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1. Introduction
The concept of Complex valued metric space was introduced by Azam et al. [1], which is relatively
more general than ordinary metric spaces. Since then, several authors [3,5–9,11] have been
studying many different contractions condition and proved fixed point theorems in complex
valued metric spaces. Recently, Sintunavarat et al. [9–11] introduced the concept of C-Cauchy
sequence and C-complete complex valued metric spaces and proved the existence of common
fixed theorems in C-complete complex valued metric spaces. Further, the authors in [2, 4]
continue the study of common fixed point in C-complete complex valued metric spaces.
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The aim of this manuscript is to establish the common fixed point theorems for two pairs
of weakly compatible mappings satisfying rational inequality in the framework of C-complete
complex valued metric spaces. Our results generalizes the results in [4,10].

Before presenting our theorems, we discuss some concepts of the complex valued metric
space due to Azam et al. [1] and give some definition, examples, applications in such spaces
were introduced by Sintunavarat et al. [10].

Let C be the set of complex numbers. For z1, z2 ∈C we will define a partial order 4 on C as
follows:

z1 4 z2 if and only if Re(z1)≤Re(z2) and Im(z1)≤ Im(z2).

We note that z1 4 z2 if one of the following holds:

(C1) Re(z1)=Re(z2) and Im(z1)= Im(z2);

(C2) Re(z1)<Re(z2) and Im(z1)= Im(z2);

(C3) Re(z1)=Re(z2) and Im(z1)< Im(z2);

(C4) Re(z1)<Re(z2) and Im(z1)< Im(z2).

In particular, we will write z1 � z2 if z1 6= z2 and one of (C2), (C3) and (C4) is satisfied and
we write z1 ≺ z2 if and only if (C4) is satisfied.

Remark 1.1. We note that the following statements hold:

(i) a,b ∈R and a ≤ b → az 4 bz for all z ∈C.

(ii) 04 z1 � z2 →|z1| < |z2|.
(iii) z1 4 z2 and z2 ≺ z3 → z1 ≺ z3.

The following definitions and results will be needed in the sequel.

Definition 1.2 ([1]). Let X be a nonempty set. Suppose that the mapping d : X ×X →C satisfies
the following conditions;

(i) 04 d(x, y) for all x, y ∈ X and d(x, y)= 0 if and only if x = y;

(ii) d(x, y)= d(y, x) for all x, y ∈ X ;

(iii) d(x, y)4 d(x, z)+d(z, y) for all x, y, z ∈ X .

Then d is called a complex valued metric on X and (X ,d) is called a complex valued metric
space.

Definition 1.3 ([1]). Let (X ,d) be a complex valued metric space.

(i) A point x ∈ X is called an interior point of a set A ⊆ X whenever there exists 0 ≺ r ∈ C
such that B(x, r)= {y ∈ X : d(x, y)≺ r}⊆ A.

(ii) A point x ∈ X is called a limit point of A whenever, for all 0≺ r ∈C,

B(x, r)∩ (A− X ) 6=φ.

(iii) A set A ⊆ X is called open set whenever each element of A is an interior point of A.
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(iv) A set A ⊆ X is called closed set whenever each limit point of A belongs to A.

(v) A sub-basis for a Hausdorff topology τ on X is the family

F = {B(x, r) : x ∈ X and 0≺ r}.

Definition 1.4 ([1]). Let (X ,d) be a complex valued metric space, {xn} be a sequence in X and
let x ∈ X .

(i) If for any c ∈ C with 0 ≺ c, there exists N ∈N such that for all n > N , d(xn, x) ≺ c, then
{xn} is said to be convergent to a point x ∈ X or {xn} converges to a point x ∈ X and x is the
limit point of {xn}. We denote this by lim

n→∞xn = x or xn → x as n →∞.

(ii) If for any c ∈ C with 0 ≺ c, there exists N ∈ N such that for all n > N , d(xn, xn+m) ≺ c,
where m ∈N, then {xn} is called a Cauchy sequence in X .

(iii) If for every Cauchy sequence in X is convergent, then (X ,d) is said to be complete complex
valued metric space.

