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1. Introduction
Consider a graph G(V (G),E(G)), with order |V (G)| and size |E(G)|. An (x− y) geodesic is the
length of the shortest path between the vertices x and y. For a graph G, the length of the
maximum geodesic is called the graph diameter, denoted as diam(G). Harary et al. introduced
a graph theoretical parameter in [2] called the geodetic number of a graph and it was further
studied in [1]. In [2] the geodetic number of a graph is defined as follows, let I[u,v] be the set
of all vertices lying on some u− v geodesic of G, and for some non empty subset S of V (G),
I[S]= ⋃

u,v∈S
I[u,v]. The set S of vertices of G is called a geodetic set of G, if I[S]=V . A geodetic

set of minimum cardinality is called minimum geodetic set of G. The cardinality of the minimum
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geodetic set of G is the geodetic number g(G) of G. The geodetic set decision problem is NP-
complete [12]. The set S ⊆V (G) is an edge geodetic cover of G if every edge of G is contained in
the geodesic between some pair of vertices in S, and the cardinality of minimum edge geodetic
cover is called the edge geodetic number of G denoted as g1(G) [13]. Strong geodetic problem is a
variation of geodetic problem and is defined in [11] as follows. For a graph G(V (G),E(G)), given
a set S ⊆V (G), for each pair of vertices (x, y)⊆ S, x 6= y, let g̃(x, y) be a selected fixed shortest
path between x and y. Let Ĩ(S) = { g̃(x, y) : x, y ∈ S} and V (Ĩ(S)) = ⋃

P̃∈Ĩ(S)
V (P̃). If V (Ĩ(S)) = V

for some Ĩ(S), then S is called a strong geodetic set. The cardinality of the minimum strong
geodetic set is the strong geodetic number of G and is denoted by sg(G). The edge version of the
strong geodetic problem is defined in [10] i.e. for a graph G(V (G),E(G)), a set S ⊆V (G) is called
a strong edge geodetic set if for any pair x, y ∈ S a shortest path Pxy can be assigned such that
∪{x,y}∈(S

2)
E(Pxy)= E(G). The cardinality of the smallest strong edge geodetic set of G is called

the strong edge geodetic number and is denoted as sge(G).

2. Strong Edge Geodetic Number of Graphs
Theorem 1. For a graph G(V (G),E(G)) with diameter d ≥ 2, the strong edge geodetic number,

sge(G)≥
⌈

d+
p

d2+8d|E|
2d

⌉
.

Proof. Consider a graph G(V (G),E(G)) with diameter d ≥ 2 and assume that the set S ⊆V (G)
forms a minimum strong edge geodetic set for G. Then the edges of G are covered with

(|S|
2

)
geodesics and each geodesic covers at most d edges. Thus |E| ≤ (|S|

2

)
d. Considering only the

positive and the integer roots, the inequality reduces to |S| ≥
⌈

d+
p

d2+8d|E|
2d

⌉
.

The above bound attains equality when G ∼= Pn (n ≥ 2).

Theorem 2. For a graph G with order n ≥ 2, sge(G)= 2 if and only if G ∼= Pn.

Proof. For Pn = v0v1 . . .vn, the geodesic between the vertices vo and vn covers all the edges of
Pn and thus sge(Pn)= 2. Conversely let G be a graph with sge(G)= 2 and let S = {u,v} be the
minimum strong edge geodetic set of G. Then all the edges of G lies on the u−v geodesic. Thus
G ∼= Pn.

A graph is geodetic if for every pair for vertices the shortest path between them is unique.
An undirected graph G = (V ,E) is said to be geodetic, if between any pair of vertices x, y ∈V (G)
there is a unique shortest path [5].

Theorem 3. For a connected non-complete geodetic graph G on n vertices with minimum cutset
of independent vertices C ⊂V (G), sge(G)≤ n− c where |C| = c.

