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The Proper Elements and Simple Invariant Subspaces

Slaviša V. Djordjević

Abstract. A proper element of X is a triple (λ, L, A) composed by an eigenvalue

λ, an invariant subspace of an operator A in B(X ) generated by one eigenvector

of λ and the operator A. For (λ0 , L0, A0) ∈ Eig(X ), where L0 = L ({x0}), the

operator A0 induces an operator cA0 from the quotient X/L0 into itself, i.e.
cA0(x + L0) = A0(x) + L0.

In paper we show that λ0 is a simple pole of A0 if and only if λ0 /∈ σ(cA0).

Follow this concept we can define simple invariant subspaces of linear operator

T like invariant subspace E such that σ(TE ) ∩σ(cTE ) = ;, where TE : E → E is

the restriction of T on E, cTE is the operator cTE (π(y)) = π(T(y)) on the quotient

space X/E and π is the natural homoeomorphism between X and X/E. Also, we

give some properties of stability of simple invariant subspaces.

1. Introduction

Let X be a Banach space, then B(X ) denotes the space of all bounded linear

operators from X to X . For T ∈ B(X ), let N(T ), R(T ), σ(T ), σp(T ) and σa(T )
denote respectively the null space, the range, the spectrum, the point spectrum

and the approximate point spectrum of T . Let n(T ) and d(T ) be the nullity and

the deficiency of T defined by

n(T ) = dim N(T ) and d(T ) = codimR(T ).

Let π0(T ) denote the set of Riesz points of T (i.e., the set of isolated eigenvalues

of T of finite algebraic multiplicity). λ ∈ π0(T ) is called a simple eigenvalue (pole)

of T if its algebraic multiplicity is 1. Let π00(T ) denote the set of all isolated

eigenvalues of T of finite geometric multiplicity (i.e. 0< n(T −λ)<∞).

The ascent, notated by asc(T ), and the descent, notated by dsc(T ), of T are given

by

asc(T ) = inf{n : N(T n) = N(T n+1)},

dsc(T ) = inf{n : R(T n) = R(T n+1)};

if no such n exists, then asc(T ) =∞, respectively dsc(T ) =∞.
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One of the oldest problem in the linear algebra is determinate (all) eigenvalues

and corresponding eigenvectors of finite dimension matrices. Today, we can find

many methods that give us partially or completely solution of this problem. We can

extended some of those methods to the case of infinity dimensional matrices, or

more general, to linear bounded operators between (Banach) vector spaces. The

principal limitation of almost all of such methods is that they find only isolated

eigenvalues of finite algebraic multiplicity. In the second section of the manuscript

we gave necessary and sufficient condition such that a point in the spectrum of

a linear bounded operator is a simple pole. Moreover, we extend the results from

[4] obtaining solution for finding arbitraries eigenvalues and eigenvectors of an

operator resolving a system of operators equations. In the third section, following

ideas from previous one, we introduced the concept of simple invariant subspace

of linear operator (Definition 3.1) and we give some basic properties.

2. Manifold of proper elements and pols of a linear operator

Let P1(X ) denote the collection of all subspaces of X of dimension 1. The

manifold of proper elements of X (see [4]) is the set

Eig(X ) = {(λ, L,A) ∈ C× P1(X )×B(X ) : A(L)⊂ L and A|L = λI}.

In other words, the proper elements of X are triples consisting of an eigenvalue

λ, an invariant subspace generated by one eigenvector of λ and an appropriate

operator A. Now, fix one proper element of X , say (λ0, L0,A0) ∈ Eig(X ).
For many practical reasons, it is important that the eigenvalue in the chosen

proper element be a (simple) pole of A0. For example, it is known that if

λ0 ∈ π0(A0), then for any sequence {An} in B(X ) that converges in norm to

A0 there exists a sequence {λn} such that λn ∈ π0(An) and λn → λ0. Moreover,

if λ0 is a simple pole, then for almost all positive integer n, λn is a simple pole

of An, and the corresponding eigenvectors xn converge to x0, i.e. we have that

(λn, Ln,An)→ (λ0, L0,A0) (here Ln is the linear span of xn, that is Ln =L ({xn})).

(For the previous see [2, Theorem 2.17].)

In this way, we will give necessary and sufficient conditions to obtain that λ0

be a simple pole of A0 ∈ B(X ). For this, we need some preliminary notations and

results.

Let (λ0, L0,A0) ∈ Eig(X ), where L0 = L ({x0}). Then the operator A0 induces

the operator cA0 from the quotient X/L0 into itself, i.e. cA0(x + L0) = A0(x) + L0.

