

Remark 3.1. If m ≥ n, the sum always contains α.

Lemma 3.2. For arbitrary positive integers m and n, such that m < n and for an arbitrary angle
α the following conditions are satisfied:
if m is odd

n∑
k=1

cosm
(
α− (k−1)

2π
n

)
= 0;

if m is even
n∑

k=1
cosm

(
α− (k−1)

2π
n

)
= n

(m
m
2

)
2m .

When m is odd, using the power-reduction formula for cosine

cosmθ = 2
2m

m−1
2∑

k=0

(
m
k

)
cos

(
(m−2k)θ

)
,

we obtain
n∑

k=1
cosm

(
α− (k−1)

2π
n

)
= cosmα+cosm

(
α− 2π

n

)
+·· ·+cosm

(
α− (n−1)

2π
n

)
= 2

2m

[(
m
0

)
cosmα+

(
m
1

)
cos(m−2)α+·· ·+

(
m

m−1
2

)
cosα

+
(
m
0

)
cosm

(
α− 2π

n

)
+

(
m
1

)
cos(m−2)

(
α− 2π

n

)
+·· ·

+
(

m
m−1

2

)
cos

(
α− 2π

n

)
+ ·· ·
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+
(
m
0

)
cosm

(
α−(n−1)

2π
n

)
+

(
m
1

)
cos(m−2)

(
α−(n−1)

2π
n

)
+·· ·+

(
m

m−1
2

)
cos

(
α− (n−1)

2π
n

)]

= 2
2m

[(
m
0

)(
cosmα+cosm

(
α− 2π

n

)
+·· ·+cosm

(
α− (n−1)

2π
n

))
+

(
m
1

)(
cos(m−2)α+cos(m−2)

(
α−2π

n

)
+·· ·

+cos(m−2)
(
α− (n−1)

2π
n

))
+·· ·

+
(

m
m−1

2

)(
cosα+cos

(
α− 2π

n

)
+·· ·+cos

(
α− (n−1)

2π
n

))]
.

Since m < n, from Lemma 3.1 it follows that each sum equals zero, which proves the first part
of Lemma 3.2.

When m is even, the power-reduction formula for cosine is

cosmθ = 1
2m

(
m
m
2

)
+ 2

2m

m
2 −1∑
k=0

(
m
k

)
cos

(
(m−2k)θ

)
.

Analogously to the case with odd m, the sum of the second addenda vanishes, and since the
number of the first addenda is n, the total sum equals

n

(
m
m
2

)
2m ,

which proves Lemma 3.2.

Proof of Theorem 3.1. We introduce the new notations

A = R2 +L2 and B = 2RL.

Then
n∑

i=1
d2m

i = (A−Bcosα)m +
(
A−Bcos

(2π
n

−α
))m

+
(
A−Bcos

(
2 · 2π

n
−α

))m
+·· ·+

(
A−Bcos

(
(n−1)

2π
n

−α
))m

.

If m = 1, by Lemma 3.1 we have
n∑

i=1
d2m

i = (A−Bcosα)+
(
A−Bcos

(2π
n

−α
))
+·· ·+

(
A−Bcos

(
(n−1) · 2π

n
−α

))
= nA.

Therefore

S(2)
n = R2 +L2.

If m > 1, we have
n∑

i=1
d2m

i = nAm −
(
m
1

)
Am−1B

(
cosα+cos

(2π
n

−α
)
+·· ·+cos

(
(n−1)

2π
n

−α
))
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+
(
m
2

)
Am−2B2

(
cos2α+cos2

(2π
n

−α
)
+·· ·+cos2

(
(n−1)

2π
n

−α
))

−
(
m
3

)
Am−3B3

(
cos3α+cos3

(2π
n

−α
)
+·· ·+cos3

(
(n−1)

2π
n

−α
))
+·· ·

±
(
m
m

)
Bm

(
cosmα+cosm

(2π
n

−α
)
+·· ·+cosm

(
(n−1)

2π
n

−α
))

.

According to Lemma 3.2, all sums with the negative sign vanish and only the sums with the
positive sign remain.

If m is even
n∑

i=1
d2m

i = nAm +
(
m
2

)
Am−2B2

(
cos2α+cos2

(2π
n

−α
)
+·· ·+cos2

(
(n−1)

2π
n

−α
))
+·· ·

+
(
m
m

)
Bm

(
cosmα+cosm

(2π
n

−α
)
+·· ·+cosm

(
(n−1)

2π
n

−α
))

= n
(
Am +

m
2∑

k=1

(
m
2k

)
Am−2kB2k 1

22k

(
2k
k

))
.

If m is odd
n∑

i=1
d2m

i = nAm +
(
m
2

)
Am−2B2

(
cos2α+cos2

(2π
n

−α
)
+·· ·+cos2

(
(n−1)

2π
n

−α
))
+·· ·

+
(

m
m−1

)
ABm−1

(
cosm−1α+cosm−1

(2π
n

−α
)
+·· ·+cosm−1

(
(n−1)

2π
n

−α
))

= n
(
Am +

m−1
2∑

k=1

(
m
2k

)
Am−2kB2k 1

22k

(
2k
k

))
.