Proof. Consider a connected non-complete geodetic graph G with minimum cutset of
independent vertices C = {c1, c2, . . . cc}, such that the V (G)\C splits G into at least two
components. It is clear that every vertex in C is adjacent to at least one vertex in each component
of G\C. Let S =V (G)\C. Consider an edge xy ∈ E(G). This edge xy can be of two forms.
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Case i: Suppose xy is an edge in any one component of G\C. Then xy itself forms a unique
fixed geodesic joining x and y, where {x, y} ∈ S.

Case ii: Suppose xy is an edge such that y ∈ C and x ∈ S. Since G is a geodetic graph, there
exists a vertex z ∈ G\C such that the edge xy lies on a unique fixed geodesic xyz. It is
clear that the vertices x and z lies on two different components of G\C. Thus S forms a
strong edge geodetic set of G and therefore sge(G)≤ n− c.

Theorem 4 ([13]). For a graph G of order n and exactly one vertex of degree (n−1), g1(G)= n−1.

Theorem 5. For a graph G of order n and exactly one vertex of degree (n−1), sge(G)= n−1.

Proof. For any connected graph G, g1(G) ≤ sge(G) and from Theorem 4, sge(G) ≥ n−1. Let
v ∈V (G) be the unique vertex of degree n−1. Let vx ∈ E(G). This implies that there exists at
least at least one vertex x′ where x and x′ are not adjacent. Let Q =V (G)\{v}. Clearly, the edge
vx lies on the unique fixed geodesic xvx′. Also, any edge of G which are not incident with v lies
on a fixed geodesic between the vertices of Q. Thus sge(G)≤ n−1 Hence for a graph G of order
n and exactly one vertex of degree (n−1), sge(G)= n−1.
The converse of the above theorem need not be true. For G = C4, sgeG = 3, but G does not have
any vertex of degree 3.

Corollary 1. For a graph G of order n ≥ 3 with a cut vertex of degree n−1, sge(G)= n−1.

Proof. Consider a connected graph G of order n ≥ 3 with a cut vertex x of degree n − 1.
This implies that x is the only vertex of degree n−1. Then it follows from Theorem 5 that
sge(G)= n−1.

Theorem 6. For a split graph G(V ,E) with complete set K , maximum stable set T , sge(G) ≥
2|E|+s2

1+2s2
2+3s1+2s1s2

2(2s1+s2) , where s1 = |T| and s2 denotes number of simplicial vertices in complete
set K .

Proof. Let S be a minimum strong edge geodetic set of G and let A be set of simplicial vertices
in K with |A| = s2. Also, let B be set of non simplicial vertices in S, |B| = s3. Clearly, T ⊆ S,
A ⊆ S and |S| = s1 + s2 + s3.

The strong edge geodetic set contains three components including the stable set, the set of
simplicial vertices in K and the set of non-simplicial vertices. It is clear that s1 and s2 are fixed,
hence to get the minimum strong edge geodetic set, s3 should be minimized. The geodesics
between any pair of vertices in the stable set T cover a maximum of three edges. Also, the
geodesics between any pair of vertices with one vertex in T and other vertex in A cover at most
two edges. Thus the optimization problem reduces to

minimize(s3)

subject to: 0≤ (s1 + s2 + s3)≤ n;

|E| ≤ 3

(
s1

2

)
+2s2s1 +2s3s1 + s3s2.
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From this we obtain S ≥ 2|E|+s2
1+2s2

2+3s1+2s1s2
2(2s1+s2) .

Therefore, sge(G)≥ 2|E|+s2
1+2s2

2+3s1+2s1s2
2(2s1+s2) .

Corollary 2. Suppose A =φ. Then sge(G)≥ 2|E|+s1(s1+3)
4s1

.

Theorem 7 ([13]). For any graph G with atleast two vertices of degree n−1, g1(G)= n.

Theorem 8. If G is a graph with order n and atleast two vertices of degree n−1, then sge(G)= n.

Proof. For any graph G, g1(G)≤ sge(G) and from Theorem 7. For G with order n and atleast
two vertices of degree n−1, sge(G)= n.