Proposition 2.1. Let (λ0, L0,A0) ∈ Eig(X ). Then λ0 /∈ σp(cA0) if and only if
n(A0 −λ0) = 1 and asc(A0 − λ0) = 1.

Proof. (⇒:) Let λ0 /∈ σp(cA0) and suppose that n(A0 − λ0) > 1. Then there exists

x1 = kx0 + h, h 6= 0 such that (A0 − λ0)x1 = 0 (with respect to the decomposition
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X = L0 ⊕ X0). Then,

(cA0 −λ0)[h1] = [(A0 − λ0)h1] = [0],

where h1 /∈ L0. Hence, λ0 ∈ σp(cA0).

Next, suppose that there exists x ∈ N(A0 − λ0)
2 \ N(A0 − λ0). Then (A0 −

λ0)
2(x) = 0 and (A0−λ0)x 6= 0, or equivalently x+L0 ∈ N(cA0−λ0) and x+L0 6= L0

which contradicts with λ0 /∈ σp(cA0).

(⇐:) Suppose now that asc(A0−λ0) = 1. Then L0+N(A0−λ0) = N(A0−λ0) and

it is easy to see that L0 ⊂ (A0−λ0)
−1(L0). Let y ∈ (A0−λ0)

−1(L0) or equivalently

(A0−λ0)y ∈ L0. Then (A0−λ0)
2 y = 0 and y ∈ N(A0−λ0)

2 = N(A0−λ0). Hence,

L0 + N(A0 −λ0) = (A0 − λ0)
−1(L0) and by [3, Proposition 7] follows that

n(A0 −λ0) = n(A0|L0
−λ0) + n(cA0 −λ0).

Moreover, since n(A0|L0
−λ0) = 1, we have

n(A0 −λ0) = 1+ n(cA0 − λ0)

and, since n(A0 − λ0) = 1, we have that λ0 /∈ σp(cA0). �

Theorem 2.2. Let (λ0, L0,A0) ∈ Eig(X ). Then λ0 /∈ σ(cA0) if and only if the next
conditions hold:

(i) n(A0 −λ0) = 1;
(ii) asc(A0 − λ0) = 1;

(iii) λ0 ∈ iso σ(A0).

Proof. (⇐:) By the proof of previous proposition, if asc(A0 −λ0) = 1, then

n(A0 −λ0) = 1+ n(cA0 − λ0).

Since d(A0|L0
− λ0) = 1, applying [3, Proposition 7, (i) and (iii)], we have

d(A0− λ0) = 1+ d(cA0 −λ0).

In the case of the isolated point λ0 in σ(A0), the continuity of index implies

1= n(A0 − λ0) = d(A0 −λ0),

and consequently d(cA0 −λ0) = n(cA0 − λ0) = 0, i.e. λ0 /∈ σ(cA0).

(⇒:) Let λ0 /∈ σ(cA0), then by Proposition 2.1 the conditions (i) and (ii) hold. For

(iii): suppose the contrary, i.e. there exists a sequence of different points {λn}
∞
n=1

in σ(A0) such that λn → λ0. Since σ(A0) ⊂ {λ0} ∪σ(cA0) (see [5]) it follows that

{λn}
∞
n=1
⊂ σ(cA0) and consequently λ0 ∈ σ(cA0), which is a contradiction. �

Corollary 2.3. Let (λ0, L0,A0) ∈ Eig(X ). Then λ0 /∈ σ(cA0) if and only if λ0 is a
simple pole of A0.
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Proof. (⇒:) Let λ0 /∈ σ(cA0). Then conditions (i)-(iii) in the previous theorem

hold. Then by [1, Theorem 3.4] follows that dsc(A0 − λ0) = asc(A0 − λ0) = 1

and consequently λ0 is an simple pole of A0.

(⇐:) If λ0 is an simple pole of A0, then X = N(A0 − λ0)⊕ (A0 − λ0)(X ) and, by

this decomposition, A0 has a representation A0 = λ0 I ⊕ A1, where λ0 /∈ σ(A1). By

introduction of [3] it follows that σ(A1) = σ(cA0) and this implies λ0 /∈ σ(cA0). �

If λ0 is an eigenvalue (without any extra condition) of A0 we can not claim that

for every sequence of operators that converges to A0 we will find a sequence of

eigenvalues and eigenvectors such that (λn, Ln,An) → (λ0, L0,A0). Moreover, the

next theorem and corollary give us a method to construct a sequence of proper

elements that converges to (λ0, L0,A0). The ideas are in [4], but for the sake of

completeness, we will give the proofs.

