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1. Introduction
Metric fixed point theory plays an important role in mathematics. Banach contraction principle
is one of the fundamental results in fixed point theory and is generalized in various direction.
Fixed point theorems provide a tool to solve the many problems and have application in
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nonlinear analysis in various generalized metric spaces. Jungck [7] proved a common fixed
point theorem for commuting as a generalization of the Banach’s fixed point theorem. Sessa
[24] introduced the concept of weakly commuting mappings, Jungck [8] extended this concept to
compatible maps. In 1998, Jungck and Rhoades [9] introduced the notion of weak compatibility
and showed that compatible maps are weakly compatible but converse not true.

Zand and Nezhad [2] introduced a generalized partial metric space (Gp metric space) by
combination of a generalized metric space (G-metric space) due to Mustafa and Sims [13,14]
and a partial metric space introduced by Matthews [12]. Aydi et al. [3] established first fixed
point result in G p-metric space. Many authors obtained the results on fixed points in Gp metric
space ([4,5,15,21,22]). Recently, many authors obtained common fixed point theorems under
some conditions in Gp metric space ([20,25]).

2. Preliminaries
We recall some definitions which will be used in the sequel.

Definition 2.1 ([2,15]). Let X be a nonempty set and function G : X3 →R+ is called a Gp-metric
space on X if the following conditions are satisfied

(1) x = y= z if Gp(x, y, z)=Gp(x, x, x)=Gp(y, y, y)=Gp(z, z, z),

(2) 0≤Gp(x, x, x)≤Gp(x, x, y)≤Gp(x, y, z) for all x, y, z ∈ X with y 6= z,

(3) Gp(x, y, z)=Gp(y, z, x)= . . . (symmetry in all three variables),

(4) Gp(x, y, z)≤Gp(x,a,a)+Gp(a, y, z)−Gp(a,a,a) for all x, y, z,a ∈ X (triangle inequality).

The pair (X ,Gp) is called a Gp-metric space.

Lemma 2.2 ([3]). Let (X ,Gp) be a Gp metric space. Then

(1) if Gp(x, y, z)= 0 then x = y= z,

(2) if x 6= y then Gp(x, y, y)> 0.

Definition 2.3 ([2]). Let (X ,Gp) be a Gp metric space and let {xn} be sequence of points in X .
A point x ∈ X is said to be the limit of the sequence {xn}, if lim

n,m→∞Gp(x, xn, xm)=Gp(x, x, x). Then

the sequence {xn} is called Gp convergent to x.

Lemma 2.4 ([2]). Let (X ,Gp) be a Gp metric space. Then, for any {xn} ⊂ X and x ∈ X , the
following properties are equivalent

(1) {xn} is Gp convergent to x,

(2) Gp(xn, xn, x)→Gp(x, x, x) as n →∞,

(3) Gp(xn, x, x)→Gp(x, x, x) as n →∞.

Lemma 2.5 ([15]). If xn → x in a Gp-metric space (X ,Gp) and Gp(x, x, x) = 0, then for every
y ∈Y

(1) lim
n→∞Gp(xn, y, y)=Gp(x, y, y),

(2) lim
n→∞Gp(xn, xn, y)=Gp(x, x, y).
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Definition 2.6 ([16]). Let A, S and T be a self mappings of a Gp-metric space (X ,Gp). Then
the pair (A,S) is said to satisfy the common limit range property with respect to T , if there
exists a sequence {xn} in X such that

lim
n→∞ Axn = lim

n→∞Sxn = z,

for some z ∈ X with Gp(z, z, z)= 0 and z ∈ S(X )∩T(X ).

Definition 2.7 ([10]). An altering distance is a mapping ψ : [0,∞)→ [0,∞) such that

(1) ψ is increasing and continuous,

(2) ψ(t)= 0 if and only if t = 0.

Definition 2.8 ([19]). A function ψ : [0,∞)→ [0,∞) is an almost altering distance if

(1) ψ is continuous,

(2) ψ(t)= 0 if and only if t = 0.

Lemma 2.9 ([1]). Let f , g be two weakly compatible self mappings of a nonempty set X . If f and
g have a unique point of coincidence w = f x = gx for some x ∈ X , then w is the unique common
fixed point of f and g.

3. Implicit Relations
Popa [17,18] introduced the implicit function to proved the existence of fixed points and found
that several fixed point theorems have been considered some general conditions by an implicit
function.