Definition 1.5 ([9, 10]). Let (X ,d) be a complex valued metric space and {xn} be a sequence
in X .

(i) If, for any c ∈ C with 0 ≺ c, there exists N ∈ N such that for all m,n > N , d(xn, xm) ≺ c,
then {xn} is called a C-Cauchy sequence in X .

(ii) If every C-Cauchy sequence in X is convergent, then (X ,d) is said to be a C-complete
complex valued metric space.

For more concepts in C-complete complex valued metric space (see [9,10]).

Definition 1.6. Let S and T be self mappings of a nonempty set X .

(i) A point x ∈ X is called a fixed point of T if Tx = x.

(ii) A point x ∈ X is called a coincidence point of S and T if Sx = Tx and the point u ∈ X such
that u = Sx = Tx is called a point of coincidence of S and T .

(iii) A point x ∈ X is called a common fixed point of S and T if x = Sx = Tx.

Definition 1.7 ([8]). Let X be a complex valued metric space. Then a pair of self mappings
S,T : X → X is said to be weakly compatible if they commute at their coincidence points.

The following lemmas of [1] will be used in the sequel.

Lemma 1.8 ([1]). Let (X ,d) be a complex valued metric space, {xn} be a sequence in X . Then {xn}
converges to a point x ∈ X if and only if |d(xn, x)|→ 0 as n →∞.

Lemma 1.9 ([1]). Let (X ,d) be a complex valued metric space, {xn} be a sequence in X . Then {xn}
is a Cauchy sequence if and only if |d(xn, xn+m)|→ 0 as n →∞, where m ∈N.
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2. Main Results
Throughout this paper, we use the following notation,

C+ := {x ∈C : x< 0}

and Γ := {γ :C+ → [0,1) : {xn}⊆C+ with γ(xn)→ 1⇒|xn|→ 0}.
This class was first introduced by Sintunavarat et al. [9] which is extension of the class of

Geraghty’s real valued mappings.

Theorem 2.1. Let (X ,d) be a C-complete complex valued metric space and f , g,S,T : X → X be
four self mappings. If there exists three mappings λ1,λ2,λ3 :C+ → [0,1) such that the following
conditions hold:

(i) λ1(x)+λ2(x)+λ3(x)< 1 for all x ∈C+ and the mapping γ :C+ → [0,1), which is defined by

γ(x) := λ1(x)
1− [λ2(x)+λ3(x)]

belongs to Γ.

(ii) for each x, y ∈ X , we have

d(Sx,T y)4λ1(d( f x, gy))
d( f x,Sx)d( f x,T y)+d(gy,T y)d(gy,Sx)

d( f x,T y)+d(gy,Sx)
+ λ2(d( f x, gy))d(gy,T y)+λ3(d( f x, gy))d( f x, gy).

If S(X ) ⊆ g(X ) and T(X ) ⊆ f (X ) and the pairs ( f ,S) and (g,T) are weakly compatible, then
f , g,S and T have a unique common fixed point in X .

Proof. Let x0 be an arbitrary point in X . Since T(X )⊆ f (X ) and S(X )⊆ g(X ), we construct the
two sequences {xn} and {yn} in X such that Sx2n−2 = gx2n−1 = y2n−1 and

Tx2n−1 = f x2n = y2n, for all n ≥ 0. (2.1)

For n ≥ 0, we get

d(y2n+1, y2n+2)= d(Sx2n,Tx2n+1)

4λ1(d( f x2n, gx2n+1))

(
d( f x2n,Sx2n)d( f x2n,Tx2n+1)
+d(gx2n+1,Tx2n+1)d(gx2n+1,Sx2n)

)
d( f x2n,Tx2n+1)+d(gx2n+1,Sx2n)

+λ2(d( f x2n, gx2n+1))d(gx2n+1,Tx2n+1)+λ3(d( f x2n, gx2n+1))d( f x2n, gx2n+1)