Theorem 2.4. Let (λ0, L0,A0) ∈ Eig(X ). Then A∈ B(X ) has an eigenvalues λ1 with
eigenvector x1 if and only if the next system of equations

A12h1 = (λ1 − A11)x0

A21 x0 = (λ1 − A22)h1

holds, where

A=

�
A11 A12

A21 A22

�

is the matrix representation of the operator A with respect to the direct sum L0⊕X0 =

X where L0 =L ({x0}) and x1 = x0 + h1.

Proof. Let L0 =L ({x0}). Since dim L0 = 1, there exists a closed subspace X0 of X

such that X = L0 ⊕ X0. Let A=

�
A11 A12

A21 A22

�
∈ B(L0⊕ X0) so that it has eigenvalue

λ1 and eigenvector x1 = x0 + h1. Then

λ1(x0 + h1) = Ax1 =

�
A11 A12

A21 A22

��
x0

h1

�
= (A11 x0 + A12h1) + (A21 x0 + A22h1)⇐⇒

A12h1 = (λ1 − A11)x0

A21 x0 = (λ1 − A22)h1.

On the other side, if the equations holds for some h1 ∈ X0 and λ1 ∈ C, it is easy

to see that λ1 is an eigenvalue of A with eigenvector x0 + h1. �

Remark 2.5. In [4] is excluded the case when h1 = 0, but, by the previous system

of equations, then we have that A21 = 0, or L0 is an invariant subspace of A that

implies that x0 is an eigenvector for the eigenvalue λ1 of A.

Theorem 2.6. Let (λ0, L0,A0) ∈ Eig(X ). Then there exists a transformation F :

U → B(X ) defined in a neighborhood U of (λ0, L0) such that F(λ0, L0) = A0,
(λ, L, F(λ, L)) ∈ Eig(X ), for every (λ, L) ∈ U, and F is continuous at (λ0, L0).
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Proof. Let X = L0 ⊕ X0, L0 = L ({x0}) and let A0 such that it has matrix

representation

A0 =

�
λ0 A0

12

0 A0
22

�

with respect to the decomposition of the space X . For (λ̃, L̃) ∈ U , L̃ =L ({x0+ h̃}),
we define F(λ̃, L̃) ∈ B(X ) using the operator matrix

F(λ̃, L̃) =

�
Ã11 A0

12

Ã21 A0
22

�
: L0 ⊕ X0→ L0 ⊕ X0,

where

Ã11(αx0) = α(λ̃x0 − A0
12

h̃) and

Ã21(αx0) = α(λ̃− A0
22
)h̃.

It is easy to see that F(λ̃, L̃)(x0 + h̃) = λ̃(x0 + h̃), i.e. (λ̃, L̃, F(λ̃, L̃)) ∈ Eig(X ).
Without lost of generality we can suppose that ‖x0‖ = 1 and let αx0+ h ∈ X be

an arbitrary norm one vector. Then

‖F(λ̃, L̃)(αx0 + h)− A0(αx0 + h)‖ ≤ |α| · (|λ̃− λ0|+ ‖(A0 − λ̃)‖ · ‖h̃‖)

i.e. ‖F(λ̃, L̃)−A0‖ ≤ |λ̃−λ0|+ ‖A
0
22
− λ̃‖ · ‖h̃‖ that converge to zero when λ̃→ λ0

and h̃→ 0. �

By the previous theorem, for any two sequences {λn} and {xn} that converges

to λ0 and x0 respectively, the sequence of operators {F(λn, Ln)} (Ln = L (xn))

converge to A0. The operator Ã21 in the matrix representation of the operator

F(λ̃, L̃) has a crucial role with respect to its spectral properties and bounded

condition. In general, let L0 be a dimension 1 subspace of X and X = L0 ⊕ X0.

For a fixed operators A∈ B(L0), B ∈ B(X0) and C ∈ B(X0, L0), denote with MD the

matrix operator

MD =

�
A C
D B

�
,

where D ∈ B(L0, X0).

Theorem 2.7. Let X = L0 ⊕ X0, where dim L0 = 1 and let λ /∈ σ(A).

(i) If C 6= 0, then there exists a Dλ ∈ B(L0, X0) such that λ ∈ σp(MDλ).
(ii) If C = 0, then for any D ∈ B(L0, X0), λ ∈ σp(MD) if and only if λ ∈ σp(B).