We use the following implicit relations in our main result.

Definition 3.1. Let FGp be the set of all real continuous functions F : R6+ → R satisfying the
conditions:

(F1) F(t,0, t,0,0, t)> 0, ∀ t > 0,

(F2) F(t,0,0, t, t,0)> 0, ∀ t > 0.

Now, we present some examples of the function F :R6+→R which satisfy the conditions (F1), (F2).

Example 3.2. F(t1, t2, . . . t6)= t1 −kmax
{ t2+t3

3 , t4, t5, t6
}
, where k ∈ [0,1).

(F1) F(t,0, t,0,0, t)= t−k(t)= t(1−k)> 0, ∀ t > 0,

(F2) F(t,0,0, t, t,0)= t−k(t)= t(1−k)> 0, ∀ t > 0.

Example 3.3. F(t1, t2, . . . t6)= t1 −kmax
{
t2, t3+t4

3 , t5+t6
3

}
, where k ∈ [0,1).

(F1) F(t,0, t,0,0, t)= t−k
( t

3

)= t
(
1− k

3

)> 0, ∀ t > 0,

(F2) F(t,0,0, t, t,0)= t−k
( t

3

)= t
(
1− k

3

)> 0, ∀ t > 0.

Example 3.4. F(t1, t2, . . . t6)= t2
1−a{t2

2+t2
3}−bmax{t1.t3, t2.t4, t5.t6}, where a,b ∈R and a+b < 1.

(F1) F(t,0, t,0,0, t)= t2 −at2 −bt2 = t2[1− (a+b)]> 0, ∀ t > 0,

(F2) F(t,0,0, t, t,0)= t2 −a.0−b.0= t2 > 0, ∀ t > 0.
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Example 3.5. F(t1, t2, . . . t6)= t2
1 −at2.t4 −bmax{t1.t3, t5.t6}, where a,b ∈R and a+b < 1.

(F1) F(t,0, t,0,0, t)= t2 −bt2 = t2(1−b)> 0, ∀ t > 0,

(F2) F(t,0,0, t, t,0)= t2 −a.0−b.0= t2 > 0, ∀ t > 0.

Example 3.6. F(t1, t2, . . . t6)= t2
1 −at1.t3 −bt2.t4 − ct5.t6, where a,b ∈R and a+b+ c < 1.

(F1) F(t,0, t,0,0, t)= t2 −at2 = t2(1−a)> 0, ∀ t > 0,

(F2) F(t,0,0, t, t,0)= t2 −a.0−b.0− c.0= t2 > 0, ∀ t > 0.

Example 3.7. F(t1, t2, . . . t6)= t1 −a
p

t1t3 −bmax{t2, t4, t5, t6}, where a,b ∈R and a+b < 1.

(F1) F(t,0, t,0,0, t)= t−at−bt = t[1− (a+b)]> 0, ∀ t > 0,

(F2) F(t,0,0, t, t,0)= t−bt = t(1−b)> 0, ∀ t > 0.

In this paper we establish a new common fixed point theorem for quadruple of weakly
compatible mappings satisfying common limit range property and involving almost altering
distances in Gp metric space. Furthermore, we present the example to support our main result.
At last part we obtain some common fixed point results for mappings satisfying contractive
conditions of integral type and for ϕ-contractive mappings.

4. Main Results
Now, we present our main result.

Theorem 4.1. Let A,B,S and T be self mappings of a Gp metric space (X ,Gp) satisfying

F
(
ψ(G2

p(Ax,By,By)),ψ(Gp(Sx,T y,T y).Gp(Sx,Sx, Ax)),

ψ(Gp(T y,By,By).Gp(Sx,By,By)),ψ(Gp(Ax,By,By).Gp(Ax,T y,T y)),

ψ(G2
p(Ax,T y,T y)),ψ(G2

p(T y,By,By))
)
≤ 0 (4.1)

for all x, y ∈ X , where F ∈ FGp and ψ is almost altering distance. If (A,S) and T satisfy CLR(A,S)T

property, then

(1) C(A,S) 6= 0,

(2) C(B,T) 6= 0.

Moreover, if (A,S) and (B,T) are weakly compatible, then A, B, S and T have a unique common
fixed point z and Gp(z, z, z)= 0.

