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Interrelations between Annihilator,

Dual and Pseudo-H-algebras

Marina Haralampidou

Abstract. The annihilator operators play an important rôle in Wedderburn’s type

decompositions for pseudo-H-algebras. These operators determine the notions

of annihilator, resp. dual topological algebras. Thus, it is quite natural to ask

for possible relations between the latter topological algebras and those equipped

with an H-structure. Among other things, we present necessary and sufficient

conditions that a modular complemented H-algebra be annihilator. It is known

that a dual algebra is annihilator, while the converse is not, in general, true.

Our concern here is focused on appropriate conditions on a given H-algebra

guaranteeing the coincidence of the notions dual and annihilator.

1. Introduction and preliminaries

In [12] we developed a Wedderburn’s structure theory for certain pseudo-

H-algebras where the annihilator operators play an important rôle. The same

operators are present in the structure theory of non-normed topological algebras

(see, e.g. [3], [6] and [7]). On the other hand, annihilator and dual algebras

are defined via these operators; so it is quite natural to seek any possible

relations between the classes of modular complemented H-algebras, of pseudo-

Hilbert algebras, of annihilator algebras or yet the class of dual topological

algebras. In our context, we tried to reach the more general situation; namely,

we employ modular complemented H-algebras; here the “H-structure” (see

for definition below), stems from Ambrose algebras developed in [5] which

constitute a generalization of H∗-(Banach) algebras introduced by W. Ambrose

[1]. So, for pseudo-H-algebras, we first give a relation between properly and

anti-properly precomplemented H-algebras (Proposition 2.4). Moreover, in certain

anti-properly precomplemented H-algebras (resp. precomplemented H-algebras)

we characterize annihilator algebras through adjoints of elements (resp. dual
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algebras) (see Theorem 2.5 and Theorem 2.6, respectively). Finally, a relation is

given between certain Hilbert-algebras and dual ones (see Theorem 3.7).

All vector spaces and algebras considered here are taken over the field C of

complexes. Let E be an algebra. If (; 6=)S ⊆ E, Al(S) (resp. Ar(S)) denotes

the left (right) annihilator of S, which is a left (right) ideal of E. In particular,

this ideal is 2-sided, if S is a left (right) ideal. In case of a topological algebra

(separately continuous multiplication) the previous ideals are closed. We denote

by Ll(E) ≡ Ll (Lr(E) ≡ Lr , L ) the set of all closed left (right, 2-sided) ideals

in a topological algebra E, while Ml(E) (resp. Mr(E)) stands for the set of all

closed maximal regular left (right) ideals of E. An algebra E is called left (resp.

right) preannihilator, ifAl (E) = (0) (resp. Ar(E) = (0)). IfAl(E) =Ar(E) = (0),

E is called preannihilator. In particular, a topological algebra E is said to be an

annihilator algebra, if it is preannihilator with Ar(I) 6= (0) for every I ∈ Ll , I 6= E

and Al (J) 6= (0) for every J ∈ Lr , J 6= E (see [6]). A topological algebra E

is called a right annihilator algebra, if E is the only closed left ideal having a

trivial right annihilator; viz. one has I = E for every I ∈ Ll with Ar(I) = (0)

or equivalently, Ar(I) 6= 0 for any proper I ∈ Ll (cf. also [17]). A left annihilator

algebra is defined analogously, by interchanging “left” by “right”. Obviously, an

annihilator algebra is a left and right annihilator algebra. We note here that Husain

and Wong [13] assume moreover, that Ar(E) (resp. Al (E)) = (0). We do not

put this assumption which is redundant in modular complemented H-algebras,

we deal with (see the comments after Definition 2.1). A topological algebra E

satisfying Al(Ar(I)) = I for all I ∈ Ll and Ar(Al(J)) = J for all J ∈ Lr is called

a dual algebra. The Jacobson radical of E is denoted by R(E); E is semisimple, if

R(E) = (0). A topological algebra E such that I ∈ L and I2 = (0) implies I = (0) is

called topologically semiprime. Every semisimple topological algebra is topologically

semiprime and thus preannihilator (see Lemma 1.1 in [11]). We denote by I d(E)

the set of all non-zero idempotent elements of an algebra E, namely, the set of

all x ∈ E with 0 6= x = x2. A minimal element of an algebra E, is a non-zero

idempotent x such that xE x is a division algebra. A non-zero element of E is called

primitive, if it can not be expressed as the sum of two orthogonal idempotents; viz.

of some y, z ∈ I d(E) with yz = z y = 0. We denote by Sl(E) (resp. Sr(E)) the

left (resp. right) socle of an algebra E. If Sl(E) =Sr(E)≡SE the resulted 2-sided

ideal SE is called the socle of E (see [15]).

