Homomorphism between Rings

Vinod S. ${ }^{* 1 ®}$, Biju G. S. ${ }^{2}$ and Minikumari N. S. ${ }^{1 \times 0}$
${ }^{1}$ Department of Mathematics, Government College for Women (University of Kerala), Thiruvananthapuram, Kerala, India
${ }^{2}$ Department of Mathematics, College of Engineering (Kerala Technological University), Thiruvananthapuram 695016, Kerala, India
*Corresponding author: wenods@gmail.com

Abstract

In this paper, using elementary algebra and analysis, we characterize and compute all ring homomorphism from \mathbb{Z}^{n} to \mathbb{Z}^{m} and from \mathbb{Q}^{n} to \mathbb{Q}^{m}. Also, we characterize and compute all continuous ring homomorphism from \mathbb{R}^{n} to \mathbb{R}.

Keywords. Homomorphism; Rings; Continuous function
MSC. 13B10
Received: May 25, 2020
Accepted: August 27, 2020
Copyright © 2020 Vinod S., Biju G. S. and Minikumari N. S. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Computing the number of ring homomorphism between two rings is a basic problem in abstract algebra. Solution to this problem exists for many classes of ring types [1,3, 4, 6], but the solution to the general problem is still elusive, even for finite rings. Most of the existing results in this area pertains to finite rings of specific types. For example, Gallian and Van Buskrik [3] determined the number of ring homomorphism from \mathbb{Z}_{m} to \mathbb{Z}_{n}, where m and n are natural numbers. Gallian and Jungreis [4] determined all ring homomorphisms between $\mathbb{Z}_{m}[i]$ into $\mathbb{Z}_{n}[i]$ where $i^{2}+1=0$ and also the number of ring homomorphisms between rings of the form $\mathbb{Z}_{m}[\rho]$ into $\mathbb{Z}_{n}[\rho]$ where $\rho^{2}+\rho+1=0$. Generalising the results of Gallian and Van Buskirk [3], Saleh and Yousef [6] computed the number of ring homomorphism from $\mathbb{Z}_{m_{1}} \times \mathbb{Z}_{m_{2}} \times \cdots \times \mathbb{Z}_{m_{r}}$ to $\mathbb{Z}_{k_{1}} \times \mathbb{Z}_{k_{2}} \times \cdots \times \mathbb{Z}_{k_{s}}$. A result similar to that of Gallian and Jungreis [4], developed by Cameron [1],
estimates the number of ring homomorphisms between the rings of the form $\mathbb{Z}_{m}[\rho]$ into $\mathbb{Z}_{n}[\rho]$ where $\rho^{2}+2=0$ and the number of ring homomorphisms from $\mathbb{Z}_{m}[\rho]$ into $\mathbb{Z}_{n}[\rho]$ where $\rho^{2}-2=0$. Given any two rings it is not easy to determine the number of distinct homomorphism between them. Hence the purpose of the paper is to characterize and compute all ring homomorphism from \mathbb{Z}^{n} to \mathbb{Z}^{m}, from \mathbb{Q}^{n} to \mathbb{Q}^{m} and from \mathbb{R}^{n} to \mathbb{R}.

2. Notations and Basic Results

Most of the notations, functions and terms we mentioned in this paper can be find in Gallian [2] and Kestelman [5]. We use the following standard notations: \mathbb{N} the set of natural numbers, \mathbb{Z} the set of integers, \mathbb{Q} the set of rational numbers, \mathbb{R} the set of real number and \mathbb{C} the set of complex numbers. Also, for any ring R and for any natural number n, denote \mathbb{R}^{n} for the ring of n-copies of \mathbb{R}. Let R_{1} and R_{2} be two rings. We denote $\operatorname{Hom}\left(R_{1}: R_{2}\right)$ for the ring of all homomorphisms from R_{1} to R_{2} and $\left|\operatorname{Hom}\left(R_{1}: R_{2}\right)\right|$ for the cardinality of $\operatorname{Hom}\left(R_{1}: R_{2}\right)$.