Corollary 3. For a complete graph Kn with order n ≥ 4 and edge e1 ∈ E(G), sge(Kn − e1)= n.

Corollary 4. For a complete graph Kn with order n ≥ 6 and edges {e1, e2} ∈ E(G), sge(Kn −
{e1, e2})= n.

Result 1. Let G be a cactus graph with m simplicial vertices and r cycles then, sge(G)≤ m+2r.
Also, the bound is sharp (refer Figure 2.1).

Figure 2.1. Cactus graph with sge(G)= 4

Result 2. Let G be a block cactus graph with m simplicial vertices and r cycles then,
sge(G)≤ m+2r. The bound is sharp for the graph (refer Figure 2.2).

Figure 2.2. Block cactus graph with sge(G)= 9
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Let G and H be two graphs of order n and m, respectively. The corona product G ◦H is
defined as the graph obtained from G and H by taking one copy of G and n copies of H and
joining by an edge each vertex from the ith-copy of H with the ith-vertex of G. The order of
G ◦H is o(G)o(H)+ o(G) [12].

Theorem 9. For graphs G and H with o(G)≥ 2, sge(G ◦H)= o(G)o(H).

Proof. Consider connected graphs G and H with o(G)= n and o(H)= m. The corona product of
graphs G and H i.e. (G ◦H) contains n copies of H. Let S be the set that contains all vertices
in each copies of Hi in G ◦ H. Since G and H are assumed to be connected, there exists a
fixed geodesics between the vertices in each Hi that covers all the edges of Hi . The unique
fixed geodesics between the vertices of Hi and H j , i 6= j covers the edges of G and the edges
connecting Hi and G. Thus sge(G ◦H)≤ o(G)o(H).

Suppose there exists a set S′ such that o(S′) < o(G)o(H) is a strong edge geodetic set of
(G ◦H). Then there exists H j such that v ∈ H j (1≤ j ≤ n) and v ∉ S′. Clearly, e = uv where u ∈G
is not covered by any u−v geodesic of S′. Therefore sge(G ◦H)= o(G)o(H).

Definition 1 ([16]). Let G be a connected graph. An ordered set S = {u1,u2, . . .uk} of vertices
of G is a linear geodetic set of G if for each x in G, there exists an index i, 1≤ i < k such that
x lies on ui −ui+1 geodesic in G and the minimum cardinality of the linear geodetic set is the
linear geodetic number, gl(G).

Definition 2. Consider a graph G with an ordered set of vertices, S = {x1, x2, . . . xk}. Then S is
a strong linear geodetic if for each x ∈ V\S, there exists an index i, 1 ≤ i < k such that x lies
on the unique fixed geodesic between xi and xi+1. The minimum cardinality of a strong linear
geodetic set is called the strong linear geodetic number, denoted as sgl(G).

v1

v2

v3

v4

Figure 2.3. Graph G with linear geodetic set {v1,v2} and strong linear geodetic set {v1,v2,v3,v4}

In [8] an upper bound of strong geodetic problem for Cartesian product of two graphs is given
as follows: If G and H are graphs, then sg(G�H) ≤ min{sg(H)o(G)− sg(H)+1, sg(G)o(H)−
sg(G)+1}. Later in [3], the bound is improved and is given as: If G and H are graphs, then
sg(G�H)≤min{sg(H)o(G)− o(H)+1, sg(G)o(H)− o(G)+1}. We give a new bound for sg(G�H)
using strong linear geodetic numbers of G and H.
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Theorem 10. For connected graphs G and H,

sg(G�H)≤min
{
sgl(H)+ (o(G)−1)

⌊ sgl(H)
2

⌋
, sgl(G)+ (o(H)−1)

⌊ sgl(G)
2

⌋}
.