Proof. Since (A,S) and T satisfy CLR(A,S)-property, then there exists a sequence xn in X such
that lim

n→∞ Axn = lim
n→∞Sxn = z with Gp(z, z, z)= 0 and z ∈ S(X )∩T(X ).

Since z ∈ T(X ), there exists u ∈ X such that z = Tu. By (4.1) we obtain

F
(
ψ(G2

p(Axn,Bu,Bu)),ψ(Gp(Sxn,Tu,Tu).Gp(Sxn,Sxn, Axn)),

ψ(Gp(Tu,Bu,Bu).Gp(Sxn,Bu,Bu)),ψ(Gp(Axn,Bu,Bu).Gp(Axn,Tu,Tu)),

ψ(G2
p(Axn,Tu,Tu)),ψ(G2

p(Tu,Bu,Bu))
)
≤ 0. (4.2)
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Since Gp(Axn,Sxn,Sxn)≤Gp(Axn, z, z)+Gp(z,Sxn,Sxn), by Lemma 2.5

lim
n→∞Gp(Axn,Sxn,Sxn)≤Gp(z, z, z)+Gp(z, z, z)= 0.

Let n tend to infinity in (4.2), we obtain

F
(
ψ(G2

p(z,Bu,Bu)),0,ψ(Gp(z,Bu,Bu).Gp(z,Bu,Bu)),0,0,ψ(G2
p(z,Bu,Bu))

)≤ 0,

implies

F
(
ψ(G2

p(z,Bu,Bu)),0,ψ(G2
p(z,Bu,Bu),0,0,ψ(G2

p(z,Bu,Bu))
)≤ 0,

which contradicts (F1), if G2
p(z,Bu,Bu) > 0. Hence, G2

p(z,Bu,Bu) = 0 and by Lemma 2.2(1),
z = Bu = Tu. Therefore C(B,T) 6= 0 and Gp(z, z, z)= 0.

Since z ∈ S(X ), there exists v ∈ X such that z = Sv. By (4.1) we get

F
(
ψ(G2

p(Av,Bu,Bu)),ψ(Gp(Sv,Tu,Tu).Gp(Sv,Sv, Av)),

ψ(Gp(Tu,Bu,Bu).Gp(Sv,Bu,Bu)),ψ(Gp(Av,Bu,Bu).Gp(Av,Tu,Tu)),

ψ(G2
p(Av,Tu,Tu)),ψ(G2

p(Tu,Bu,Bu))
)
≤ 0,

or

F
(
ψ(G2

p(Av, z, z)),0,0,ψ(Gp(Av,Bu,Bu).Gp(Av,Tu,Tu)),ψ(G2
p(Av,Tu,Tu)),0

)≤ 0,

implies

F
(
ψ(G2

p(Av, z, z)),0,0,ψ(G2
p(Av, z, z)),ψ(G2

p(Av, z, z)),0
)≤ 0,

which contradicts (F2), if G2
p(Av, z, z) > 0. Hence, G2

p(Av, z, z) = 0 and by Lemma 2.2(1),
z = Av = Sv. Therefore C(A,S) 6= 0 and Gp(z, z, z)= 0.

So, z = Av = Sv = Bu = Tu and z is a coincidence point of A, S and B, T .
Now, we prove that z is the unique point of coincidence of A and S and of B and T . Suppose

that there exists another point of coincidence of A and S, t = Aw = Sw. Then by (4.1) we get

F
(
ψ(G2

p(Aw,Bu,Bu)),ψ(Gp(Sw,Tu,Tu).Gp(Sw,Sw, Aw)),ψ(Gp(Tu,Bu,Bu).Gp(Sw,Bu,Bu)),

ψ(Gp(Aw,Bu,Bu).Gp(Aw,Tu,Tu)),ψ(G2
p(Aw,Tu,Tu)),ψ(G2

p(Tu,Bu,Bu))
)
≤ 0,

or

F
(
ψ(G2

p(Sw,Bu,Bu)),0,0,ψ(Gp(Aw,Bu,Bu)(Gp(Aw,Tu,Tu)),ψ(G2
p(Aw,Tu,Tu)),0)

)≤ 0,

implies(
ψ(G2

p(Sw,Tu,Tu)),0,0,ψ(G2
p(Sw,Tu,Tu)),ψ(G2

p(Sw,Tu,Tu)),0)
)≤ 0,

which contradicts (F2), if G2
p(Sw,Tu,Tu)> 0. Hence, G2

p(Sw,Tu,Tu)= 0 and by Lemma 2.2(1),
Sw = Tu = z. Hence t = z and z is the unique point of coincidence of A and S. Similarly, by (4.1),
(F1) and (F2), we get that z is the unique point of coincidence of B and T . Hence, z is the unique
point of coincidence of (A,S) and (B,T). Moreover, if (A,S) and (B,T) are weakly compatible,
by Lemma 2.9, z is the unique common fixed point of A, B, S and T and Gp(z, z, z) = 0. This
completes the proof.