=λ1(d(y2n, y2n+1))
d(y2n, y2n+1)d(y2n, y2n+2)+d(y2n+1, y2n+2)d(y2n+1, y2n+1)

d(y2n, y2n+2)+d(y2n+1, y2n+1)
+λ2(d(y2n, y2n+1))d(y2n+1, y2n+2)+λ3(d(y2n, y2n+1))d(y2n, y2n+1),

(1−λ2(d(y2n, y2n+1)))d(y2n+1, y2n+2)4 ((λ1 +λ3)d(y2n, y2n+1))d(y2n, y2n+1)

implies

|d(y2n+1, y2n+2)| ≤ λ1(d(y2n, y2n+1))
1−λ2(d(y2n, y2n+1))

|d(y2n, y2n+1)|+ λ3(d(y2n, y2n+1))
1−λ2(d(y2n, y2n+1))

|d(y2n, y2n+1)|
for all n ∈N. Applying condition (i) of Theorem 2.1, we get

|d (y2n+1, y2n+2)| ≤ γ(d(y2n, y2n+1))|d(y2n, y2n+1)|
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for all n ∈N. Similarly, we obtain that

|d(y2n, y2n+1)| ≤ γ(d(y2n−1, y2n))|d(y2n−1, y2n)|.
for all n ∈N. Consequently,

|d(yn, yn+1)| ≤ γ(d(yn−1, yn))|d(yn−1, yn)|
≤ |d(yn−1, yn)|, for all n ∈N\{1}. (2.2)

Thus the sequence {|d(yn, yn+1)|}n ∈ N\{1} is monotone non-increasing and bounded below.
Therefore, |d(yn, yn+1)|→ l for some l ≥ 0. Now, we claim that l = 0. On contrary assume that
l > 0. Then taking limit as n →∞ in (2.2), we have

l ≤ lim
n→∞γ(d(yn−1, yn))≤ 1 ⇒ lim

n→∞γ(d(yn−1, yn))= 1.

But γ ∈Γ, so we can write |d(yn−1, yn)|→ 0, which is contradiction to the fact that l > 0. Thus
l = 0 and hence

lim
n→∞ |d(yn−1, yn)| = 0. (2.3)

Next, to show that {yn} is C-Cauchy sequence, it is enough to show that {y2n} is a C-Cauchy
sequence. On contrary, suppose that {y2n} is not a C-Cauchy sequence. Then there exist c ∈C
with 0≺ c for which, for all k ∈N there exists 2mk > 2nk ≥ k such that

d(y2nk , y2mk )< c . (2.4)

Now, corresponding to nk, we can choose mk in such a way that it is the smallest integer with
2mk > 2nk ≥ k satisfying (2.4). Then

d(y2nk , y2mk−2)≺ c. (2.5)

From equation (2.4), (2.5) and triangular inequality, we have

c 4 d(y2nk , y2mk )

4 d(y2nk , y2mk−2)+d(y2mk−2, y2mk−1)+d(y2mk−1, y2mk )

≺ c+d(y2mk−2, y2mk−1)+d(y2mk−1, y2mk )

which implies that,

|c| ≤ |d(y2nk , y2mk )| ≤ |c|+ |d(y2mk−2, y2mk−1)|+ |d(y2mk−1, y2mk )|.
Taking limit as k →∞ and using (2.3), we have

|c| ≤ lim
k→∞

|d(y2nk , y2mk )| ≤ |c|
⇒ lim

k→∞
|d(y2nk , y2mk )| = |c|. (2.6)

Now, using triangular inequality, we have

|d(y2nk , y2mk )| ≤ |d(y2nk , y2mk+1)|+ |d(y2mk+1, y2mk )|
≤ |d(y2nk , y2mk )|+ |d(y2mk , y2mk+1)|+ |d(y2mk+1, y2mk )|.

Taking limit as k →∞ and using (2.3) and (2.6), we get

lim
k→∞

|d(y2nk , y2mk+1)| = |c|. (2.7)
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Next, we have

d(y2nk , y2mk+1)4 d(y2nk , y2nk+1)+d(y2nk+1, y2mk+2)+d(y2mk+2, y2mk+1)

= d(y2nk , y2nk+1)+d(Sx2nk ,Tx2mk+1)+d(y2mk+2, y2mk+1).