A locally convex algebra is a topological algebra whose underlying topological

vector space is locally convex.

2. Properly precomplemented H-algebras, and annihilator algebras

In this section, we mainly deal with the connection of certain modular

complemented H-algebras with annihilator ones. So, we begin by giving some

more notation and terminology.
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A pseudo H-space is a locally convex space E, whose topology is defined by

a family (〈 , 〉α)α∈A of positive semi-definite (: pseudo-)inner products. A pseudo-

H-algebra is a pseudo H-space and an algebra (which is locally convex) with

separately continuous multiplication (or even locally m-convex); see [4, p. 456,

Definition 3.1]. The topology of a pseudo-H-algebra E is defined by a family

(pα)α∈A of seminorms so that pα(x) = 〈x , x〉1/2α for every x ∈ E. Such a topological

algebra is denoted by (E, (pα)α∈A) or yet by (E, (〈 , 〉α)α∈A). The “m-convex” case

will be referred to, accordingly, otherwise, the term pseudo-H-algebra will always

be employed for the locally convex case. A locally convex (resp. locally m-convex)

H∗-algebra is an algebra E equipped with a family (pα)α∈A of Ambrose seminorms

in the sense that pα,α ∈ A arises from a positive semi-definite (pseudo-) inner

product, denoted by 〈 , 〉α, such that the induced topology makes E into a locally

convex (resp. locally m-convex) (topological) algebra. Moreover, the following

conditions are satisfied: For any x ∈ E, there is an x∗ ∈ E, such that

〈x y, z〉α = 〈y, x∗z〉α and 〈y x , z〉α = 〈y, zx∗〉α

for any y, z ∈ E and α ∈ A. The element x∗ (not necessarily unique) is called an

adjoint of x . If E is proper and Hausdorff, x∗ is unique and ∗ : E → E : x 7→ x∗ is

an involution. Thus, in our terminology, every locally convex H∗-algebra is a pseudo-

H-algebra.

Example. Let I be an arbitrary set of elements. Consider the set C
I×I of all

complex-valued functions a on I × I , such that
∑

i, j |a(i, j)|2 ∈ R+. The latter,

endowed with “point-wise” defined operations becomes a vector space and an

algebra with “matrix” multiplication

(ab)(i, j) =
∑

k

a(i, k)b(k, j),

for all a, b ∈ C
I×I . Take a family of real numbers (tα)α∈Λ, such that tα ≥ 1. For

each α ∈ Λ, the mapping 〈·, ·〉α : CI×I ×C
I×I → C given by

〈a, b〉α = tα

∑

i, j

a(i, j)b(i, j)

defines a pseudo-inner product on C
I×I , where “−” denotes complex conjugation.

Thus A ≡ (CI×I , (〈·, ·〉α)α∈Λ) becomes a locally convex pseudo-H-algebra. Moreover,

it is a locally convex H∗-algebra with an involution given by a∗(i, j) = a( j, i).

The choice of the previous family (tα)α∈Λ is reasonable: indeed, in matrix

representations of locally convex H∗-algebras, such a family exists, been a crucial

issue in defining a locally convex topology in an algebra of infinite complex

matrices that stems from the given algebra; the two algebras actually coincide

up to an isomorphism of topological ∗-algebras (see [9, p. 66, Lemma 1.3, and

the comments that follow, and p. 67, relation (2.3) and Theorem 2.1]). This still

appears in the classical case of (Banach) H∗-algebras, where in a relevant example
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all the points of the algebra have “measure” at least one (see [1, p. 367, Example 1,

and p. 368, the comments after Example 2]).

Two elements x , y in a pseudo-H-space E are called orthogonal if

〈x , y〉α = 0 for all α ∈ A. (2.1)

Through this, the orthogonal S⊥ of a non-empty subset S in E is defined by

S⊥ = {x ∈ E : 〈x , y〉α = 0 for every y ∈ S,α ∈ A}, (2.2)

being a closed linear subspace of E. S, T ⊆ E are mutually orthogonal if their

elements are pairwise orthogonal. A pseudo H-algebra E which is the algebraic

direct sum of mutually orthogonal subalgebras Eλ, λ ∈ Λ, is called the orthogonal

direct sum of the Eλ’s and it is denoted by E = ⊕⊥
λ∈Λ

Eλ. A (closed) subspace V of a

pseudo-H-space E is said to be orthocomplemented if

E = V⊕⊥V⊥, (2.3)

where V⊥ is called the orthocomplement of V (with respect to (〈 , 〉α)α∈A ); see (2.2).

A subspace V of a pseudo-H-space E is closed if V = (V⊥)⊥. The latter is fulfilled

if in particular, E is either orthocomplemented in the sense that E = W ⊕⊥W⊥ for

every closed subspace W of E or E is a Hausdorff space and V satisfies the relation

E = V ⊕⊥ V⊥ (see Lemma 2.2 below). The respective remarks are valid for ideals

too in pseudo-H-algebras, where an orthocomplement of a closed (left, right) ideal

is defined.