If ψ(t)= t, we get
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Theorem 4.2. Let A,B,S and T be self mappings of a Gp metric space (X ,Gp) satisfying

F
(
G2

p(Ax,By,By),Gp(Sx,T y,T y).Gp(Sx,Sx, Ax),Gp(T y,By,By).Gp(Sx,By,By),

Gp(Ax,By,By).Gp(Ax,T y,T y),G2
p(Ax,T y,T y),G2

p(T y,By,By)
)
≤ 0,

for all x, y ∈ X , where F ∈ FGp and ψ is almost altering distance. If (A,S) and T satisfy CLR(A,S)T

property, then

(1) C(A,S) 6= 0,

(2) C(B,T) 6= 0.

Moreover, if (A,S) and (B,T) are weakly compatible, then A, B, S and T have a unique common
fixed point z and Gp(z, z, z)= 0.

Example 4.3. Let X = [0,1] and Gp(x, y, z) = max{x, y, z}. Then (X ,Gp) is a Gp metric space.
Define the following mappings:

Ax =
p

x
2

, Sx =p
x, Bx = 0, Tx =

p
x

4
.

Then S(x)= [0,1], T(X )= [
0, 1

4

]
and S(X )∩T(X )= [

0, 1
4

]
.

Let xn be a sequence in X such that lim
n→∞xn = 0. Then,

lim
n→∞ Axn = lim

n→∞Sxn = 0= z ∈ S(X )∩T(X ).

Hence, (A,S) and T satisfy CLR(A,S)T -property with Gp(0,0,0)= 0.
Ax = Sx implies C(A,S)= 0 and Bx = Tx implies C(B,T)= 0.
Moreover, AS0= SA0= 0 and BT0= TB0= 0. Hence (A,S)and (B,T) are weakly compatible.
On the other hand,

G2
p(Ax,By,By)= x

4
and Gp(Sx,T y,T y).Gp(Sx,Sx, Ax)= x.

Hence,

G2
p(Ax,By,By)≤kx, where k ∈

[
1
4

,1
)
,

which implies

G2
p(Ax,By,By)≤kmax

{
Gp(Sx,T y,T y).Gp(Sx,Sx, Ax),

1
3

(
Gp(T y,By,By).Gp(Sx,By,By)+Gp(Ax,By,By).Gp(Ax,T y,T y)

)
,

1
3

(
G2

p(Ax,T y,T y)+G2
p(T y,By,By)

)}
,

where k ∈ [1
4 ,1

)
. By Theorem 4.1 and Example 3.3, A, B, S and T have a unique common fixed

point z = 0 and Gp(z, z, z)= 0.

5. Applications
In this section we obtain some common fixed point results for mappings satisfying contractive
conditions of integral type and for ϕ-contractive mappings.
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5.1 Fixed points for mappings satisfying contractive conditions of integral type in Gp

metric spaces
Branciari [6], established the following theorem which opened the way to the study of fixed
points for mappings satisfying a contractive condition of integral type.

Theorem 5.1 ([6]). Let (X ,d) be a complete metric space, c ∈ (0,1) and f : X → X be a mapping
such that for all x, y,∈ X∫ d( f x, f y)

0
h(t)dt ≤ c

∫ d(x,y)

0
h(t)dt,

where h : [0,∞)→ [0,∞) is a Lebesgue measurable mapping, integrable on each compact subset
of [0,∞), such that

∫ ε
0 h(t)dt > 0 for ε> 0. Then f has a unique fixed point z ∈ X and z = lim

n→∞ f nx
for all x ∈ X .

Lemma 5.2 ([23]). Let h :[0,∞)→[0,∞) be as in Theorem 5.1. Then ψ(x)= ∫ x
0 h(t)dt is an almost

altering distance.