Proof. (i) Let L0 = L ({x0}). Since C 6= 0, there exits y0 ∈ X0 such that C y0 6= 0.

Let k be a complex non-zero number such that −kx0 = (A − λ)
−1C y0. Let

Dλ ∈ B(L0, X0) be define by

Dλ(x0) =−
1

k
(B− λ)y0.
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Then for xλ = kx0 + y0 we have

(MDλ − λ)xλ =

�
A−λ C

Dλ B− λ

��
kx0

y0

�
= 0,

i.e. λ is an eigenvalue of MDλ with eigenvector xλ = kx0 + y0.

(ii) Let C = 0. Then X0 is an invariant subspace for MD, (σ(A) ∪σ(B)) \σ(MD) ⊂

σ(A) ∩ σ(B) and dim N(B) ≤ dim N(MD) (see [6]). Hence, if λ /∈ σ(A), then

λ ∈ σ(MD) if and only if λ ∈ σ(B) and if λ ∈ σp(B), then λ ∈ σp(MD). Also,

if kx0 + y is eigenvector for λ ∈ σp(MD), then since λ /∈ σ(A), follows that k = 0

and (B−λ)y = 0. Hence λ ∈ σp(B). �

Remark 2.8. (i) It is easy to see that, in the case when λ ∈ σ(A), then, for

D = 0, λ is an eigenvalue of M0 with eigenvector x0 (L0 =L ({x0})).

(ii) For a similar result see [6, Theorem 8].

3. Simple invariant subspace

Let Inv(T ) denote the set of non-trivial closed (in X ) invariant subspaces of T .

For T ∈ B(X ) and E ∈ Inv(T ), we shall denote by TE : E→ E the restriction of T on

E, and by cTE the operator cTE(π(y)) = π(T (y)) on the quotient space X/E, where

π is the natural homoeomorphism between X and X/E.

Definition 3.1. Let T ∈ B(X ). We tell that E ∈ Inv(T ) is a simple invariant subspace
if σ(TE)∩σ(cTE) = ;.

Proposition 3.2. Let E ∈ Inv(T ) be a simple invariant subspace. Then there exists a
δ > 0 such that any operator S ∈ B(X ) commuting with T and satisfying ‖T−S‖ < δ
has a simple invariant subspace.

Proof. Let E ∈ Inv(T ) be a simple invariant subspace and denote by σ1 = σ(TE),

σ2 = σ(cTE) and ε = 1

3
dist(σ1,σ2).

Suppose the contrary (no such δ exists), then there exists a sequence of

operators {Sn} ⊆ B(X ) such that TSn = SnT and ‖T −Sn‖ → 0. By [8, Theorem 4],

we have that lim
n→∞
σ(Sn) = σ(T ), or equivalently, for any ε > 0, there exists a

positive integer n0 such that, for every positive integer n > n0, σ(Sn) ⊂ (σ(T ))ε
and σ(T )⊂ (σ(Sn))ε. Now it easy to see that, for every n> n0, Sn has the spectrum

separated in (last) two spectral sets and applying Cauchy projection we can find

simple invariant subspaces for Sn. �

By the proof of the previous proposition it is easy to see that we use the

commutation of T and S to have closedness (in Hausdorff metric sense) of

spectrums of T and S. Of course, if the operator T is point of spectral continuity

we have this property for any another operator that is close enough to T and then

next corollary is clear.
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Corollary 3.3. Let T ∈ B(X ) be a point of spectrum continuity and E ∈ Inv(T ) be a
simple invariant subspace. Then there exists a δ > 0 such that any operator S ∈ B(X ),
with ‖T − S‖ < δ, has a simple invariant subspace.

Theorem 3.4. Let E ∈ Inv(T ) be a simple invariant subspace. Then there exists a
simple invariant subspace F such that σ(TE) = σ(cTF ) and σ(cTE) = σ(TF ).

Proof. Let E be a simple invariant subspace for an operator T . Then, by [5,

Corollary 2.2], it follows that σ(T ) = σ(TE) ∪ σ(cTE) and both of σ(TE) and

σ(cTE) are spectral set of T . Let Γ be a Cauchy curve such that σ(cTE) is inside

and σ(TE) outside the curve. Let F = PT (X ) and G = N(PT (X )), where PT is the

Cauchy projection associated with T and Γ (see [7, p. 178]). Then X = F ⊕ G,

σ(TF ) = σ(cTE) and σ(TG) = σ(TE). Moreover, by the introduction of [3], it easy

to see that σ(cTF ) = σ(TE)(= σ(TG)). �
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