In the next definition, we gather certain types of pseudo-H-algebras employed

in the sequel; see also [12, p. 21, Definition 2.1].

Definition 2.1. Let E be a pseudo-H-algebra. Then

(i) E is called a left modular complemented H-algebra, if it satisfies the conditions:

Any left or right ideal I in E with I⊥ = (0) is dense in E. (2.4)

(Shortly, the density property.)
⋂

M∈Ml(E)

M = (0), and M⊥ is a left ideal for each M ∈Ml(E). (2.5)

(In short, the intersection property.)

(ii) E is a properly left precomplemented H-algebra, if

E = M⊕⊥M⊥ for every maximal regular left ideal M of E. (2.6)

(iii) E is an anti-properly left precomplemented H-algebra, if

E = I⊕⊥ I⊥ for every minimal left ideal I of E. (2.7)

(iv) E is a left precomplemented H-algebra, if

E = I⊕⊥ I⊥ for every closed left ideal I of E. (2.8)
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By (2.5), a left modular complemented H-algebra is (Jacobson) semisimple. We

also have the respective notions “on the right”.

We state now two easy results useful in the sequel.

Lemma 2.2. Let E be a Hausdorff pseudo-H-space. Then, each subspace V of E,

which is orthocomplemented in E, satisfies the relation V = V⊥⊥ (namely, V is ortho-

idempotent). Thus, V is closed.

Proof. Obviously, V ⊆ V⊥⊥. By the Hausdorff property, V⊥ ∩ V⊥⊥ = {0}, and by

E = V⊕⊥V⊥, we finally get the assertion; (see also [11, p. 154, Lemma 3.17]). �

Ortho-idempotentness for closed (left, right) ideals is realized for instance, in

pseudo-Hilbert dual algebras (see the comment after Theorem 3.7, below).

We recall some terminology from [8, p. 3723, Definition 2.1] needed in the next

proposition. A topological algebra E is called a left complemented algebra if there

exists a mapping ⊥ : Ll →Ll : I 7→ I⊥ such that if I ∈ Ll , then E = I ⊕ I⊥ (I⊥ is

called a complement of I). Moreover, if I , J ∈ Ll , I ⊆ J , then J⊥ ⊆ I⊥ and if I ∈ Ll ,

then (I⊥)⊥ = I .

A right complemented algebra is defined analogously. A left and right

complemented algebra is simply called a complemented algebra. ⊥, as above, is

called a complementor on E. In the sequel, by the term “complementor" we shall

mean a left complementor, unless something else is mentioned.

Proposition 2.3. Every Hausdorff locally convex H∗-algebra E whose all closed

(left) ideals are orthocomplemented (see (2.3)) is a left complemented algebra with

orthocomplementor the orthogonal map (see also (2.2)):

⊥ :Ll →Ll : I 7→ I⊥.

Proof. By the very definitions E is a pseudo-H-algebra. Thus, by Lemma 2.2,

I⊥⊥ = I for every I ∈ Ll . It is easily seen that for I ⊆ J in Ll , one has J⊥ ⊆ I⊥.

Besides, I⊥ ∈ Ll (see [4, p. 456, Lemma 3.2]). Thus, the orthomap is well

defined, and E is a left complemented algebra. Right complementation is proved

similarly. �

The next result gives a relation between properly and anti-properly pre-

complemented H-algebras.

Proposition 2.4. Let E be a pseudo H-algebra, such that every (left, right) ideal I is

ortho-idempotent (viz. I⊥⊥ = I). Consider the assertions:

(1) E is a (left, right) anti-properly precomplemented H-algebra.

(2) E is a (left, right) properly precomplemented H-algebra.

Then (1)⇒(2). In particular, (2)⇒(1) if I⊥ is a maximal regular left (right) ideal of

E, for every minimal left (right) ideal I of E.
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Proof. (1)⇒(2): Let M be a maximal regular left ideal of E. Claim that M⊥ is a

minimal left ideal. Suppose there exists some left ideal J of E with (0) 6= J ⊆ M⊥.

Then M = M⊥⊥ ⊆ J⊥. If J⊥ = E, then J = E⊥ = (0), a contradiction. The previous

argument and the maximality of M imply M = J⊥. Thus, M⊥ = J⊥⊥ and by

assumption, M⊥ = J , namely, M⊥ is a minimal left ideal and hence E = M⊥⊕M⊥⊥

with M⊥⊥ a maximal left ideal. Since M = M⊥⊥ we finally get E = M ⊕ M⊥.

Similarly, on the “right”.