Now, we apply our main result to obtain the following theorem.

Theorem 5.3. Let A,B,S and T be self mappings of a Gp metric space (X ,Gp) such that

F
(∫ G2

p(Ax,By,By)

0
h(t)dt,

∫ Gp(Sx,T y,T y).Gp(Sx,Sx,Ax)

0
h(t)dt,

∫ Gp(T y,By,By).Gp(Sx,By,By)

0
h(t)dt,∫ Gp(Ax,By,By).Gp(Ax,T y,T y)

0
h(t)dt,

∫ G2
p(Ax,T y,T y)

0
h(t)dt,

∫ G2
p(T y,By,By)

0
h(t)dt

)
≤ 0 (5.1)

for all x, y ∈ X , where F ∈FGp and h(t) is as in Theorem 5.1. If (A,S) and T satisfy CLR(A,S)T

property, then

(1) C(A,S) 6= 0,

(2) C(B,T) 6= 0.

Moreover, if (A,S) and (B,T) are weakly compatible, then A, B, S and T have a unique common
fixed point z and Gp(z, z, z)= 0.

Proof. Taking ψ(x)= ∫ x
0 h(t)dt, we get

ψ(G2
p(Ax,By,By))=

∫ G2
p(Ax,By,By)

0
h(t)dt,

ψ(Gp(Sx,T y,T y).Gp(Sx,Sx, Ax))=
∫ Gp(Sx,T y,T y).Gp(Sx,Sx,Ax)

0
h(t)dt,

ψ(Gp(T y,By,By).Gp(Sx,By,By))=
∫ Gp(T y,By,By).Gp(Sx,By,By)

0
h(t)dt,

ψ(Gp(Ax,By,By).(Gp(Ax,T y,T y))=
∫ Gp(Ax,By,By).Gp(Ax,T y,T y)

0
h(t)dt,

ψ(G2
p(Ax,T y,T y))=

∫ G2
p(Ax,T y,T y)

0
h(t)dt,
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ψ(G2
p(T y,By,By))=

∫ G2
p(T y,By,By)

0
h(t)dt .

Then, by (5.1) we get

F
(
ψ(G2

p(Ax,By,By)),ψ(Gp(Sx,T y,T y).Gp(Sx,Sx, Ax)),

ψ(Gp(T y,By,By).Gp(Sx,By,By)),ψ(Gp(Ax,By,By).Gp(Ax,T y,T y)),

ψ(G2
p(Ax,T y,T y)),ψ(G2

p(T y,By,By))
)
≤ 0,

which is inequality (4.1) of Theorem 4.1. Also, by Lemma 5.2, ψ is an almost altering distance
and the conditions of Theorem 5.3 are same as Theorem 4.1. Hence, the proof is similar.

By Theorem 5.3 and Example 3.3 we get the following:

Theorem 5.4. Let A,B,S and T be self mappings of a Gp metric space (X ,Gp) such that∫ G2
p(Ax,By,By)

0
h(t)dt ≤ kmax

{∫ Gp(Sx,T y,T y).Gp(Sx,Sx,Ax)

0
h(t)dt,

1
3

(∫ Gp(T y,By,By).Gp(Sx,By,By)

0
h(t)dt+

∫ Gp(Ax,By,By).Gp(Ax,T y,T y)

0
h(t)dt

)
,

1
3

(∫ G2
p(Ax,T y,T y)

0
h(t)dt+

∫ G2
p(T y,By,By)

0
h(t)dt

)}
for all x, y ∈ X , where k ∈ [0,1) and h(t) is as in Theorem 5.1. If (A,S) and T satisfy CLR(A,S)T

property,then

(1) C(A,S) 6= 0,

(2) C(B,T) 6= 0.

Moreover, if (A,S) and (B,T) are weakly compatible, then A, B, S and T have a unique common
fixed point z and Gp(z, z, z)= 0.

Example 5.5. Let X = [0,∞) and Gp(x, y, z) = max{x, y, z}. Then (X ,Gp) is a Gp metric space.
Define the following mappings:

Ax =
p

x
3

, Sx =
p

x
2

, Bx = 0, Tx =p
x.

Then S(x)= [0,∞), T(X )= [0,∞) and S(X )∩T(X )= [0,∞).
Let {xn} be a sequence in X such that lim

n→∞xn = 0. Then,

lim
n→∞ Axn = lim

n→∞Sxn = 0= z ∈ S(X )∩T(X ).