On using condition (ii) of Theorem 2.1 with x = x2nk and y= x2mk+1, one can write

d(y2nk , y2mk+1)4 d(y2nk , y2nk+1)

+λ1(d( f x2nk , gx2mk+1))
[(

d( f x2nk ,Sx2nk )d( f x2nk ,Tx2mk+1)
+d(gx2mk+1,Tx2mk+1)d(gx2mk+1,Sx2nk )

)
d( f x2nk ,Tx2mk+1)+d(gx2mk+1,Sx2nk )

]
+λ2(d( f x2nk , gx2mk+1))d(gx2mk+1,Tx2mk+1)

+λ3(d( f x2nk , gx2mk+1))d( f x2nk
, gx2mk+1)+d(y2mk+2, y2mk+1).

By using (i), we get

|d(y2nk , y2mk+1)| ≤ |d(y2nk , y2nk+1)|

+λ1(d(y2nk , y2mk+1))
∣∣∣∣
(

d(y2nk , y2nk+1)d(y2nk , y2mk+2)
+d(y2mk+1, y2mk+2)d(y2mk+1, y2nk+1)

)
d(y2nk , y2mk+2)+d(y2mk+1, y2nk+1)

∣∣∣∣
+λ2(d(y2nk , y2mk+1))|d(y2mk+1, y2mk+2)|
+λ3(d(y2nk , y2mk+1))|d(y2nk , y2mk+1)|+ |d(y2mk+2, y2mk+1)|.

In the sense of condition (i) of Theorem 2.1, we get

|d(y2nk , y2mk+1)| ≤ |d(y2nk , y2nk+1)|

+γ(d(y2nk , y2mk+1))
∣∣∣∣
(

d(y2nk , y2nk+1)d(y2nk , y2mk+2)
+d(y2mk+1, y2mk+2)d(y2mk+1, y2nk+1)

)
d(y2nk , y2mk+2)+d(y2mk+1, y2nk+1)

∣∣∣∣
+|d(y2mk+1, y2mk+2)|+ |d(y2nk , y2mk+1)|+ |d(y2mk+2, y2mk+1)|

≤ |d(y2nk , y2nk+1)|

+
∣∣∣∣d(y2nk , y2nk+1)d(y2nk , y2mk+2)+d(y2mk+1, y2mk+2)d(y2mk+1, y2nk+1)

d(y2nk , y2mk+2)+d(y2mk+1, y2nk+1)

∣∣∣∣
+|d(y2mk+1, y2mk+2)|+ |d(y2nk , y2mk+1)|+ |d(y2mk+2, y2mk+1)|.

Taking limit as k →∞ and using (2.3), (2.7), we get

|c| ≤ lim
k→∞

γ(d(y2nk , y2mk+1))|c| ≤ |c|
⇒ lim

k→∞
γ(d(y2nk , y2mk+1))= 1.

Since γ ∈Γ, we obtain that |d(y2nk , y2mk+1)|→ 0 as k →∞, which is a contradiction. Thus {y2n}
is a C-Cauchy sequence and hence {yn} is a C-Cauchy sequence. As X is C-complete, therefore
there exists t ∈ X such that yn → t as n →∞.

Therefore, from equation (2.1) we get

lim
n→∞Sx2n = lim

n→∞Tx2n+1 = lim
n→∞ f x2n = lim

n→∞ gx2n+1 = t . (2.8)
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Next, since S(x)⊆ g(x), there exist u ∈ X such that g(u)= t.
Thus equation (2.8) becomes

lim
n→∞Sx2n = lim

n→∞Tx2n+1 = lim
n→∞ f x2n = lim

n→∞ gx2n+1 = t = g(u) . (2.9)

We will show that Tu = gu, for this consider

d(t,Tu)4 d(t,Sx2n)+d(Sx2n,Tu)

4 d(t,Sx2n)+λ1(d( f x2n, gu))
d( f x2n,Sx2n)d( f x2n,Tu)+d(gu,Tu)d(gu,Sx2n)

d( f x2n,Tu)+d(gu,Sx2n)
+λ2(d( f x2n, gu))d(gu,Tu)+λ3(d( f x2n, gu))d( f x2n, gu).