(2)⇒(1): Let I be a minimal left ideal of E. By assumption, I⊥⊥ = I , and I⊥ is a

maximal regular left ideal. Thus, E = I⊥⊕⊥ I⊥⊥ and E = I⊥⊕⊥ I which completes

the proof on the left. Similarly, on the “right”. �

Concerning the previous result, we note that in [12, Theorem 2.3, Lemma 2.6]

we give pseudo-H-algebras for which minimal (left, right) ideals do exist.

Moreover, the proof of (1)⇒(2) is still valid when I⊥⊥ = I is not assumed for

the maximal regular (left, right) ideals. Indeed, by modifying slightly the proof,

one can take the idempotentness for M .

Let (E, 〈 , 〉α)α∈A be a pseudo-H-algebra. An element x l is a left adjoint of x ∈ E

if 〈x y, z〉α = 〈y, x lz〉α for all y, z ∈ E, α ∈ A. It is easily seen that x l is unique, if

there exists. A right adjoint x r is defined analogously; see also [16]. Notice that if

the algebra E is preannihilator and x 6= 0, then x l (resp. x r)6= 0.

All the results in the rest of the paper are also valid, by interchanging “left

properties” by “right ones”.

The next result concerns characterizations of annihilator algebras over certain

anti-properly precomplemented H-algebras. The same result implies Theorem 3.1

in [13]. In our proof we apply arguments analogous to those given in [ibid.,

p. 458]. For convenience, we present the details, adapted to our case.

Theorem 2.5. Let E be a semisimple Hausdorff, anti-properly and left properly

precomplemented H-algebra with continuous quasi-inversion, satisfying the density

property. Then the following are equivalent:

(1) E is an annihilator algebra.

(2) E is a left annihilator algebra.

(3) Every element in the socle SE of E has a left adjoint.

(4) Every nonzero right ideal of E contains an element with a left adjoint.

Proof. We first note that E is actually a properly precomplemented H-algebra (see

Corollary 2.7 in [12]).

(1)⇒(2): It is obvious by the very definitions.

(2)⇒(3): If I is a minimal right ideal of E, we show that I⊥ is a (closed) maximal

right ideal. Take M 6= E a closed right ideal with I⊥ ⊆ M . If M ∩ I 6= (0), then

by the minimality of I , I = M ∩ I , but then, I ⊆ M and since E = I ⊕⊥ I⊥ we

get E ⊆ M + M ⊆ M and E = M , a contradiction. The above argument shows
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that M ∩ I = (0). Thus, by Lemma 3.17 in [11, p. 154], M = I⊥. Namely, I⊥ is a

closed maximal right ideal. Thus, by the assumption for E,Al(I
⊥) 6= (0), but then

I⊥ = (1− x)E ≡ {y − x y : y ∈ E} with x a minimal idempotent element in E

(see [19, p. 38, Lemma 3.3]). Moreover, I⊥ is a maximal regular right ideal. Now,

by [8, p. 3729, Theorem 3.9], I = xE. Claim that each element in xE has a left

adjoint and a f o r t i o r i this will be true for the elements in SE . Since

E is topologically semiprime, and I = xE, we get that x is a minimal primitive

idempotent (and I is a minimal right ideal of E) (see [6, p. 154, Corollary 3.7]).

Thus, by Lemma 2.6 in [12] (see also its proof) any element of I has a left adjoint,

as asserted.

(3)⇒(4): Let J be a nonzero right ideal of E. By Theorem 2.3 in [12], E = SE

and hence SE ∩ J 6= (0). From here we get that J contains an element with a left

adjoint.

(4)⇒(2): Let I be a proper closed right ideal of E. If I⊥ = (0), then the density

property yields E = I , which is a contradiction. Thus, I⊥ 6= (0) and by assumption,

I⊥ has a nonzero element, say x , with a left adjoint x l . Here, we also note that

I⊥ is a right ideal (see Lemma 2.6 in [12]). Claim that x l I = (0), and thus

Al (I) 6= (0). Indeed, 〈E, x l I〉α = 〈xE, I〉α. Since xE ⊆ I⊥, the above argument

shows that 〈E, x l I〉α = 0 for all α’s. In particular, x l I = (0), as asserted.

(2)⇒(1): We show that E is a right annihilator algebra. By Theorem 2.3 in [12], E

has a dense socle. Consider a minimal right ideal, say J . By the proof of (2)⇒(3),

J⊥ is a maximal regular right ideal. Put M = J⊥. By the proof of Lemma 2.6 in

[12] (see also the comments preceding it), M⊥ = xE, M = (1 − x)E with x a

left self-adjoint element of E. Moreover, any element in the minimal right ideal

xE, which obviously, coincides with J , has a left adjoint. Thus, any element in the

right socle has a left adjoint. Starting now, with a minimal left ideal, and arguing

in an analogous way as before, we take that the left socle has a right adjoint.