Using the floor function (the integer part), the obtained results can be combined into a single
formula as follows

n∑
i=1

d2m
i = n

(
Am +

bm
2 c∑

k=1

(
m
2k

)
Am−2kB2k 1

22k

(
2k
k

))
,

which proves the theorem.

From Theorem 3.1 each sums
n∑

i=1
d2m

i , where m = 1,2, . . . ,n−1

are the
∑

[R,L] sums. Beginning from the m ≥ n all sums of power distances contain α

(Remark 3.1).
For example, for P3 the sums contain:

• cos3α, if m = 3,4,5;

• cos3α and cos6α, if m = 6,7,8;

• cos3α, cos6α and cos9α, if m = 9,10,11.
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Generally for m ≥ n the sums
n∑

i=1
d2m

i contain cosine of the multiples of nα. The study of

such sums is beyond the scope of this article.
Therefore for Pn exist an n−1 number of

∑
[R,L] sums and if they are constant the locus for

each case is a circle:

Theorem 3.2. The locus of points such that the sum of the (2m)-th power of the distances to the
vertices of a given Pn(R) is constant is a circle, if

n∑
i=1

d2m
i > nR2m, where m = 1,2, . . . ,n−1,

whose center is the centroid of the Pn(R).

Remark 3.2.

• If
n∑

i=1
d2m

i = nR2m, the locus is the centroid of the polygon.

• If
n∑

i=1
d2m

i < nR2m, the locus is the empty set.

4. Cyclic Averages of Regular Polygons
The properties of the cyclic average are as follows:

Property 4.1. Each regular n-gon has an n−1 number of cyclic averages

S(2)
n ,S(4)

n , . . . ,S(2n−2)
n .

Property 4.2. For fixed R and L, the cyclic averages of equal powers of various regular n-gons
are the same:

S(2)
3 = S(2)

4 = S(2)
5 = S(2)

6 = ·· · ,

S(4)
3 = S(4)

4 = S(4)
5 = S(4)

6 = ·· · ,

S(6)
4 = S(6)

5 = S(6)
6 = ·· · ,

S(8)
5 = S(8)

6 = ·· · .

Property 4.3. Any relations in terms of the cyclic averages S(2m)
n1 , the circumscibed radius R

and the distance L, which are satisfied for a regular n1-gon, are at the same time satisfied for
any regular n2-gon, where n1 ≤ n2, i.e. S(2m)

n1 can be replaced by S(2m)
n2 .

Eliminate L from the relations of Theorem 3.1 we obtain:

Theorem 4.1. For any regular n-gon:

S(2m)
n = (S(2)

n )m +
bm

2 c∑
k=1

(
m
2k

)(
2k
k

)
R2k(S(2)

n −R2)k(S(2)
n )m−2k,

where m = 2, . . . ,n−1.

In terms of S(2)
n and S(4)

n :
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Theorem 4.2. For any regular n-gon:

S(2m)
n = (S(2)

n )m +
bm

2 c∑
k=1

1
2k

(
m
2k

)(
2k
k

)(
S(4)

n − (S(2)
n )2)k(S(2)

n )m−2k,

where m = 3, . . . ,n−1.

The first two relations of Theorem 3.1 imply:

Theorem 4.3. For any regular n-gon:

R2 = 1
2

(
S(2)

n ±
√

3(S(2)
n )2 −2S(4)

n

)
,

L2 = 1
2

(
S(2)

n ∓
√

3(S(2)
n )2 −2S(4)

n

)
.

The points on the circumscribed circle satisfy

3(S(2)
n )2 = 2S(4)

n ,

so

Theorem 4.4. For any point on the circumscribed circle of the regular n-gon:

3

(
n∑

i=1
d2

i

)2

= 2n
n∑

i=1
d4

i .

4.1 Equilateral triangle

There are 2 cyclic averages:

S(2)
3 = 1

3
(d2

1 +d2
2 +d2

3)= R2 +L2,

S(4)
3 = 1

3
(d4

1 +d4
2 +d4

3)= (R2 +L2)2 +2R2L2.

In general case from Theorem 4.1, for n ≥ 3 [6]

S(4)
n +3R4 = (S(2)

n +R2)2.

Denote by the symbol — 4(a,b,c) the area of a triangle whose sides have lengths a, b, c. Then
solution of the system of the cyclic averages is:

Theorem 4.5. For any point M(d1,d2,d3,L) and P3(R)

d1 = d1,

d2
2 =

1
2

(
3(R2 +L2)−d2

1 ±4
p

34(R,L,d1)

)
,

d2
3 =

1
2

(
3(R2 +L2)−d2

1 ∓4
p

34(R,L,d1)

)
.

For P3

3(S(2)
n )2 −2S(4)

n = 1
3

(
(d2

1 +d2
2 +d2

3)2 −2(d4
1 +d4

2 +d4
3)

)
= 16

3
42

(d1,d2,d3),
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and

R2 = 1
6

(
d2

1 +d2
2 +d2

3 ±4
p

34(d1,d2,d3)

)
,

L2 = 1
6

(
d2

1 +d2
2 +d2

3 ∓4
p

34(d1,d2,d3)

)
.

For any point on the circumscribed circle, follows the area — 4(d1,d2,d3) should be zero.
Indeed for the largest distance d3 = d1 +d2 holds.