Theorem 2.1. Let R and S be two rings and $\phi: R \rightarrow S$ be a ring homomorphisms. If x is an idempotent element of R then $\phi(x)$ is an idempotent elements of S.

Theorem 2.2. The idempotent elements of an integral domain D are 0 and 1 (unity of D).
Theorem 2.3. Let R and $R_{i}(1 \leq i \leq n)$ are rings. Then

$$
\left|\operatorname{Hom}\left(R: \Pi_{i=1}^{n} R_{i}\right)\right|=\left|\Pi_{i=1}^{n} \operatorname{Hom}\left(R: R_{i}\right)\right| .
$$

Proof. Let $f_{i}: R \rightarrow R_{i}(1 \leq i \leq n)$ be a ring homomorphism. Define a function $f: R \rightarrow \prod_{i=1}^{n} R_{i}$ by $f(x)=\left(f_{1}(x), f_{2}(x), \ldots, f_{n}(x)\right)$ for all $x \in R$. Then for $x, y \in R$,

$$
\begin{aligned}
f(x) f(y) & =\left(f_{1}(x), f_{2}(x), \ldots, f_{n}(x)\right)\left(f_{1}(y), f_{2}(y), \ldots, f_{n}(y)\right) \\
& =\left(f_{1}(x) f_{1}(y), f_{2}(x) f_{2}(y), \ldots, f_{n}(x) f_{n}(y)\right) \\
& =\left(f_{1}(x y), f_{2}(x y), \ldots, f_{n}(x y)\right) \\
& =f(x y) .
\end{aligned}
$$

Also,

$$
\begin{aligned}
f(x+y) & =\left(f_{1}(x+y), f_{2}(x+y), \ldots, f_{n}(x+y)\right) \\
& =\left(f_{1}(x)+f_{1}(y), f_{2}(x)+f_{2}(y), \ldots, f_{n}(x)+f_{n}(y)\right) \\
& =\left(f_{1}(x), f_{2}(x), \ldots, f_{n}(x)\right)+\left(f_{1}(y), f_{2}(y), \ldots, f_{n}(y)\right) \\
& =f(x)+f(y) .
\end{aligned}
$$

Hence $f: R \rightarrow \Pi_{i=1}^{n} R_{i}$ is a ring homomorphism.
Conversely, let $h: R \rightarrow \prod_{i=1}^{n} R_{i}$ be a ring homomorphism where $h(x)=\left(h_{1}(x), h_{2}(x), \ldots, h_{n}(x)\right)$ for all $x \in R$.

$$
\begin{aligned}
\left(h_{1}(x+y), h_{2}(x+y), \ldots, h_{n}(x+y)\right) & =h(x+y) \\
& =h(x)+h(y) \quad(\text { since } h \text { is homomorphism })
\end{aligned}
$$

$$
\begin{aligned}
& =\left(h_{1}(x), h_{2}(x), \ldots, h_{n}(x)\right)+\left(h_{1}(y), h_{2}(y), \ldots, h_{n}(y)\right) \\
& =\left(h_{1}(x)+h_{1}(y), h_{2}(x)+h_{2}(y), \ldots, h_{n}(x)+h_{n}(y)\right) .
\end{aligned}
$$

Also,

$$
\begin{aligned}
\left(h_{1}(x y), h_{2}(x y), \ldots, h_{n}(x y)\right) & =h(x y) \\
= & h(x) h(y) \\
= & \left(h_{1}(x), h_{2}(x), \ldots, h_{n}(x)\right)\left(h_{1}(y), h_{2}(y), \ldots, h_{n}(y)\right) \\
= & \left(h_{1}(x) h_{1}(y), h_{2}(x) h_{2}(y), \ldots, h_{n}(x) h_{n}(y)\right) .
\end{aligned}
$$