Namely, any element in the socle SE has a left and a right adjoint. Indeed, let I be

a minimal left ideal. Then I⊥ is a (closed) maximal left ideal. For this, take a left

ideal M 6= E with I⊥ ⊆ M . If M ∩ I 6= (0), the minimality of I implies I = M ∩ I .

Thus I ⊆ M . By hypothesis, E = I ⊕⊥ I⊥ and hence E ⊆ M + M and M = E,

a contradiction. Thus, M ∩ I = (0) and by [11, p. 154, Lemma 3.17] M = I⊥.

Namely, I⊥ is a maximal right ideal. Put I⊥ = N . Since N is maximal, N⊥ is a

minimal left ideal (see [4, p. 965, the proof of Theorem 2.3]). Moreover, by [12,

Lemma 2.5], N⊥ = E x with x an idempotent, right self-adjoint element in E. By

Peirce decomposition, E = E x ⊕ E(1− x) and by hypothesis, E = E x ⊕ (E x)⊥.

Obviously, E(1− x) ⊆ (E x)⊥, so since E x ∩ (E x)⊥ = (0), we get (E x)⊥ = E(1− x)

(see [11, p. 154, Lemma 3.17]). By the previous argument, N ⊆ N⊥⊥ = E(1− x),

so the maximality of N implies N = E(1− x). So, N is a maximal regular left ideal

and by [12, Lemma 2.6; see also its proof], N⊥ = E x0 with x0 an idempotent,
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right self-adjoint element of E, and every element of N⊥ has a right adjoint. By the

relations I ⊆ I⊥⊥ = N⊥ = E x0, we finally take I = E x0. Thus, every element in the

left socle of E has a right adjoint.

Now, let I be a proper closed left ideal of E. By the density property and (ibid.),

I⊥ is a nonzero left ideal. Obviously, SE I⊥ êSE ∩ I⊥ and SE I⊥ 6= (0), otherwise,

EI⊥ = (0) and I = E, a contradiction. Thus SE∩ I⊥ 6= (0), and hence I⊥ contains a

nonzero element, say w with a (nonzero) right adjoint w r . For this w and for any

z ∈ I , y ∈SE , we get

〈yw, z〉α = 〈w, y lz〉α = 0.

The continuity of the pseudo-inner product in both variables, the separate

continuity of multiplication in E, and the density of SE in E, imply 〈Ew, z〉α = {0}.

In particular, pα(zw r) = 0 for all α’s, and hence zw r = 0 for all z ∈ I . Thus,

Ar(I) 6= (0). �

By the very definitions, every dual algebra is an annihilator one. The converse

is not in general true even in the normed case; for references see [6, p. 151].

However, we do know special cases for which the converse is also true (ibid.).

For non-normed contexts, see [10, p. 226, Theorem 3.1]. Here, we give one more

non-normed case for which the two classes of “annihilator” and “dual” algebras

coincide. First, we recall from [12] that a pseudo-H-algebra E has the Peirce

property if it satisfies the condition:

If x0 is a right (left) unit for E modulo

a maximal regular left (right) ideal M of E,

then x0 ∈ M⊥, and M⊥ is a left (right) ideal.







(2.9)

In the sequel, by a deep algebra we mean an algebra in which every non-zero left

(right) ideal contains a minimal left (right) ideal (see [6, p. 151, Definition 3.1]).

Moreover, a left (resp. right) regular annihilator algebra is an algebra in which

Al (M) 6= (0) (resp. Ar(M) 6= (0)) for every maximal regular right (left) ideal

M ; if both conditions hold, we speak about a regular annihilator algebra [8, 18].

A topological algebra E is called a Q′-algebra, if every maximal regular left or right

ideal in E is closed (see [6, p. 148, Definition 1.1]).

Theorem 2.6. Let E be a semisimple Hausdorff precomplemented, and anti-properly

precomplemented H-algebra with continuous quasi-inversion. Suppose E has the

Peirce and the density properties. Then the following are equivalent:

(1) E is a dual algebra.

(2) E is a (left) annihilator algebra.

Proof. We only have to prove that (2)⇒(1): By [12, Theorem 2.4; see

also the comments before Theorem 2.3], E is a regular annihilator, properly

precomplemented H-algebra. By Theorem 2.5, E is actually an annihilator algebra.