4.2 Square
There are 3 cyclic averages:

S(2)
4 = 1

4
(d2

1 +d2
2 +d2

3 +d2
4)= R2 +L2,

S(4)
4 = 1

4
(d4

1 +d4
2 +d4

3 +d4
4)= (R2 +L2)2 +2R2L2,

S(6)
4 = 1

4
(d6

1 +d6
2 +d6

3 +d6
4)= (R2 +L2)3 +6R2L2(R2 +L2).

From Theorems 4.1 and 4.2

Theorem 4.6. For any regular n-gon, where n ≥ 4:

S(6)
n = S(2)

n
(
(S(2)

n +3R2)2 −15R4),
S(6)

n = S(2)
n

(
3S(4)

n −2(S(2)
n )2).

From Theorem 4.6 follows:

8(d6
1 +d6

2 +d6
3 +d6

4)+ (d2
1 +d2

2 +d2
3 +d2

4)3 = 6(d2
1 +d2

2 +d2
3 +d2

4)(d4
1 +d4

2 +d4
3 +d4

4),

which is equivalent to

3(d2
1 +d2

2 −d2
3 −d2

4)(d2
1 +d2

3 −d2
2 −d2

4)(d2
1 +d2

4 −d2
2 −d2

3)= 0.

So

d2
1 +d2

3 = d2
2 +d2

4

holds.
Obtained relation has generalization for regular n-gon. If n is even for the diametrically

opposed vertices:

Theorem 4.7. For any regular n-gon, with even number of vertices n = 2k:

d2
1 +d2

1+k = d2
2 +d2

2+k = ·· · = d2
k +d2

2k = 2(R2 +L2).

Theorem 4.7 simplifies the system of the cyclic averages:

S(4)
4 +3R2 = (S(2)

4 +R2)2,

d2
1 +d2

3 = d2
2 +d2

4;

which is analogue to systems obtained in [7,9]. Moreover, in terms of R and L, we get:

d2
1 +d2

3 = d2
2 +d2

4 = 2(R2 +L2),

d2
1d2

3 +d2
2d2

4 = 2(R4 +L4).
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The solution of which is:

Theorem 4.8. For any point M(d1,d2,d3,d4,L) and P4(R):

d1 = d1,

d2
2 = R2 +L2 ±44(R,L,d1),

d2
3 = 2(R2 +L2)−d2

1,

d2
4 = R2 +L2 ∓44(R,L,d1).

For P4

3(S(2)
n )2 −2S(2)

n = 1
16

[
3(d2

1 +d2
2 +d2

3 +d2
4)2 −8(d4

1 +d4
2 +d4

3 +d4
4)

]
= 442

(d1,
p

2d2,d3)
= 442

(d2,
p

2d3,d4)
,

and

R2 = 1
4

(d2
1 +d2

3)±4(d1,
p

2d2,d3) =
1
4

(d2
2 +d2

4)±4(d2,
p

2d3,d4),

L2 = 1
4

(d2
1 +d2

3)∓4(d1,
p

2d2,d3) =
1
4

(d2
2 +d2

4)∓4(d2,
p

2d3,d4).

For any point on the circumscribed circle the areas — 4(d1,
p

2d2,d3) and 4(d2,
p

2d3,d4) should
be zero. Indeed, if the point on the minor arc A1A2 are satisfied

d1 +
p

2d2 = d3 and d2 +d4 =
p

2d3.

4.3 Regular Pentagon, Hexagon and Heptagon
There are 4, 5 and 6 cyclic averages for the P5, P6 and P7 cases, respectively:

S(2)
5 = S(2)

6 = S(2)
7 = R2 +L2,

S(4)
5 = S(4)

6 = S(4)
7 = (R2 +L2)2 +2R2L2,

S(6)
5 = S(6)

6 = S(6)
7 = (R2 +L2)3 +6R2L2(R2 +L2),

S(8)
5 = S(8)

6 = S(8)
7 = (R2 +L2)4 +12R2L2(R2 +L2)2 +6R4L4,

S(10)
6 = S(10)

7 = (R2 +L2)5 +20R2L2(R2 +L2)3 +30R4L4(R2 +L2),

S(12)
7 = (R2 +L2)6 +30R2L2(R2 +L2)4 +90R4L4(R2 +L2)2 +20R6L6.

These systems are simplified for the regular hexagon case only.
The vertices A1, A3, A5 and A2, A4, A6 form two equilateral triangles, so they satisfy two

cyclic relations for P3. Generally for n-gon if n divisible by 3:

Theorem 4.9. For any regular n-gon, if n = 3`

d2
1 +d2

1+`+d2
1+2` = ·· · = d2

`+d2
2`+d2

3` = 3(R2 +L2),

d4
1 +d4

1+`+d4
1+2` = ·· · = d4

`+d4
2`+d4

3` = 3
(
(R2 +L2)2 +2R2L2).

The Theorem 4.7 and Theorem 4.9 simplify the system of the cyclic averages for the regular
hexagon:

d2
1 +d2

4 = d2
2 +d2

5 = d2
3 +d2

6 = 2(R2 +L2),
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d2
1 +d2

3 +d2
5 = d2

2 +d2
4 +d2

6 = 3(R2 +L2),

d4
1 +d4

3 +d4
5 = d4

2 +d4
4 +d4

6 = 3
(
(R2 +L2)2 +2R2L2).