Hence $h_{i}: R \rightarrow R_{i}(1 \leq i \leq n)$ is a ring homomorphism.
Now, we define a function $\psi: \operatorname{Hom}\left(R: \Pi_{i=1}^{n} R_{i}\right) \rightarrow \Pi_{i=1}^{n} \operatorname{Hom}\left(R: R_{i}\right)$ by $\psi(h)=\left(h_{1}, h_{2}, \ldots, h_{n}\right)$ for all $h \in \operatorname{Hom}\left(R: \Pi_{i=1}^{n} R_{i}\right)$; where $h(x)=\left(h_{1}(x), h_{2}(x), \ldots, h_{n}(x)\right)$ for all $x \in R$. Now it is clear that ψ is a bijection and $\left|\operatorname{Hom}\left(R: \prod_{i=1}^{n} R_{i}\right)\right|=\left|\prod_{i=1}^{n} \operatorname{Hom}\left(R: R_{i}\right)\right|$.

3. Main Results

First, we will characterize all ring homomorphisms and the number of ring homomorphisms from \mathbb{Z}^{n} to \mathbb{Z}^{m}.

Theorem 3.1. The number of ring homomorphisms from \mathbb{Z}^{n} to \mathbb{Z} is $n+1$.
Proof. Let $\phi: \mathbb{Z}^{n} \rightarrow \mathbb{Z}$ be a ring homomorphism. For $1 \leq i \leq n$, denote e_{i} for the n-tuple whose i th component is 1 and 0 's elsewhere. Since e_{i} is an idempotent and ϕ is a ring homomorphism $\phi\left(e_{i}\right)$ is an idempotent element in \mathbb{Z} and hence $\phi\left(e_{i}\right)=0$ or 1 . Also, if $\phi\left(e_{i}\right)=\phi\left(e_{j}\right)=1$ for some $i \neq j$, then we have a contradiction,

$$
0=\phi(0)=\phi\left(e_{i} e_{j}\right)=\phi\left(e_{i}\right) \phi\left(e_{j}\right)=1 .
$$

Thus $\phi\left(e_{i}\right)$ assume the value 1 for at most one value of i.
If $\phi\left(e_{i}\right)=0$ for all $i(1 \leq i \leq n)$, then for any $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{Z}^{n}$;

$$
\phi(x)=\phi\left(\sum_{i=1}^{n} x_{i} e_{i}\right)=\sum_{i=1}^{n} x_{i} \phi\left(e_{i}\right)=0
$$

and hence ϕ is the trivial ring homomorphism. If $\phi\left(e_{k}\right)=1$ and $\phi\left(e_{i}\right)=0$ for all $i \neq k$, then for any $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{Z}^{n}$;

$$
\phi(x)=\phi\left(\sum_{i=1}^{n} x_{i} e_{i}\right)=\sum_{i=1}^{n} x_{i} \phi\left(e_{i}\right)=x_{k} .
$$

Also, it is clear that the map $\phi(x)=\phi\left(x_{1}, x_{2}, \ldots, x_{n}\right)=x_{k}$ is a ring homomorphism. Hence there are n such non-trivial homomorphisms. So the number of ring homomorphisms from \mathbb{Z}^{n} to \mathbb{Z} is $n+1$.

Theorem 3.2. The number of distinct ring homomorphisms from \mathbb{Z}^{n} to \mathbb{Z}^{m} is $(n+1)^{m}$.
Proof. The number of ring homomorphisms from \mathbb{Z}^{n} to \mathbb{Z} is $n+1$. Hence from Theorem 2.3, the number of distinct ring homomorphisms from \mathbb{Z}^{n} to \mathbb{Z}^{m} is $(n+1)^{m}$.

Now, we will characterize all ring homomorphisms and the number of ring homomorphisms from \mathbb{Q}^{n} to \mathbb{Q}^{m}.