We show that E is a dual algebra on the left. Namely, if I is a proper closed left
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ideal in E, then Al(Ar(I)) = I . Since I is proper, I⊥ 6= (0). By [12, Theorem 2.3]

E is a Q′ modular complemented H-algebra with dense socle. On the other hand,

E, as a semisimple annihilator Q′-algebra, is a deep one (and a regular annihilator

algebra); see [6, p. 153, Theorem 3.6]. Therefore, I⊥ contains a minimal left ideal,

say L. But then I ⊆ L⊥; applying now a proof analogous to that of (2)⇒(3) of

Theorem 2.5, we get that L⊥ is a closed maximal regular left ideal. Put S = ∩M ,

the intersection is taken over all closed maximal regular left ideals of E containing

I , which by the previous argument, is non-empty. Then I ⊆ S. Suppose there exists

some x ∈ S with x 6∈ I . By assumption, x = y+z with y ∈ I and z ∈ I⊥. Therefore,

0 6= z = x− y ∈ I⊥∩S. Thus, the nonzero left ideal I⊥∩S again as above, contains a

minimal left ideal, say K , such that K⊥ is a closed maximal regular left ideal. Thus,

K has the form K = E x0 with x0 a minimal (idempotent) element of E (see [6,

p. 156, Section 4]). Therefore, I⊥ ∩ S contains x0, which also is right selfadjoint

(see [12, Lemma 2.5 and its proof]). Now, E x0 ⊆ I⊥ and I ⊆ I⊥⊥ ⊆ (E x0)
⊥ =

E(1− x0) (by the Peirce property). Thus, E(1− x0) is one of the M ’s above. This

means that S ⊆ E(1− x0). Therefore, x0 ∈ E(1− x0), a contradiction. Thus, finally,

I = S = ∩M ⊆ M . Each M has the form M = E(1− x), x ∈ I d(E), from which

M = Al(Ar(M)). Finally, I ⊆ Al(Ar(I)) ⊆ Al(Ar(M)) = M for all M ’s. Thus,

I ⊆ Al(Ar(I)) ⊆ ∩M = S = I , and hence I = Al(Ar(I)). Similarly, E is a right

dual algebra. �

Lemma 2.2, Proposition 2.4, Theorems 2.5, 2.6, and [12, Theorem 2.4] yield

the next.

Corollary 2.7. Let E be a Hausdorff modular complemented, anti-properly pre-

complemented, and precomplemented H-algebra with continuous quasi-inversion.

Then the assertions (1)-(4) of Theorem 2.5 are equivalent to the following

(5) E is a dual algebra.

Theorem 2.9 below, concerns equivalent conditions, under which a certain

modular complemented H-algebra be an annihilator one (cf. also [20, p. 264,

Theorem 2.4]). For its proof we use among others, the next result which is a direct

consequence of [12, Theorems 2.3 and 2.11].

Corollary 2.8. Let E be a Hausdorff pseudo-H-algebra. The following are equivalent.

(1) E is a semisimple properly precomplemented H-algebra, having the density

property.

(2) E is a Q′ modular complemented H-algebra with continuous quasi-inversion.

In that case, E has a dense socle.

Theorem 2.9. Let E be a Hausdorff Q′ modular complemented H-algebra with

continuous quasi-inversion. Then the following assertions are equivalent:

(1) L⊥ is finite-dimensional for every maximal regular left ideal L of E.

(2) R⊥ is finite-dimensional for every maximal regular right ideal R of E.
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If anyone of the above equivalent conditions holds, then E is an annihilator algebra.

Proof. We only prove that (1)⇒(2). The inverse implication is proved similarly.

By Corollary 2.8, E is properly precomplemented with dense socle. Let R be a

maximal regular right ideal of E. By ([12, Lemma 2.6; see also its proof]) R⊥ is

a right ideal of the form R⊥ = x0E for some left self-adjoint idempotent element

x0 in E, and every element in it has a left adjoint. Notice that R⊥ 6= (0), otherwise

E = R(= R), a contradiction (see [6, p. 149, Proposition 1.3]). Since E(1− x0)

is a maximal regular left ideal, E(1− x0) = E(1− x) for some right self-adjoint

idempotent x ∈ E (see [12, Lemma 2.5]). Moreover, any element in E x has

a right adjoint (ibid, Lemma 2.6). Obviously, E x ⊆ E(1 − x)⊥. By the Peirce

decomposition and [11, p. 154, Lemma 3.17], we get E x = E(1− x)⊥. Thus, by

hypothesis, E x is finite-dimensional. Now, we show that xE = R⊥(= x0E). Indeed,

by E(1 − x0) = E(1 − x), we get x = x x0 x and x0 = x0 x x0. The latter yield

(x − x0 x)2 = 0, and by semisimplicity of E, x = x0 x . Thus xE = x0 xE ⊆ x0E.