Proof. Let o(G)= n, o(H)= m and V (G�H)= {(ui,v j)\ui ∈V (G),v j ∈V (H)}, where (i = 1,2, . . .n)
and ( j = 1,2, . . .m). Let m layers of G in G�H be: G1,G2 . . .Gm. Let P ⊆ V (G) where
P = {g1, g2, . . . gk} be the strong linear geodetic set of G. Define a set S = {(g i,h)\i = 1,2, . . .k, h ∈
V (H)}. Clearly, Ĩ(S) = V . Let v ∈ V (H). Define S′ = {(g i,v)i = 1,2, . . .k}∪ {(g j,h),h ∈ V (H)\v
where j = 2,4, . . .k if k ∼= 0mod2 or j = 2,4, . . . (k − 1) if k ∼= 1mod2}. Let (g,h) ∈ V (G�H).
If h = v then (g,h) ∈ Ĩ(Sv) where Sv ⊆ S and Sv = {(g i,v)\i = 1,2, . . .k}. Now, if h 6= v
then there exists vertices g i and g i+1 such that (g,h) ∈ Ĩ((g i,h), (g i+1,h)). Without loss
of generality assume i + 1 is odd. Consider the shortest path (g i,h) → (g i+1,h) → (g i+1,v).
Then it is straightforward to see that (g i,h) ∈ Ĩ((g i,h), (g i+1,v)). This implies I(S) = I(S′).
Thus S′ forms a strong geodetic for G�H. Therefore, sg(G�H) ≤ sgl(G)+ (o(H)−1)

⌊ sgl (G)
2

⌋
.

By symmetry, sg(G�H) ≤ sgl(H)+ (o(G)− 1)
⌊ sgl (H)

2

⌋
. Thus for connected graphs G and H,

sg(G�H)≤min
{
sgl(H)+ (o(G)−1)

⌊ sgl (H)
2

⌋
, sgl(G)+ (o(H)−1)

⌊ sgl (G)
2

⌋}
.

Definition 3 (Strong shortest path union cover, [18]). Let G(V ,E) be a connected graph. For
a fixed vertex u ∈ V (G), let Iu,v be the selected fixed shortest path between u and v denoted
by P̃u,v. A set S ⊆ V (G) is a strong shortest path union cover of G if for all e ∈ E(G) there
exists u ∈ S such that e lies on a fixed P̃u,v for some v ∈V (G). The cardinality of the minimum
strong shortest path union cover set is the strong shortest path union cover number denoted by
SSPuC(G).

Theorem 11. For connected graphs G and H, sge(G�H) ≤ min{SSPuC(H)o(G) + (o(H) −
SSPuC(H))(sge(G)−1),SSPuC(G)o(H)+ (o(G)−SSPuC(G))(sge(H)−1)}.

Proof. Let o(G) = n, o(H) = t. Then V (G�H) = {(g,h)\g ∈ V (G),h ∈ V (H)}. Let t layers of G
in G�H be: G1,G2 . . .G t. Let T ⊂ V (H) as T = {h1,h2, . . .hk} be a minimum strong shortest
path union cover set of H and and T c = V (H)\T . Also, let A = {g1, g2, . . . gm} be a minimum
strong edge geodetic set for G and consider B = {g1, g2, . . . gm−1}. Now, we will prove that
S = {(g,hi)\g ∈ V (G),hi ∈ T}∪ {(g j,h)\g j ∈ A,h ∈ T c} forms a strong edge geodetic cover for
G�H. Let e ∈ E(G�H). Suppose e = (gh)(gh′) of G�H. Since T is a strong shortest path union
cover set for H, there exists hi ∈ S such that the edge hh′ lies on the selected fixed shortest
path P̃hiv for some v ∈ V (H). Consider the vertex (g,v) in (Gv) layer and let Sv ⊆ S where
Sv = {(g j,v), j = 1,2, . . .m} is a strong edge geodetic set for the Gv layer. But it is also a strong
geodetic set. Therefore, there exists (gr,v), (g′

r,v) ∈ Sv such that the vertex (g,v) lies on the
selected fixed geodesic between (gr,v) and (g′