Theorem 3.3. The number of distinct ring homomorphisms from \mathbb{Q}^{n} to \mathbb{Q} is $n+1$.
Proof. Let $\phi: \mathbb{Q}^{n} \rightarrow \mathbb{Q}$ be a ring homomorphism. For $1 \leq i \leq n$; denote e_{i} for the n-tuple whose $i^{\text {th }}$ component is 1 and 0 's elsewhere. Since e_{i} is an idempotent and ϕ is a ring homomorphism, $\phi\left(e_{i}\right)$ is an idempotent element in \mathbb{Q} and hence $\phi\left(e_{i}\right)=0$ or 1 . Also, if $\phi\left(e_{i}\right)=\phi\left(e_{j}\right)=1$ for some $i \neq j$, then we have a contradiction

$$
0=\phi(0)=\phi\left(e_{i} e_{j}\right)=\phi\left(e_{i}\right) \phi\left(e_{j}\right)=1 \cdot 1=1 .
$$

Thus $\phi\left(e_{i}\right)$ assume the value 1 for at most one value of i.
Step 1: $\phi\left(n e_{i}\right)=n \phi\left(e_{i}\right)$ for all $n \in \mathbb{Z}$ and for all $1 \leq i \leq n$.
The argument is clear since ϕ is a ring homomorphism and $n \in \mathbb{Z}$.
Step 2: $\phi\left(r e_{i}\right)=r \phi\left(e_{i}\right)$ for all $r \in \mathbb{Q}$ and for all $1 \leq i \leq n$.
Let $r=\frac{p}{q}$, where $p \in \mathbb{Z}, q \in \mathbb{N}$. Then $r q=p$ and hence $r q e_{i}=p e_{i}$. So

$$
\begin{array}{rlrl}
& \phi\left(r q e_{i}\right) & =\phi\left(p e_{i}\right) \\
\Longrightarrow \quad & q \phi\left(r e_{i}\right)=p \phi\left(e_{i}\right) \\
\Longrightarrow \quad & \phi\left(r e_{i}\right)=\frac{p}{q} \phi\left(e_{i}\right) \\
\Longrightarrow \quad & \phi\left(r e_{i}\right)=r \phi\left(e_{i}\right), \quad \text { for all } r \in \mathbb{Q} \text { and for all } 1 \leq i \leq n .
\end{array}
$$

Step 3: Characterization of all ring homomorphisms from \mathbb{Q}^{n} to \mathbb{Q}.
If $\phi\left(e_{i}\right)=0$ for all $i(1 \leq i \leq n)$, then for any $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{Q}^{n}$.

$$
\phi(x)=\phi\left(\sum_{i=1}^{n} x_{i} e_{i}\right)=\sum_{i=1}^{n} \phi\left(x_{i} e_{i}\right)=\sum_{i=1}^{n} x_{i} \phi\left(e_{i}\right)=0 .
$$

Hence ϕ is the trivial ring homomorphism. If $\phi\left(e_{k}\right)=1$ and $\phi\left(e_{i}\right)=0$ for all $i \neq k$, then for any $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{Q}^{n}$;

$$
\phi(x)=\phi\left(\sum_{i=1}^{n} x_{i} e_{i}\right)=\sum_{i=1}^{n} \phi\left(x_{i} e_{i}\right)=\sum_{i=1}^{n} x_{i} \phi\left(e_{i}\right)=x_{k} \phi\left(e_{k}\right)=x_{k} .
$$

Also, it is clear that the map $\phi(x)=\phi\left(x_{1}, x_{2}, \ldots, x_{n}\right)=x_{k}$ is a ring homomorphism. Hence there are n such non-trivial ring homomorphisms from \mathbb{Q}^{n} to \mathbb{Q}. So the number of ring homomorphisms from \mathbb{Q}^{n} to \mathbb{Q} is $n+1$.

Theorem 3.4. The number of distinct ring homomorphisms from \mathbb{Q}^{n} to \mathbb{Q}^{m} is $(n+1)^{m}$.
Proof. The number of ring homomorphisms from \mathbb{Q}^{n} to \mathbb{Q} is $n+1$. Hence from Theorem 2.3, the number of distinct ring homommorphisms from \mathbb{Q}^{n} to \mathbb{Q}^{m} is $(n+1)^{m}$.