The minimality of x0E implies xE = x0E. As noticed above, the elements in E x

have right adjoints. Thus, for any z ∈ E x , z r = (zx)r = xz r ∈ R⊥, so that the

“right-adjoint” map identifies (conjugate-linearly) the finite-dimensional space E x

with a finite-dimensional subspace of R⊥. We prove that, (E x)r = R⊥ which yields

the finite-dimensionality of R⊥. Indeed, by [12, Lemma 2.6] the algebraic sum

S =
∑

M⊥, where M runs over all maximal regular left ideals is dense in E. Using

this and the fact that any element in S has a right adjoint (ibid.), we get the

assertion. So, if w ∈ S , w r exists and thus, xw = (w r x)r and xS ⊆ (E x)r . From

here, xS ⊆ (E x)r or xS ⊆ (E x)r . The previous implies xE ⊆ (E x)r , and finally,

(E x)r = xE = R⊥. The preceding argument also shows that any element in R⊥ has

a right adjoint as well. Thus, if any one of (1) or (2) holds, the elements in S (resp.

Sr) where M runs over all maximal regular left (resp. right) ideals have left and right

adjoints.

Now, based on the latter information, we prove that E is an annihilator algebra,

if and only if, (1) or (2) holds. Since E is semisimple, we only have to prove that

Ar(I) 6= (0) (resp. Al(I) 6= (0)) for every closed left (right) ideal of E (see also

the arguments in the proof of Theorem 2.5). So, suppose that I is a proper closed

left ideal of E. By the density property, I⊥ 6= (0). Now, Sr I⊥ ⊆ I⊥ ∩ Sr . By [12,

Lemma 2.6], Sr is dense in E. If Sr I⊥ = (0), then EI⊥ = (0) that yields I⊥ = (0),

a contradiction. Thus, there exists a nonzero element, say x , in I⊥ ∩ Sr , so that

for any y ∈ I , z ∈ S =
∑

M⊥ (see above), we get 〈zx , y〉α = 〈x , z l y〉α = 0 and by

continuity, 〈E x , y〉α = {0} for all α’s. Thus, 〈E, y x r〉α = 0. In particular, y x r = 0

for all y ’s in I . Thus, 0 6= x r ∈Ar(I). Namely, Ar(I) 6= (0) (see also the comments

after Proposition 2.4). Likewise, E is a left annihilator algebra. �

Note. Concerning the previous proof, we note that the finite-dimensionality of R⊥ is

implied also without using the “right-adjoint” map. Indeed, E x0
∼= x0E(= R⊥)within
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an isomorphism ϕ of linear spaces. ϕ is given by ϕ(x) = ϕ(x x0) = x0 x . Hence R⊥

is finite-dimensional.

3. Pseudo-Hilbert algebras

The following notion generalizes Hilbert algebras (called also unitary algebras)

(see [2, p. 51] and [14]).

Definition 3.1. An algebra E is called a pseudo-Hilbert algebra if it is a pseudo

H-space equipped with an involution x → x∗ having the properties:

〈x y, z〉α = 〈y, x∗z〉α for all x , y, z ∈ E, (3.1)

〈x , y〉α = 〈y
∗, x∗〉α for all x , y ∈ E, (3.2)

the left multiplication y → x y is continuous on E (3.3)

for every x ∈ E.

The set {x y : x , y ∈ E} is dense in E. (3.4)

By (3.1) and (3.2), we easily take

〈y x , z〉α = 〈y, zx∗〉α for all x , y, z ∈ E. (3.5)

By (3.2), the involution of a pseudo-Hilbert algebra is continuous.

If I is an orthocomplemented left (right) ideal in a pseudo-Hilbert algebra, then

I⊥ is a left (right) ideal of E. Indeed, for z ∈ EI⊥, z = x y with x ∈ E, y ∈ I⊥ and

for all i ∈ I , 〈z, i〉α = 〈x y, i〉α = 〈y, x∗ i〉α = 0. Thus, z ∈ I⊥.

Following [4, p. 459], a pseudo H-algebra ( a f o r t i o r i a locally convex

H∗-algebra) E is called square-complemented (in E) if [E2] is orthocomplemented

(in E); namely E = [E2]⊕⊥[E2]
⊥

. Here [E2] denotes the closed 2-sided ideal of E,

generated by E2.

Lemma 3.2. Any pseudo-Hilbert algebra has the properties:

(i) E is proper (viz. Ar(E) = (0)).

(ii) E is preannihilator.

(iii) E is square-complemented.

Proof. (i) Using (3.1), (3.2) and (3.5) we get Al (E) =Ar(E) (see also the proof

of Theorem 1.2 in [4, p. 452]). Next, we apply arguments as in the proof of

Theorem 1.3 in [4, p. 452]. So, if E y = (0) for some 0 6= y ∈ E and x ∈ E, then (see

also (3.5)) 〈w, z(x∗ + y)〉α = 〈w, zx∗〉α = 〈wx , z〉α for all w, z ∈ E, α ∈ A. Similarly,

x∗ + y satisfies (3.1), which means that x has two adjoints, a contradiction.