By using these relations, we get explicit expressions for distances:

Theorem 4.10. For any point M(d1,d2, . . . ,d6,L) and P6(R):

d1 = d1,

d2
2 =

1
2

(
R2 +L2 +d2

1 ±4
p

34(R,L,d1)

)
,

d2
3 =

1
2

(
3R2 +3L2 −d2

1 ±4
p

34(R,L,d1)

)
,

d2
4 = 2(R2 +L2)−d2

1,

d2
5 =

1
2

(
3R2 +3L2 −d2

1 ∓4
p

34(R,L,d1)

)
,

d2
6 =

1
2

(
R2 +L2 +d2

1 ∓4
p

34(R,L,d1)

)
.

For P6:

3(S(2)
n )2 −2S(4)

n = 3

(
d2

1 +d2
2 +·· ·+d2

6

6

)2

−2
d4

1 +d4
2 +·· ·+d4

6

6

= 1
3

(
(d2

1 +d2
3 +d2

5)2 −2(d4
1 +d4

3 +d4
5)

)
= 16

3
42

(d1,d3,d5) =
16
3

42
(d2,d4,d6)

and

R2 = 1
6

(
d2

1 +d2
3 +d2

5 ±4
p

34(d1,d3,d5)

)
= 1

6

(
d2

2 +d2
4 +d2

6 ±4
p

34(d2,d4,d6)

)
,

L2 = 1
6

(
d2

1 +d2
3 +d2

5 ∓4
p

34(d1,d3,d5)

)
= 1

6

(
d2

2 +d2
4 +d2

6 ∓4
p

34(d2,d4,d6)

)
.

For any point on the circumscribed circle the area 4(d1,d3,d5) as well as 4(d2,d4,d6) vanishes.
Indeed if the point on the minor arc A1A2:

d1 +d3 = d5 and d2 +d6 = d4.

4.4 Regular Octagon, Nonagon and Decagon
There are 8, 9 and 10 cyclic averages for the P8, P9 and P10 cases, respectively. The cyclic
averages from the second to the twelfth powers are the same as for regular heptagon, so we
write only new ones:

S(14)
8 = S(14)

9 = S(14)
10 = (R2+L2)7+42R2L2(R2+L2)5+210R4L4(R2+L2)3+140R6L6(R2+L2),

S(16)
9 = S(16)

10 = (R2 +L2)8 +56R2L2(R2 +L2)6 +420R4L4(R2 +L2)4

+560R6L6(R2 +L2)2 +70R8L6,

S(18)
10 = (R2 +L2)9 +72R2L2(R2 +L2)7 +756R4L4(R2 +L2)5

+1680R6L6(R2 +L2)3 +630R8L8(R2 +L2),

Communications in Mathematics and Applications, Vol. 11, No. 3, pp. 335–355, 2020



346 Cyclic Averages of Regular Polygons and Platonic Solids: M. Meskhishvili

All three cases n = 8,9,10 admit further simplifications.
For P8 Theorem 4.7 gives:

d2
1 +d2

5 = d2
2 +d2

6 = d2
3 +d2

7 = d2
4 +d2

8 = 2(R2 +L2).

The vertices A1, A3, A5, A7 and A2, A4, A6, A8 form two squares, so they satisfy “additional”
cyclic relations for P4.

Generally, if n is divisible by 4:

Theorem 4.11. For any regular n-gon, if n = 4p:

d4
1 +d4

1+p +d4
1+2p +d4

1+3p = ·· · = d4
p +d4

2p +d4
3p +d4

4p = 4
(
(R2 +L2)2 +2R2L2),

d6
1 +d6

1+p +d6
1+2p +d6

1+3p = ·· · = d6
p +d6

2p +d6
3p +d6

4p = 4
(
(R2 +L2)3 +6R2L2(R2 +L2)

)
.

For P9 Theorem 4.9 gives:

d2
1 +d2

4 +d2
7 = d2

2 +d2
5 +d2

8 = d2
3 +d2

6 +d2
9 = 3(R2 +L2),

d4
1 +d4

4 +d4
7 = d4

2 +d4
5 +d4

8 = d4
3 +d4

6 +d4
9 = 3

(
(R2 +L2)2 +2R2L2).

For P10, from Theorem 4.7:

d2
1 +d2

6 = d2
2 +d2

7 = d2
3 +d2

8 = d2
4 +d2

9 = d2
5 +d2

10 = 2(R2 +L2).

The vertices A1, A3, A5, A7, A9 and A2, A4, A6, A8, A10 form two regular pentagons, so they
satisfy “additional” cyclic relations for P5.