Now, we will characterize all ring homomorphisms and the number of ring homomorphisms \mathbb{R}^{n} from \mathbb{R}.

Theorem 3.5. The number of distinct ring homomorphisms from \mathbb{R}^{n} to \mathbb{R} is $n+1$.
Proof. Let $\phi: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a ring homomorphism. For $1 \leq i \leq n$; denote e_{i} for the n-tuple whose i th component is 1 and 0 's elsewhere. Since e_{i} is an idempotent and ϕ is a ring homomorphism, $\phi\left(e_{i}\right)$ is an idempotent element in \mathbb{R} and hence $\phi\left(e_{i}\right)=0$ or 1 . Also, if $\phi\left(e_{i}\right)=\phi\left(e_{j}\right)=1$ for some $i \neq j$, then we have a contradiction

$$
0=\phi(0)=\phi\left(e_{i} e_{j}\right)=\phi\left(e_{i}\right) \phi\left(e_{j}\right)=1 \cdot 1=1 .
$$

Thus $\phi\left(e_{i}\right)$ assume the value 1 for at most one value of i.
Step 1: $\phi\left(n e_{i}\right)=n \phi\left(e_{i}\right)$ for all $n \in \mathbb{Z}$ and for all $1 \leq i \leq n$.
The argument is clear since ϕ is a ring homomorphism and $n \in \mathbb{Z}$.
Step 2: $\phi\left(r e_{i}\right)=r \phi\left(e_{i}\right)$ for all $r \in \mathbb{Q}$ and for all $1 \leq i \leq n$.
Let $r=\frac{p}{q}$, where $p \in \mathbb{Z}, q \in \mathbb{N}$. Then $r q=p$ and hence $r q e_{i}=p e_{i}$. So

$$
\begin{aligned}
& \phi\left(r q e_{i}\right)=\phi\left(p e_{i}\right) \\
\Longrightarrow \quad & q \phi\left(r e_{i}\right)=p \phi\left(e_{i}\right) \\
\Longrightarrow \quad & \phi\left(r e_{i}\right)=\frac{p}{q} \phi\left(e_{i}\right) \\
\Longrightarrow \quad & \phi\left(r e_{i}\right)=r \phi\left(e_{i}\right), \quad \text { for all } r \in \mathbb{Q} \text { and for all } 1 \leq i \leq n .
\end{aligned}
$$

Step 3: For $a, b \in \mathbb{R}$ and $a<b, \phi\left(a e_{i}\right) \leq \phi\left(b e_{i}\right)$ for all $1 \leq i \leq n$.
Since $a, b \in \mathbb{R}$ and $a<b$, we have $b-a>0$. So $b-a=t^{2}$ for some $t \in \mathbb{R}$. This implies that

$$
\begin{aligned}
(b-a) e_{i} & =t^{2} e_{i} \\
& =t^{2} e_{i}^{2} \quad\left(\text { since } e_{i}^{2}=e_{i}\right) \\
& =\left(t e_{i}\right) \cdot\left(t e_{i}\right) .
\end{aligned}
$$

Hence

$$
\begin{aligned}
\phi\left((b-a) e_{i}\right) & =\phi\left(\left(t e_{i}\right) \cdot\left(t e_{i}\right)\right)=\phi\left(t e_{i}\right) \phi\left(t e_{i}\right) \\
& =\left[\phi\left(t e_{i}\right)\right]^{2} \geq 0 .
\end{aligned}
$$

This gives

$$
\begin{aligned}
& \phi\left((b-a) e_{i}\right)=\phi\left(b e_{i}\right)-\phi\left(a e_{i}\right) \geq 0 \\
\Rightarrow \quad & \phi\left(a e_{i}\right) \leq \phi\left(b e_{i}\right) \quad \text { for all } 1 \leq i \leq n .
\end{aligned}
$$