(ii) The assertion follows from (i) (see also its proof).

(iii) By hypothesis, [E2] = E. Moreover, [E2]
⊥
= (0). Indeed, since [E2]

⊥
⊆

[E2]⊥ ⊆ {E2}⊥, it is enough to show that {E2}⊥ = {0}. So, let z be an element

in {E2}⊥. Then 〈x y, z〉α = 0 for any x y ∈ E2 and every α, and from (3.1),
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〈y, x∗z〉α = 0 for any x , y ∈ E and α ∈ A. In particular, pα(x
∗z) = 0 for any

x ∈ E, and by the Hausdorff property, x∗z = 0 or z∗x = 0 for any x ∈ E. By

Lemma 3.2, E is preannihilator, hence z∗ = 0 and z = 0. Namely, E is trivially

square complemented and this completes the proof. �

Now, we get the following characterization of pseudo-Hilbert algebras.

Proposition 3.3. For any Hausdorff pseudo-H-algebra E the following assertions are

equivalent:

(1) E is a proper, square-complemented locally convex H∗-algebra.

(2) E is a pseudo-Hilbert algebra.

Thus, the involution is continuous.

Proof. (1)⇒(2): Immediate by the very definitions and [4, p. 459, Corollary 3.12,

Lemma 3.14 and Theorem 3.15]. Notice that “properness” is redundant here (see

Lemma 3.2).

(2)⇒(1): Apply Lemma 3.2 (see also Definition 3.1). �

In what follows, we employ the term orthocomplemented pseudo-Hilbert

algebra for a pseudo-Hilbert algebra in which every closed left (right) ideal is

orthocomplemented.

Any proper Hausdorff orthocomplemented locally convex H∗-algebra is dual (see

[4, p. 457, Theorem 3.9]; for the classical case of (Banach) H∗-algebras see

[15, p. 273, Theorem 4.10.30]). Proposition 3.3 yields “duality” for orthocomple-

mented pseudo-Hilbert algebras. Here, for the sake of completeness, we give a

proof and for this, we present first some easy results. Analogous statements hold

for right ideals.

Lemma 3.4. Let E be a proper algebra and I a left ideal of E such that there exists a

left ideal I ′ of E with E = I ⊕ I ′. If E x ⊆ I (resp. E x ⊆ I ′) for some x ∈ E, then x ∈ I

(resp. x ∈ I ′).

Proof. Suppose that E x ⊆ I . Since E = I ⊕ I ′, x = y + z with y ∈ I , z ∈ I ′. Thus,

wz = wx −w y ∈ I ∩ I ′ for every w ∈ E and hence z = 0. Therefore, x = y ∈ I . �

Lemmas 3.2 and 3.4 lead to the next.

Corollary 3.5. Let E be a pseudo-Hilbert algebra and I a (closed) left ideal, which

is orthocomplemented. Suppose that E x ⊆ I (resp. E x ⊆ I⊥) for some x ∈ E. Then

x ∈ I (resp. x ∈ I⊥).

Lemma 3.6. Let E be a Hausdorff pseudo-Hilbert algebra and I (resp. J) a (closed)

left (resp. right) orthocomplemented ideal of E. Then Ar(I) = (I
⊥)∗ (resp. Al(J) =

(J⊥)∗).
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Proof. We prove the assertion only for left ideals. Take x ∈ E with I x = (0). We

have 〈I , E x∗〉α = 〈I x , E〉α = {0} for all α’s (see also (3.5)). Then E x∗ ⊆ I⊥ and

by Corollary 3.5, x∗ ∈ I⊥. Thus, Ar(I) ⊆ (I
⊥)∗. On the other hand, for y ∈ (I⊥)∗,

y∗ ∈ I⊥ and, since I⊥ is a left ideal (see the comments after Definition 3.1), we get

E y∗ ⊆ I⊥ and thus 〈I y, E〉α = 〈I , E y∗〉α = {0} for all α’s. Thus, if z ∈ I y ∩ E,

then 〈z, z〉α = 0 for all α’s and z = 0. Namely, I y = I y ∩ E = (0) and thus

(I⊥)∗ ⊆Ar(I). �

Theorem 3.7. Every Hausdorff orthocomplemented pseudo-Hilbert algebra E is a

dual algebra.

Proof. If I is a closed left ideal then, by Lemmas 2.2 and 3.6, we get in turn,

Al (Ar(I)) =Al((I
⊥)∗) = (Ar(I

⊥))∗ = (I⊥⊥)∗∗ = I . Arguing similarly, we get that

E is a dual algebra with respect to closed right ideals. �

Relative to the previous result, and based on Lemma 3.6, we get that the closed

left (right) ideals of a dual pseudo-Hilbert algebra, are ortho-idempotent (see also

Lemma 2.2).
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