r,v). Now clearly, e = (gh)(gh′) lies on the fixed
geodesic (g,hi) → (g,v) → (gr,v). Suppose e lies on some Gk of G�H. Clearly, Sk ⊂ S where
Sk = {(g i,vk)\i = 1, , . . .m,vk ∈ V (H)\T} is a strong geodetic set for Gk layer. Then there exist
vertices (gr,vk) and (gs,vk) where r, s = 1,2, . . .m such that e lies on a unique fixed shortest path
between them. Suppose Sk = {(g,vk)\g ∈V (G),vk ∈ T}, then e ∈ Ĩ(Sk). Therefore S is strong edge
geodetic set for G�H. Consider, S′ = {(g,hi)\g ∈V (G),hi ∈ T}∪ {(g j,h)\g j ∈ B,h ∈ T c}. Suppose
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e′ = (gm,h′)(gm,h′′) ∈ E(G�H). Since the edge h′h′′ ∈ E(H) there exists h j ∈ T and u ∈V (H) such
that h′h′′ ∈ P̃h j ,u . Clearly, e′ ∈ Ĩ((gm,h j), (gm,u)). Since Su = (g1,u), (g2,u), . . . , (gm,u) is a strong
geodetic set Gu layer in G�H, there exists a geodesic between (gk,u) and (gm,u) where 1≤ k ≤
m−1. It is straightforward to see that e′ lies on the fixed geodesic (gm,h j)→ (gm,u)→ (gk,u).
Suppose e′ ∈ (gs,h)− (gm,h),1≤ s ≤ m−1 geodesic in Gh layer. Since h ∈V (H), there exits an
edge hx, x ∈V (H). Also, since T is a strong shortest path union cover set of H, there exits hl ∈ T ,
1≤ l ≤ k and z ∈V (H) such that hx ∈ P̃hl ,z . Clearly, (gm,hl) ∈ S′ and e′ lies on the fixed geodesic
(gm,hl) → (gm,h) → (gs,h). Thus Ĩ(S) = Ĩ(S′) and S′ is strong edge geodetic set for G�H.
This implies that sge(G�H)≤ SSPuC(H)o(G)+ (o(H)−SSPuC(H))(sge(G)−1). By symmetry,
sge(G�H)≤ SSPuC(G)o(H)+ (o(G)−SSPuC(G))(sge(H)−1). Thus for connected graphs G and
H, sge(G�H)≤min{SSPuC(H)o(G)+ (o(H)−SSPuC(H))(sge(G)−1),SSPuC(G)o(H)+ (o(G)−
SSPuC(G))(sge(H)−1)}.

Remark 1. In the above theorem the strong shortest path union cover number cannot be
replaced by the shortest path union cover number.

Definition 4 ([15]). Let G be a connected graph. An ordered set S = {u1,u2, . . .uk} of vertices of
G is a linear edge geodetic set of G if for each edge e = xy in G, there exists an index i, 1≤ i < k
such that e lies on ui − ui+1 geodesic in G and the minimum cardinality of the linear edge
geodetic set is the linear geodetic number.

Definition 5. Consider a graph G with an ordered set of vertices of G, S = {x1, x2, . . . xk}. Then
S is a strong linear edge geodetic if for every edge e ∈ E(G), there exists an index i, 1 ≤ i < k
such that e lies on unique fixed xi − xi+1 geodesic. The minimum cardinality of a strong linear
edge geodetic set is called the strong linear edge geodetic number, denoted as sgle(G).
A graph G is called strong linear edge geodetic graph,if G has a strong linear edge geodetic set.
The graphs in Figure 2.4 and Figure 2.5 are strong linear edge geodetic graphs.

Figure 2.4. Strong linear edge geodetic graph

Figure 2.5. Strong linear edge geodetic graph
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A graph may have linear edge geodetic set but not strong strong linear edge geodetic set (refer
Figure 2.6).