In the light of condition (i) of Theorem 2.1, we get

d(Tu, t)4 d(t,Sx2n)+ d( f x2n,Sx2n)d( f x2n,Tu)+d(gu,Tu)d(gu,Sx2n)
d( f x2n,Tu)+d(gu,Sx2n)

+d(gu,Tu)+d( f x2n, gu).

Taking limit as n →∞ and using (2.9), we get d(Tu, t) 4 0, which is possible if d(Tu, t) = 0.
Thus Tu = t and hence from (2.8), we obtain that

Tu = gu = t . (2.10)

Also, it is given that T(x) ⊆ f (x), therefore there exist v ∈ X such that f (v) = t. Thus from
equation (2.8), we get

lim
n→∞Sx2n = lim

n→∞Tx2n+1 = lim
n→∞ f x2n = lim

n→∞ gx2n+1 = t = f (v) . (2.11)

Now, we will show that Sv = f v, for this, consider

d(Sv, t)4 d(Sv,Tx2n+1)+d(Tx2n+1, t).

Setting x = v, y= x2n+1 in condition (ii) of Theorem 2.1 and proceeding the same way as above,
one can get d(Sv, t)4 0.

It is possible if d(Sv, t)= 0→ Sv = t and hence from (2.11), we have

Sv = f v = t . (2.12)

Therefore, from (2.10) and (2.12), we get

Tu = gu = Sv = f v = t. (2.13)

Hence the pairs ( f ,S) and (g,T) are weakly compatible. Therefore from equation (2.13), we
have

Sv = f v ⇒ f Sv = S f v ⇒ f t = St (2.14)

and

Tu = gu ⇒ gTu = T gu ⇒ gt = Tt (2.15)

which implies that t is a coincidence point of each pair ( f ,S) and (g,T) in X .
Next, we will show that t is common fixed point of f , g,S and T . For this assume that St = t.

If not, then on using condition (ii) of Theorem 2.1 with x = t and y= u, we have

d(St,Tu)4λ1(d( f t, gu))
d( f t,St)d( f t,Tu)+d(gu,Tu)d(gu,St)

d( f t,Tu)+d(gu,St)
+λ2(d( f t, gu))d(gu,Tu)+λ3(d( f t, gu))d( f t, gu).
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Using equation (2.13) and (2.14), we have

d(St, t)4λ1(d(St, t))
d(St,St)d(St, t)+d(t, t)d(t,St)

d(St, t)+d(t,St)
+λ2(d(St, t))d(t, t)+λ3(d(St, t))d(St, t)

4λ3(d(St, t))d(St, t)

implies

(1−λ3(d(St, t))d(St, t)4 0

therefore, (1−λ3(d(St, t))|d(St, t)| ≤ 0.
Hence d(St, t)= 0 i.e. St = t, therefore from equation (2.14), we get

f t = St = t . (2.16)

Similarly assume that Tt = t, if not then using condition (ii) of Theorem 2.1 with x = v and y= t,
we have Tt = t, therefore from equation (2.15) we get

gt = Tt = t . (2.17)

From equations (2.16) and (2.17), we have f t = gt = St = Tt = t.
Thus t is a common fixed point of f , g,S and T . To check uniqueness, assume that t∗ 6= t be

another fixed point of f , g,S and T . Let x = t and y= t∗ in condition (ii) of Theorem 2.1, we get

d(t, t∗)= d(St,Tt∗)

4λ1(d( f t, gt∗))
d( f t,St)d( f t,Tt∗)+d(gt∗,Tt∗)d(gt∗,St)

d( f t,Tt∗)+d(gt∗,St)
+λ2(d( f t, gt∗))d(gt∗,Tt∗)+λ3(d( f t, gt∗))d( f t, gt∗)

=λ1(d(t, t∗))
d(t, t)d(t, t∗)+d(t∗, t∗)d(t∗, t)

d(t, t∗)+d(t∗, t)
+λ2(d(t, t∗))d(t∗, t∗)+λ3(d(t, t∗))d(t, t∗)

4λ3(d(t, t∗))d(t, t∗),

implies

(1−λ3(d(t, t∗))d(t, t∗)4 0

therefore

(1−λ3(d(t, t∗))|d(t, t∗)| ≤ 0

which implies that d(t, t∗)= 0. Thus t∗ = t and so t is a unique common fixed point of f , g, S
and T .