Generally, if n is divisible by 5:

Theorem 4.12. For any regular n-gon, if n = 5t

d2
1 +d2

1+t +d2
1+2t +d2

1+3t +d2
1+4t = ·· · = d2

t +d2
2t +d2

3t +d2
4t +d2

5t = 5(R2 +L2),

d4
1 +d4

1+t +d4
1+2t +d4

1+3t +d4
1+4t = ·· · = d4

t +d4
2t +d4

3t +d4
4t +d4

5t = 5
(
(R2 +L2)2 +2R2L2),

d6
1 +d6

1+t +d6
1+2t +d6

1+3t +d6
1+4t = ·· · = d6

t +d6
2t +d6

3t +d6
4t +d6

5t

= 5
(
(R2 +L2)3 +6R2L2(R2 +L2)

)
,

d8
1 +d8

1+t +d8
1+2t +d8

1+3t +d8
1+4t = ·· · = d8

t +d8
2t +d8

3t +d8
4t +d8

5t

= 5
(
(R2 +L2)4 +12R2L2(R2 +L2)2 +6R4L4).

To summarize the obtained results, we conclude: every regular n-gon has an n−1 number of
cyclic averages, but if n is the composite number we have “additional” relations for the distances,
which are obtained from the cyclic averages of the n1-gon, where n1 is divisible of n.

5. Rational Distances Problem (Solution for n= 24)
Is there a point all of whose distances to the vertices of the unit polygon are rational? The
problem has a long history especially for the case of a square. An extensive historical review is
given in [7,9,10]. For case of an equilateral triangle answer is positive [3]. According to [4] open
problems are in following cases

n = 4,6,8,12 and 24.
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For n = 6 — only trivial point is known — the centroid of the unit hexagon.
By Theorem 4.3 the side an of the regular n-gon is:

a2
n

2sin2 π
n

= S(2)
n ±

√
3(S(2)

n )2 −2S(4)
n .

For the unit icositetragon (n = 24):

sin
π

24
= 1

2

√√√√√S(2)
24 ±

√
3(S(2)

24 )2 −2S(4)
24

S(4)
24 − (S(2)

24 )2
.

The right side is the root of the fourth degree polynomial equation with rational coefficients:

8
(
S(4)

n − (S(2)
n )2)x4 −4S(2)

n x2 +1= 0,

thus it is the algebraic number of degree ≤ 4. On the other hand

sin
π

24
= 1

2

√
2−

√
2+

p
3 ,

is the algebraic number of degree > 4 [13]. So,

Theorem 5.1. There is not a point in the plane that is at rational distances from the vertices of
the unit regular 24-gon.

For positive answers for the P4 and P6 cases the necessary conditions are the rationalities
of the equal areas:

• 4(d1,
p

2d2,d3) =4(d2,
p

2d3,d4), if n = 4;

• p
34(d1,d3,d5) =

p
34(d2,d4,d6), if n = 6.

6. Sphere as Locus of Constant
∑

[R,L] Sums
For regular polygons with different vertices the number of the

∑
[R,L] sums are different too.

As we see, unlike the plane case, dual Platonic solids have the same number of the
∑

[R,L] sums:

regular tetrahedron:
∑(2)

[R,L],
∑(4)

[R,L];

octahedron and cube:
∑(2)

[R,L],
∑(4)

[R,L],
∑(6)

[R,L];

icosahedron and dodecahedron:
∑(2)

[R,L],
∑(4)

[R,L],
∑(6)

[R,L],
∑(8)

[R,L],
∑(10)

[R,L] .

To prove these, we consider each Platonic solid separately. In all cases, we consider solids
centered at the origin and use simple Cartesian coordinates.

6.1 Regular Tetrahedron
The coordinates of the vertices T4(R):

A1,2(c,±c,±c), A3,4(−c,±c,∓c) and R =
p

3 c.

Consider an arbitrary point in space M(d1,d2,d3,d4,L) with the coordinates: (x, y, z).
The distance between M and the centroid O of the tetrahedron:

L2 = x2 + y2 + z2.
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Then,
d2

1,2 = (x− c)2 + (y∓ c)2 + (z∓ c)2 = R2 +L2 +2c(−x∓ y∓ z),

d2
3,4 = (x+ c)2 + (y∓ c)2 + (z± c)2 = R2 +L2 +2c(x∓ y± z),

4∑
1

d4
i =

(
R2 +L2 +2c(−x∓ y∓ z)

)2 + (
R2 +L2 +2c(x∓ y± z)

)2

= 4(R2 +L2)2 +4c2((x+ y+ z)2 + (−x+ y+ z)2 + (x− y+ z)2 + (x+ y− z)2)
= 4

(
(R2 +L2)2 + 4

3
R2L2

)
.

If for T4(R):
4∑
1

d4
i > 4R4,

then

Theorem 6.1. The locus of points in the space such that the sum of the fourth power of the
distances to the vertices of a given regular tetrahedron is constant is a sphere whose center is the
centroid of the tetrahedron.

Remark 6.1.

• If
4∑
1

d4
i = 4R4 the locus is the centroid.

• If
4∑
1

d4
i < 4R4 the locus is the empty set.

The sums of the distances of the power more than 4 contain x, y and z (like α for the plane
case), so for T4 only the sums of the second and fourth powers are

∑
[R,L] sums.

6.2 Octahedron and Cube
The coordinates of the vertices of the octahedron T6(R):

A1,2(±c,0,0), A3,4(0,±c,0), A5,6(0,0,±c) and R = c.