Figure 2.6. A graph G with linear edge geodetic set {v1,v2} but no strong linear edge geodetic set

Theorem 12. For connected strong linear edge geodetic graphs G and H,

sge(G�H)≤min
{
SSPuC(H)o(G)+ (o(H)−SSPuC(H))

⌊ sgle(G)
2

⌋
,

SSPuC(G)o(H)+ (o(G)−SSPuC(G))
⌊ sgle(H)

2

⌋}
.

Proof. Let o(G)= n, o(H)= m. Then V (G�H)= {(g,h)\g ∈V (G),h ∈V (H)}. Let m layers of G in
G�H be: G1,G2 . . .Gm. Let T ⊂V (H) as T = {h1,h2, . . .hk} be a minimum strong shortest path
union cover set of H and and T c = V (H)\T . Also, let A = {g1, g2, . . . gk} be a minimum strong
linear edge geodetic set for G and consider a set B = {g2, g4, . . . g j where j = m if m ∼= 0mod2 or
j = (m−1) if m ∼= 1mod2}. The set S = {(g,hi)\g ∈V (G),hi ∈ T}∪ {(g j,h)\g j ∈ A,h ∈ T c} forms a
strong edge geodetic set for G�H (by first part of Theorem 11). Let S′ = {(g,hi)\g ∈V (G),hi ∈
T}∪ {(g j,h)\g j ∈ B,h ∈ T c}. The proof of Ĩ(S)= Ĩ(S′) is similar to that of Theorem 10. Therefore,
we omit the proof.

Theorem 13. For complete graphs Km and Kn, where m ≥ n ≥ 2, sge(Km�Kn)= mn−n.

Proof. For any connected graph G, g1(G) ≤ sge(G). From [14], g1(Km�Kn) = mn− n. Thus
sge(G)≥ mn−n.

Define n layers of Km in Km�Kn as follows: K1
m,K2

m,K3
m, . . .Kn

m. Let S = V (Km) =
{g1, g2, . . . gm} and T = V (Kn) = {h1,h2, . . .hn}. Define the set T = S × T\{(g i,hi)} where i =
1,2, . . .n. We prove that T forms a strong edge geodetic set for Km�Kn. The set T contains
(m−1) vertices from each n layers of Km in Km�Kn. The geodesics between these (m−1)
vertices in K i

m, 1≤ i ≤ n will leave the edges having one endpoint at (g i,hi) uncovered. But the
diameter of Km�Kn is equal to 2. Thus these uncovered edges can be covered by the unique
fixed geodesic between (gl ,hi)→ (g i,hk) where i 6= l 6= k. Hence T forms a strong edge geodetic
set for Km�Kn. This implies that sge(G)≤ mn−n. Thus for complete graphs Km and Kn where
m ≥ n ≥ 2, sge(Km�Kn)= mn−n.

Consider Kn�Pm. Let K1
n,K2

n, . . . ,Km
n be the m layers of Kn. Let S be the strong edge

geodetic set of Kn�Pm. Observe that each geodesic between the vertices of S can cover at
most one edge of K i

n, 1≤ i ≤ m. Suppose (k,h), (k,h′) ∈ S, then the geodesic between (k,h)and
(k,h′) where k ∈ Kn; h,h′ ∈ Pm will not cover any edge of K i

n, 1 ≤ i ≤ m. If |S| = nr, 1 < r < m,
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then the geodesic between the vertices of S can cover at most
(rn

2

)−n
(r
2

)
edges of K i

n,1≤ i ≤ m.
Therefore m

(n
2

)≤ (rn
2

)−n
(r
2

)
. On simplification, m ≤ r2. By taking S as the vertices of r− layers

of Kn (1,4,9, . . . , r2 layers of Kn), it is straightforward to see that S is a strong edge geodetic set
of Kn�Pr2 . Therefore, we have the following theorem:

Theorem 14. For Kn�Pr2 , sge(Kn�Pr2)= nr, r ≥ 2.