Step 4: $\phi: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is continuous.
Let $a=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in \mathbb{R}^{n}$ and $\epsilon>0$ be given. Choose a rational r such that $0<r<\frac{\epsilon}{n}$. Then for any $y=\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in B(a ; r)$, where $B(a ; r)$ denote the open ball centered at a and radius r in \mathbb{R}^{n}, we have

$$
\left|y_{i}-a_{i}\right|<r \quad \text { for all } i(1 \leq i \leq n)
$$

$$
\begin{array}{lll}
\Longrightarrow & -r<y_{i}-a_{i}<r & \\
\Longrightarrow & \phi\left(-r e_{i}\right)<\phi\left(\left(y_{i}-a_{i}\right) e_{i}\right)<\phi\left(r e_{i}\right) & \text { for all } i(1 \leq i \leq n) \\
\Longrightarrow & -r \phi\left(e_{i}\right)<\phi\left(y_{i} e_{i}-a_{i} e_{i}\right)<r \phi\left(e_{i}\right) & \text { for all } i(1 \leq i \leq n) \\
\Longrightarrow & -r \phi\left(e_{i}\right)<\phi\left(y_{i} e_{i}\right)-\phi\left(a_{i} e_{i}\right)<r \phi\left(e_{i}\right) \text { for all } i(1 \leq i \leq n) & \text { (by step 2) } \\
\Longrightarrow & \left|\phi\left(y_{i} e_{i}\right)-\phi\left(a_{i} e_{i}\right)\right|<r \phi\left(e_{i}\right) & \text { for all } i(1 \leq i \leq n) \\
\Longrightarrow & \left|\phi\left(y_{i} e_{i}\right)-\phi\left(a_{i} e_{i}\right)\right|<r & \text { for all } i(1 \leq i \leq n) \\
\Longrightarrow & \left|\phi\left(y_{i} e_{i}\right)-\phi\left(a_{i} e_{i}\right)\right|<r<\frac{\epsilon}{n} & \text { for all } i(1 \leq i \leq n) \tag{3.1}
\end{array}
$$

Hence

$$
\begin{align*}
|\phi(y)-\phi(a)| & =\left|\phi\left(\left(y_{1}, y_{2}, \ldots, y_{n}\right)\right)-\phi\left(\left(a_{1}, a_{2}, \ldots, a_{n}\right)\right)\right| \\
& =\left|\phi\left(\sum_{i=1}^{n} y_{i} e_{i}\right)-\phi\left(\sum_{i=1}^{n} a_{i} e_{i}\right)\right| \\
& =\left|\left(\sum_{i=1}^{n} \phi\left(y_{i} e_{i}\right)\right)-\left(\sum_{i=1}^{n} \phi\left(a_{i} e_{i}\right)\right)\right| \\
& =\left|\left(\sum_{i=1}^{n} \phi\left(y_{i} e_{i}\right)\right)-\phi\left(a_{i} e_{i}\right)\right| \\
& \leq \sum_{i=1}^{n}\left|\phi\left(y_{i} e_{i}\right)-\phi\left(a_{i} e_{i}\right)\right| \quad \quad \text { (by triangle inequality of } \mathbb{R} \\
& \leq \sum_{i=1}^{n} \frac{\epsilon}{n}=\epsilon \quad \quad \text { (by (3.1)) } \tag{3.1}
\end{align*}
$$

Thus $\phi: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is continuous.
Step 5: $\phi\left(x e_{i}\right)=x \phi\left(e_{i}\right)$ for all $x \in \mathbb{R}$ for all $i(1 \leq i \leq n)$.
Let $x \in \mathbb{R}$ and $1 \leq i \leq n$. Then there exist a rational sequence $\left(r_{m}\right)$ such that $r_{m} \rightarrow x$ in \mathbb{R}. Then $r_{m} e_{i} \rightarrow x e_{i}$ in the space \mathbb{R}^{n}. Since ϕ is continuous at x, we have

$$
\begin{aligned}
\phi\left(x e_{i}\right) & =\lim _{m \rightarrow \infty} \phi\left(r_{m} e_{i}\right) \\
& =\left(\lim _{m \rightarrow \infty} r_{m}\right) \phi\left(e_{i}\right) \\
& =x \phi\left(e_{i}\right)
\end{aligned}
$$