For an arbitrary point P(d1,d2, . . . ,d6,L):

d2
1,2 = R2 +L2 ±2Rx,

d2
3,4 = R2 +L2 ±2R y,

d2
5,6 = R2 +L2 ±2Rz.

Beginning from T6 each Platonic solid (except tetrahedron) has diametrically opposed
vertices, so for them Theorem 4.7 is satisfied. For the sums of the fourth and sixth powers:

6∑
1

d4
i = (R2 +L2 ±2Rx)2 + (R2 +L2 ±2R y)2 ± (R2 +L2 ±2Rz)2

= 4
(
(R2 +L2)2 + 4

3
R2L2

)
,
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6∑
1

d6
i = 6(R2 +L2)3 +24(R2 +L2)R2(x2 + y2 + z2)

= 6
(
(R2 +L2)3 +4R2L2(R2 +L2)

)
.

For the cube T8(R):

A1,2(∓c,∓c,∓c), A3,4(±c,±c,∓c),

A5,6(±c,∓c,±c), A7,8(∓c,±c,±c)

and R =p
3 c.

The distances from the P(d1,d2, . . . ,d8,L):

d2
1,2 = R2 +L2 ±2c(x+ y+ z), d2

3,4 = R2 +L2 ∓2c(x+ y− z),

d2
5,6 = R2 +L2 ∓2c(x+ z− y), d2

7,8 = R2 +L2 ±2c(x− y− z).

The vertices A1, A3, A5, A7 and A2, A4, A6, A8 form two regular tetrahedrons, so they
satisfy the regular tetrahedron relations.

Theorem 6.2. For an arbitrary point in the space, the sum of the quadruple of the distances
to the vertices of the cube which lie on parallel faces and are endpoints of skew face diagonals,
satisfies

4∑
1

d2
2k−1 =

4∑
1

d2
2k = 4(R2 +L2),

4∑
1

d4
2k−1 =

4∑
1

d4
2k = 4

(
(R2 +L2)2 + 4

3
R2L2

)
.

Remark 6.2. These quadruples do not contain the distances to diametrically opposed vertices.

Thus,
8∑
1

d4
i = 8

(
(R2 +L2)2 + 4

3
R2L2

)
.

8∑
1

d6
i =

(
R2 +L2 ±2c(x+ y+ z)

)3 + (
R2 +L2 ∓2c(x+ y− z)

)3 + (
R2 +L2 ∓2c(x+ z− y)

)3

+ (
R2 +L2 ∓2c(y+ z− x)

)3

= 8(R2 +L2)3 +24(R2 +L2)c2
(
(x+ y+ z)2 + (x+ y− z)2 + (x− y+ z)2 + (x− y− z)2

)
= 8

(
(R2 +L2)3 +4R2L2(R2 +L2)

)
.

If for T6(R) and T8(R) is satisfied
n∑

i=1
d2m

i > nR2m, n = 6,8;

then

Theorem 6.3. The locus of points in the space such that the sum of the sixth (fourth) power of
distances to the vertices of a given octahedron (cube) is constant is a sphere whose center is the
centroid of the octahedron (cube).
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Remark 6.3.
• If

n∑
1

d2m
i = nR2m the locus is the centroid.

• If
n∑
1

d2m
i < nR2m the locus is the empty set.

6.3 Icosahedron and Dodecahedron
The coordinates of the vertices of icosahedron T12(R):

A1,2(0,±c,±cϕ), A3,4(0,∓c,±cϕ),

A5,6(±c,±cϕ,0), A7,8(±c,∓cϕ,0),

A9,10(±cϕ,0,±c), A11,12(±cϕ,0,∓c),

where ϕ is the golden ratio ϕ= 1+p5
2 and R = c

√
1+ϕ2.

For an arbitrary point P(d1,d2, . . . ,d12,L):

d2
1,2 = R2 +L2 ∓2c(y+ zϕ), d2

3,4 = R2 +L2 ±2c(y− zϕ),

d2
5,6 = R2 +L2 ∓2c(x+ yϕ), d2

7,8 = R2 +L2 ∓2c(x− yϕ),

d2
9,10 = R2 +L2 ∓2c(z+ xϕ), d2

11,12 = R2 +L2 ±2c(z− xϕ).

Then
12∑
1

d4
i =

4∑
1

d4
i +

8∑
5

d4
i +

12∑
9

d4
i

= 4(R2+L2)2+4c2(y2+z2ϕ2)+4(R2+L2)2+4c2(x2+y2ϕ2)+4(R2+L2)2+4c2(z2+x2ϕ2)

= 12(R2 +L2)2 +16c2(1+ϕ2)(x2 + y2 + z2)

= 12
(
(R2 +L2)2 + 4

3
R2L2

)
,

12∑
1

d6
i =

4∑
1

d6
i +

8∑
5

d6
i +

12∑
9

d6
i

= 4(R2 +L2)3 +48c2(R2 +L2)(y2 + z2ϕ2)+4(R2 +L2)3 +48c2(R2 +L2)(x2 + y2ϕ2)

+4(R2 +L2)3 +48c2(R2 +L2)(z2 + x2ϕ2)

= 12
(
(R2 +L2)3 +4R2L2(R2 +L2)

)
.