Corollary 5. If r2 ≤ m ≤ (r+1)2, then nr ≤ sge(Kn�Pm)≤ n(r+1).

Theorem 15. For two positive integers a,b where a ≤ b ≤ 2a− 3 and a ≥ 2, there exists a
connected graph G with sg(G)= a and sge(G)= b.

Proof. For G = K1,n, sg = a = sge. If a < b ≤ 2a−3, let G be a graph obtained from P4 : yv1xua.
Add new vertices u1,u2, . . . ,ua−1 and join each ui to the vertex y. Also, add vertices vi and
w j where 2 ≤ i ≤ 2a− b − 1 and 1 ≤ j ≤ b − a. Now in G each vi and w j is joined to both
y and x. Also, the vertices w1,w2, . . . ,wb−a induces a complete graph on b-a vertices (refer
Figure 2.7). Thus, the graph G is obtained. It is clear that S = {u1,u2, . . . ,ua−1,ua} forms a
strong geodetic set for G. But S does not form a strong edge geodetic set for G. It can be easily
seen that T = S∪ {w1,w2, . . . ,wb−a} forms a strong edge geodetic set for G. Thus, sg = a and
sge = b−a+a−1+1= b.

Figure 2.7. Graph G with sg(G)= a and sge(G)= b

The strong geodetic problem was first studied by Manuel et al. in [11] and it is proved
to be NP-complete for general graphs. Later, in [7], the computational complexity for strong
geodetic problem is given for bipartite and multipartite graphs where it is proved to be NP-
complete for both bipartite and multipartite graphs. We prove that the strong geodetic problem
is NP-complete for chordal graphs. The proof of NP-completeness of strong geodetic problem for
chordal graphs is by polynomial reduction from dominating set problem.
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Theorem 16. Strong geodetic problem for chordal graphs is NP-complete.

Proof. Given a chordal graph G(V ,E), construct Ḡ(V̄ , Ē) as follows: V̄ =V ∪V ′∪V ′′∪ {a} where
V ′ is a set of independent vertices and V ′′ induces another set of independent vertices disjoint
from V ′. The edge set of Ḡ is Ē = E∪E′∪E′′ where E′ = {uu′\u ∈V ,u′ ∈V ′}∪{u′u′′\u′ ∈V ′,u′′ ∈
V ′′} and E′′ = {ua\u ∈V }∪ {u′a\u′ ∈V ′}. Clearly Ḡ is a chordal graph.

Since the vertices of V ′′ forms a set of simplicial vertices and they are the elements of any
strong geodetic set in Ḡ. Let D be any domination set of G. We will prove that D∪V ′′ forms a
strong geodetic set for Ḡ. Consider the geodesics between a vertex y′′ ∈V ′′ and x ∈ D. If x′′ = y′′,
then there exists unique geodesic y′′−x. Suppose y ∈ N(x), then there can be two different y′′−x
geodesics each of length 3. The y′′−x geodesics can be y′′y′yx or y′′y′ax. Clearly, these geodesics
cover all vertices of Ḡ in a unique fixed path. Thus D∪V ′′ forms a Strong geodetic set for Ḡ.

Conversely, assume that D∪V ′′ is a strong geodetic set of Ḡ. Let D′ = D\V ′, where D′ ⊂V (G).
Consider u′ ∈ V ′∩D and x ∈ D′. It is straightforward to see that, the vertices covered by the
geodesic u′− x can be covered by the (u′′− x) geodesic. Therefore, the vertices of V ′∩D are
redundant. This implies that D′∪V ′′ is a strong geodetic set for Ḡ. Clearly, D′ is a dominating
set for G.

3. Conclusion
This paper contains some general bounds for strong edge geodetic problem, strong edge geodetic
problem for specific graph classes and bounds for corona and Cartesian product of graphs.
In future, we hope to study the strong edge geodetic problem for other graph products like
lexicographic product, strong product and rooted product. Further, the strong edge geodetic
problem for some networks can also be found.
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