Hence, (A,S) and T satisfy CLR(A,S)T -property with Gp(0,0,0)= 0. Ax = Sx implies C(A,S)= 0
and Bx = Tx implies C(B,T)= 0.
Moreover, AS0= SA0= 0 and BT0= TB0= 0. Hence (A,S)and (B,T) are weakly compatible.
On other hand,

G2
p(Ax,By,By)= x

9
and Gp(Sx,T y,T y).Gp(Sx,Sx, Ax)= x

2
.
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Moreover,∫ x
9

0
tdt ≤ k

∫ x
2

0
tdt

for k ≥ 4
81 . Thus for h(t)= t, we get∫ G2

p(Ax,By,By)

0
h(t)dt ≤ k

∫ Gp(Sx,T y,T y).Gp(Sx,Sx,Ax)

0
h(t)dt,

where 0< 4
81 ≤ k < 1. Hence,∫ G2

p(Ax,By,By)

0
h(t)dt ≤ kmax

{∫ Gp(Sx,T y,T y).Gp(Sx,Sx,Ax)

0
h(t)dt,

1
3

(∫ Gp(T y,By,By).Gp(Sx,By,By)

0
h(t)dt+

∫ Gp(Ax,By,By).Gp(Ax,T y,T y)

0
h(t)dt

)
,

1
3

(∫ G2
p(Ax,T y,T y)

0
h(t)dt+

∫ G2
p(T y,By,By)

0
h(t)dt

)}
,

where k ∈ [ 4
81 ,1

)
. By Theorem 5.4, A, B, S and T have a unique common fixed point z = 0.

Remark 5.6. By Theorem 5.3 and Example 3.2, 3.4-3.7 we obtain new particular results.

5.2 Fixed points for mappings satisfying contractive conditions in Gp metric spaces
Definition 5.7 ([11]). Let Φ be the set of real continuous nondecreasing functions ϕ : [0,∞)→
[0,∞) with lim

n→∞ϕ
n(t)= 0. If ϕ ∈Φ, then

(1) ϕ(t)< t for all t ∈ (0,∞),

(2) ϕ(0)= 0.

The following functions F :R6+ →R+ satisfy conditions (F1), (F2).

Example 5.8. F(t1, t2, . . . t6)= t1 −ϕ
(
max

{ t2+t3
3 , t4, t5, t6

})
.

(F1) F(t,0, t,0,0, t)= t−ϕ(t)> 0, ∀ t > 0,

(F2) F(t,0,0, t, t,0)= t−ϕ(t)> 0, ∀ t > 0.

Example 5.9. F(t1, t2, . . . t6)= t1 −ϕ
(
max{t2, t3+t4

3 , t5+t6
3 }

)
.

(F1) F(t,0, t,0,0, t)= t−ϕ( t
3

)> 0, ∀ t > 0,

(F2) F(t,0,0, t, t,0)= t−ϕ( t
3

)> 0, ∀ t > 0.

Example 5.10. F(t1, t2, . . . t6)= t2
1 −ϕ

(
t2
2 +bmax{t2

3, t2
4, t2

5, t2
6}

)
, where b ∈R and b < 1.

(F1) F(t,0, t,0,0, t)= t2 −ϕ(bt2)= t2 −bt2 = t2(1−b)> 0, ∀ t > 0,

(F2) F(t,0,0, t, t,0)= t2 −ϕ(bt2)= t2 −bt2 = t2(1−b)> 0, ∀ t > 0.

Example 5.11. F(t1, t2, . . . t6)= t1 −ϕ
(
a
p

t1t3 +bmax{t2, t4, t5, t6}
)
, where a,b ∈R and a+b < 1.

(F1) F(t,0, t,0,0, t)= t−ϕ[t(a+b)]= t[1− (a+b)]> 0, ∀ t > 0,

(F2) F(t,0,0, t, t,0)= t−ϕ(bt)= t(1−b)> 0, ∀t > 0.