For the sum of the eighth power
4∑
1

d8
i = 4(R2 +L2)4 +96c2(R2 +L2)2(y2 + z2ϕ2)+64c4(y4 + z4ϕ4 +6y2z2ϕ2),

12∑
1

d8
i = 12(R2 +L2)4 +96c2(R2 +L2)2(x2 + y2 + z2)(1+ϕ2)

+64c4((x4 + y4 + z4)(1+ϕ4)+6(x2 y2 + x2z2 + y2z2)ϕ2),
because

1+ϕ4 = 3ϕ2 and ϕ2 = 1
5

(1+ϕ2)2,
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12∑
1

d8
i = 12

(
(R2 +L2)4 +8R2L2(R2 +L2)2 + 16

5
R4L4

)
.

4∑
1

d10
i = 4(R2+L2)5+80(R2+L2)3c2((y+zϕ)2+(y−zϕ)2)+160(R2+L2)c4((y+zϕ)4+(y−zϕ)4)

= 4(R2 +L2)5 +160(R2 +L2)3c2(y+ zϕ)2 +320(R2 +L2)c4(y4 + z4ϕ4 +6y2z2ϕ2).
12∑
1

d10
i = 12(R2 +L2)5 +160(R2 +L2)3c2(x2 + y2 + z2)(1+ϕ2)

+320(R2 +L2)c4((1+ϕ4)(x4 + y4 + z4)+3ϕ2(2x2 y2 +2x2z2 +2y2z2)
)

= 12
(
(R2 +L2)5 + 40

3
R2L2(R2 +L2)3 +16R4L4(R2 +L2)

)
.

Divide the vertices of the dodecahedron — T20(R) into two groups, the vertices A1, A2, . . . , A8

which form a cube and other vertices — A9, A10, . . . , A20. Then the coordinates:

A1,2(∓c,∓c,∓c), A3,4(±c,±c,∓c),

A5,6(±c,∓c,±c), A7,8(∓c,±c,±c),

A9,10

(
0,± c

ϕ
,±cϕ

)
, A11,12

(
0,∓ c

ϕ
,±cϕ

)
,

A13,14

(
± c
ϕ

,±cϕ,0
)
, A15,16

(
∓ c
ϕ

,±cϕ,0
)
,

A17,18

(
± cϕ,0,± c

ϕ

)
, A19,20

(
± cϕ,0,∓ c

ϕ

)
.

and R =p
3 c.

Consider an arbitrary point P(d1,d2, . . . ,d20,L). For the distances d1,d2, . . . ,d8 we use the
respective distances of the cube, and for others:

d2
9,10 = R2 +L2 ∓2c

( y
ϕ
+ zϕ

)
, d2

11,12 = R2 +L2 ±2c
( y
ϕ
− zϕ

)
,

d2
13,14 = R2 +L2 ∓2c

( x
ϕ
+ yϕ

)
, d2

15,16 = R2 +L2 ±2c
( x
ϕ
− yϕ

)
,

d2
17,18 = R2 +L2 ∓2c

( z
ϕ
+ xϕ

)
, d2

19,20 = R2 +L2 ±2c
( z
ϕ
− xϕ

)
,

20∑
1

d4
i = 8(R2 +L2)2 + 32

3
R2L2 +

20∑
9

d4
i

= 8(R2 +L2)2 + 32
3

R2L2 +12(R2 +L2)2 +16c2(x2 + y2 + z2)
( 1
ϕ2 +ϕ2

)
= 20

(
(R2 +L2)2 + 4

3
R2L2

)
.

20∑
1

d6
i = 8(R2+L2)3+32R2L2(R2+L2)+12(R2+L2)3+3(R2+L2)16c2(x2+y2+z2)

( 1
ϕ2 +ϕ2

)
= 20

(
(R2 +L2)3 +4R2L2(R2 +L2)

)
.

8∑
1

d8
i =

(
R2 +L2 ±2c(x+ y+ z)

)4 + (
R2 +L2 ∓2c(x+ y− z)

)4
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+ (
R2 +L2 ∓2c(x+ z− y)

)4 + (
R2 +L2 ±2c(x− y− z)

)4

= 8(R2 +L2)4 +64R2L2(R2 +L2)2 + 64
9

R4(2L4 +8x2 y2 +8x2z2 +8y2z2),

20∑
9

d8
i = 12(R2+L2)4+96(R2+L2)2L23c2+64c4

(
(x4+y4+z4)

(
ϕ4+ 1

ϕ4

)
+6x2 y2+6x2z2+6y2z2

)
= 12(R2 +L2)4 +96(R2 +L2)2R2L2 + 64

9
R4(7(x4 + y4 + z4)+6x2 y2 +6x2z2 +6y2z2),

20∑
1

d8
i = 20

(
(R2 +L2)4 +8R2L2(R2 +L2)2 + 16

5
R4L4

)
.