The following corollaries are obtained from Theorem 2.1.

Corollary 2.2. Let (X ,d) be a C-complete complex valued metric space and f , g,S,T : X → X be
four mappings satisfying

d(Sx,T y)4λ1
d( f x,Sx)d( f x,T y)+d(gy,T y)d(gy,Sx)

d( f x,T y)+d(gy,Sx)
+λ2d(gy,T y)+λ3d( f x, gy)

for all x, y ∈ X , where λ1 +λ2 +λ3 ∈R+ with λ1 +λ2 +λ3 < 1.
If S(x)⊆ g(x) and T(x)⊆ f (x) and the pairs ( f ,S) and (g,T) are weakly compatible then f , g,S
and T have a unique common fixed point in X .
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Corollary 2.3. Let S,T be two self-mappings on C-complete complex valued metric space (X ,d)
and λ1,λ2,λ3 :C+ → [0,1) be given mappings. Suppose that the following conditions hold:

(i) λ1(x)+λ2(x)+λ3(x)< 1 for all x ∈C+ and the mapping γ :C+ → [0,1), which is defined by

γ(x) := λ1(x)
1− [λ2(x)+λ3(x)]

for all x ∈C+ belongs to Γ.

(ii) for each x, y ∈ X , we have

d(Sx,T y)4λ1(d(x, y))
d(x,Sx)d(x,T y)+d(y,T y)d(y,Sx)

d(x,T y)+d(y,Sx)
+λ2(d(x, y))d(y,T y)+λ3(d(x, y))d(x, y).

If the pair (S,T) is weakly compatible, then S and T have a unique common fixed point in X .

Corollary 2.4. Let S be a self-mapping on a C-complete complex valued metric space (X ,d) and
λ1,λ2,λ3 :C+ → [0,1) be given mappings. Suppose that the following conditions hold:

(i) λ1(x)+λ2(x)+λ3(x)< 1 for all x ∈C+ and the mapping γ :C+ → [0,1), which is defined by

γ(x) := λ1(x)
1− [λ2(x)+λ3(x)]

for all x ∈C+ belongs to Γ.

(ii) for each x, y ∈ X , we have

d(Sx,Sy)4λ1(d(x, y))
d(x,Sx)d(x,Sy)+d(y,Sy)d(y,Sx)

d(x,Sy)+d(y,Sx)
+λ2(d(x, y))d(y,Sy)+λ3(d(x, y))d(x, y).

Then S has a unique fixed point in X .

Corollary 2.5. Let P be a self-mapping on C-complete complex valued metric space (X ,d) and
λ1,λ2,λ3 :C+ → [0,1) be given mappings. Suppose that the following conditions hold:

(i) λ1(x)+λ2(x)+λ3(x)< 1 for all x ∈C+ and the mapping γ :C+ → [0,1), which is defined by

γ(x) := λ1(x)
1− [λ2(x)+λ3(x)]

for all x ∈C+ belongs to Γ.

(ii) for each x, y ∈ X , we have

d(Pnx,Pn y)4λ1(d(x, y))
d(x,Pnx)d(x,Pn y)+d(y,Pn y)d(y,Pnx)

d(x,Pn y)+d(y,Pnx)
+λ2(d(x, y))d(y,Pn y)+λ3(d(x, y))d(x, y)

for some n ∈N.

Then P has a unique fixed point in X .

3. Conclusion
In this paper, we generalize and extend the common fixed point theorem in C-complete complex
valued metric spaces of Kumar et al. [4] and Sintunavarat et al. [10]. The future scope of
our results, to obtain the existence and uniqueness of a common solution of the system of
Urysohn integral equations. The integral equation plays very significant and important role in
mathematical analysis and has various applications in real world problems.
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