By Theorem 4.1 and Example 5.9 we get the following:
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Theorem 5.12. Let A, B, S and T be self mappings of a Gp metric space (X ,Gp) such that

G2
p(Ax,By,By)≤ϕ

(
max

{
ψ

(
Gp(Sx,T y,T y).Gp(Sx,Sx, Ax)

)
,

1
3

(
ψ

(
Gp(T y,By,By).Gp(Sx,By,By)

)+ψ(
Gp(Ax,By,By).Gp(Ax,T y,T y)

))
,

1
3

(
ψ

(
G2

p(Ax,T y,T y)
)+ψ(

G2
p(T y,By,By)

))})
for all x, y ∈ X , where ϕ ∈ Φ and ψ is an almost altering distance. If (A,S) and T satisfy
CLR(A,S)T property, then

(1) C(A,S) 6= 0,

(2) C(B,T) 6= 0.

Moreover, if (A,S) and (B,T) are weakly compatible, then A, B, S and T have a unique common
fixed point z and Gp(z, z, z)= 0.

Example 5.13. Let X = [0,∞) and Gp(x, y, z)=max{x, y, z}. Then (X ,Gp) is a Gp metric space.
Put ϕ(t)= t

16 and ϕ ∈Φ.
Define the following mappings:

Ax =
p

x
4

, Sx = 4
p

x, Bx = 0, Tx =
p

x
6

.

Then S(x)= [0,∞), T(X )= [0,∞) and S(X )∩T(X )= [0,∞).
Let xn be a sequence in X such that lim

n→∞xn = 0. Then,

lim
n→∞ Axn = lim

n→∞Sxn = 0= z ∈ S(X )∩T(X ).

Hence, (A,S) and T satisfy CLR(A,S)T -property with Gp(0,0,0)= 0. Ax = Sx implies C(A,S)= 0
and Bx = Tx implies C(B,T) = 0. Moreover, AS0 = SA0 = 0 and BT0 = TB0 = 0. Hence (A,S)
and (B,T) are weakly compatible. On other hand,

G2
p(Ax,By,By)= x

16
and Gp(Sx,T y,T y).Gp(Sx,Sx, Ax)= 16x,

which implies

G2
p(Ax,By,By)≤ 1

16
Gp(Sx,T y,T y).Gp(Sx,Sx, Ax)

≤ 1
16

max
{
Gp(Sx,T y,T y).Gp(Sx,Sx, Ax),

1
3

(
Gp(T y,By,By).Gp(Sx,By,By)+Gp(Ax,By,By).Gp(Ax,T y,T y)

)
,

1
3

(
G2

p(Ax,T y,T y)+G2
p(T y,By,By)

)}
=ϕ

(
max {Gp(Sx,T y,T y).Gp(Sx,Sx, Ax),

1
3

(
Gp(T y,By,By).Gp(Sx,By,By)+Gp(Ax,By,By).Gp(Ax,T y,T y)

)
,

1
3

(
G2

p(Ax,T y,T y)+G2
p(T y,By,By)

)
}
)
.

By Theorem 5.12, A, B, S and T have a unique common fixed point z = 0.
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By Theorem 5.3 and Example 5.9, we get the following:

Theorem 5.14. Let A,B,S and T be self mappings of a Gp metric space (X ,Gp) such that∫ G2
p(Ax,By,By)

0
h(t)dt ≤ϕ

(
max

{∫ Gp(Sx,T y,T y).Gp(Sx,Sx,Ax)

0
h(t)dt,

1
3

(∫ Gp(T y,By,By).Gp(Sx,By,By)

0
h(t)d+

∫ Gp(Ax,By,By).Gp(Ax,T y,T y)

0
h(t)dt

)
,

1
3

(∫ G2
p(Ax,T y,T y)

0
h(t)dt+

∫ G2
p(T y,By,By)

0
h(t)dt

)})
for all x, y ∈ X , where h(t) is as in Theorem 5.1. If (A,S) and T satisfy CLR(A,S)T property, then

(1) C(A,S) 6= 0,

(2) C(B,T) 6= 0.

Moreover, if (A,S) and (B,T) are weakly compatible, then A,B,S and T have a unique common
fixed point z and Gp(z, z, z)= 0.

Remark 5.15. By Theorem 5.3 and Examples 5.8, 5.10 and 5.11, we get new results.

6. Conclusion
From our investigations, we conclude that the self mappings on a Gp metric space with CLR
property and weak compatibility have a unique common fixed point with certain conditions.
Fixed points also occurs for mappings satisfying a contractive condition of integral type in Gp

metric spaces. Our investigations and results obtained were supported by the suitable examples
which provides new path for the researchers in the concerned field.
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