Like T12, maximal power for T20 which depends on R and L only is 10. Indeed,
8∑
1

d10
i = (

R2 +L2 ±2c(x+ y+ z)
)5 + (

R2 +L2 ∓2c(x+ y− z)
)5 + (

R2 +L2 ∓2c(x+ z− y)
)5

+ (
R2 +L2 ±2c(x− y− z)

)5

= 8(R2+L2)5+320(R2+L2)3c2L2+320(R2+L2)c4(2(x4+y4+z4)+12(x2 y2+x2z2+y2z2)
)
,

20∑
9

d10
i = 12(R2 +L2)5 +160(R2 +L2)3c2L2

( 1
ϕ2 +ϕ2

)
+320(R2 +L2)c4

(( 1
ϕ4 +ϕ4

)
(x4 + y4 + z4)+6(x2 y2 + x2z2 + y2z2)

)
,

20∑
1

d10
i = 20

(
(R2 +L2)2 + 40

3
R2L2(R2 +L2)3 +16R4L4(R2 +L2)

)
.

If for T12(R) and T20(R) is satisfied
n∑

i=1
d2m

i > nR2m, n = 12,20,

then

Theorem 6.4. The locus of points in the space such that the sum of the 2m-th power of distances
to the vertices of a given icosahedron (dodecahedron) is constant is a sphere, when

m = 1,2,3,4 and 5.

The center of the sphere is the centroid of the icosahedron (dodecahedron).

Remark 6.4.
• If

n∑
i=1

d2m
i = nR2m the locus is the centroid.

• If
n∑

i=1
d2m

i < nR2m the locus is the empty set.

7. Cyclic Averages of Platonic Solids
Summarize the obtained results, in terms of the cyclic averages:

Theorem 7.1. The cyclic averages of the Platonic solids are the following:

S(2)
[4] = S(2)

[6] = S(2)
[8] = S(2)

[12] = S(2)
[20] = R2 +L2,
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S(4)
[4] = S(4)

[6] = S(4)
[8] = S(4)

[12] = S(4)
[20] = (R2 +L2)2 + 4

3
R2L2,

S(6)
[6] = S(6)

[8] = S(6)
[12] = S(6)

[20] = (R2 +L2)3 +4R2L2(R2 +L2),

S(8)
[12] = S(8)

[20] = (R2 +L2)4 +8R2L2(R2 +L2)2 + 16
5

R4L4,

S(10)
[12] = S(10)

[20] = (R2 +L2)5 + 40
3

R2L2(R2 +L2)3 +16R4L4(R2 +L2).

Eliminate L and R from the relations, we obtain direct relations among the cyclic averages
of the Platonic solids.

Theorem 7.2. For each Platonic solid (n = 4,6,8,12,20):

S(4)
[n] +

16
9

R4 =
(
S(2)

[n] +
2
3

R2
)2

.

This result for regular simplicial and regular polytopic distances is obtained in [5] and [12],
respectively.

Theorem 7.3. For each Platonic solid, except the tetrahedron (n = 6,8,12,20):

S(6)
[n] = S(2)

[n]

(
(S(2)

[n] +2R2)2 −8R4),
S(6)

[n] = S(2)
[n]

(
3S(4)

[n] −2(S(2)
[n])

2).
Theorem 7.4. For the icosahedron and the dodecahedron (n = 12,20):

S(8)
[n] − (S(2)

[n])
4 = 8R2(S(2)

[n] −R2)
(
(S(2)

[n])
2 + 2

5
R2(S(2)

[n] −R2)
)
,

S(10)
[n] − (S(2)

[n])
5 = 8R2S(2)

[n](S
(2)
[n] −R2)

(5
3

(S(2)
[n])

2 +2R2(S(2)
[n] −R2)

)
,

S(8)
[n] =

1
5

(
9(S(4)

[n])
2 +12S(4)

[n](S
(2)
[n])

2 −16(S(2)
[n])

4
)
,

S(10)
[n] = S(2)

[n]S
(4)
[n]

(
9S(4)

[n] −8(S(2)
[n])

2).
Like the plane cases, in some space cases we have “additional” relations. Each Platonic

solid, except the tetrahedron satisfies Theorem 4.7 and for the cube and the dodecahedron
Theorem 6.2.

For the radius of the circumscribed sphere and the distance between the point and the
centroid:

Theorem 7.5. For each Platonic solid (n = 4,6,8,12,20):

R2 = 1
2

(
S(2)

[n] ±
√

4(S(2)
[n])

2 −3S(4)
[n]

)
,

L2 = 1
2

(
S(2)

[n] ∓
√

4(S(2)
[n])

2 −3S(4)
[n]

)
.

The points on the circumscribed sphere satisfy

4(S(2)
[n])

2 = 3S(4)
[n],

so
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Theorem 7.6. For any point on the circumscribed sphere of each Platonic solid (n=4,6,8,12,20):

4
n∑
1

d2
i = 3n

n∑
1

d4
i .

8. Conclusion
In the present paper, we introduce the

∑
[R,L] sums and define the cyclic averages of the regular

polygons and the Platonic solids. We prove the main property of the cyclic averages — the
equality of them for various regular polygons and Platonic solids. By means of the cyclic
averages the distances of an arbitrary point to the vertices of the regular polygons (the plane
case) and the Platonic solids (the space case) are investigated. All cases of constant sum of
like powers of the distances, when the locus is a circle (a sphere), are found. General metrical
relations for regular polygons (Platonic solids), which were known in special cases only, are
established. Rational distances problem solved for the n = 24 case.
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