Step 6: Characterize all ring homomorphisms from \mathbb{R}^{n} to \mathbb{R}.
Let $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$. If $\phi\left(e_{i}\right)=0$ for all $i(1 \leq i \leq n)$, then

$$
\phi(x)=\phi\left(\sum_{i=1}^{n} x_{i} e_{i}\right)=\sum_{i=1}^{n} \phi\left(x_{i} e_{i}\right)=\sum_{i=1}^{n} x_{i} \phi\left(e_{i}\right)=0
$$

and hence ϕ is the trivial ring homomorphism. Otherwise, if $\phi\left(e_{k}\right)=1$ and $\phi\left(e_{i}\right)=0$ for all $i \neq k$, then

$$
\phi(x)=\phi\left(\sum_{i=1}^{n} x_{i} e_{i}\right)=\sum_{i=1}^{n} \phi\left(x_{i} e_{i}\right)=\sum_{i=1}^{n} x_{i} \phi\left(e_{i}\right)=x_{k} \phi\left(e_{k}\right)=x_{k} .
$$

Clearly ϕ is a ring homomorphism. Hence non-trivial ring homomorphisms from \mathbb{R}^{n} to \mathbb{R} has the form

$$
\phi\left(x_{1}, x_{2}, \ldots, x_{n}\right)=x_{k}, \quad 1 \leq k \leq n .
$$

So the number of ring homomorphisms from \mathbb{R}^{n} to \mathbb{R} is $n+1$.

4. Conclusion

We characterized and computed all ring homomorphism from \mathbb{Z}^{n} to \mathbb{Z}^{m}, from \mathbb{Q}^{n} to \mathbb{Q}^{m} and \mathbb{R}^{n} to \mathbb{R}.

Competing Interests

The authors declare that they have no competing interests.

Authors' Contributions

All the authors contributed significantly in writing this article. The authors read and approved the final manuscript.

References

[1] A. Cameron, Counting ring homomorphisms, Pi Mu Epsilon Journal 13(2) (2010), 65 - 67, DOI: https://www.jstor.org/stable/24340801?seq=1.
[2] J. A. Gallian, Contemporary Abstract Algebra, D. C. Heath and Company (1994).
[3] J. A. Gallian and J. Van Buskirk, The number of homomorphisms from Z_{m} into Z_{n}, The American Mathematical Monthly 91(3) (1984), 196 - 197, DOI: $10.1080 / 00029890.1984 .11971375$.
[4] J. A. Gallian and D. S. Jungreis, Homomorphisms from $Z_{m}[i]$ into $Z_{n}[i]$ and $Z_{m}[\rho]$ into $Z_{n}[\rho]$, where $i^{2}+1=0$ and $\rho^{2}+\rho+1=0$, The American Mathematical Monthly 95(3) (1988), $247-249$, DOI: 10.1080/00029890.1988.11971992.
[5] H. Kestelman, Automorphisms of the field of complex numbers, Proceedings of the London Mathematical Society 2(1) (1951), 1-12, DOI: $10.1112 / \mathrm{plms} / \mathrm{s} 2-53.1 .1$.
[6] M. Saleh and H. Yousef, The number of ring homomorphisms from $Z_{m_{1}} \times Z_{m_{2}} \times \cdots \times Z_{m_{r}}$ to $Z_{k_{1}} \times Z_{k_{2}} \times \cdots \times Z_{k_{s}}$, The American Mathematical Monthly 105(3) (1998), 259 - 260, DOI: 10.1080/00029890.1998.12004878,

