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1. Introduction and Preliminaries
In this paper, we introduce the binomial transform of the generalized third order Pell sequence
and we investigate, in detail, three special cases which we call them third order Pell, third order
Pell-Lucas and modified third order Pell sequences. We investigate their properties in the next
sections. In this section, we present some properties of the generalized Tribonacci sequence and
generalized third order Pell sequence.

The generalized Tribonacci sequence {Wn(W0,W1,W2; r, s, t)}n≥0 (or shortly {Wn}n≥0) is defined
as follows:

Wn = rWn−1 + sWn−2 + tWn−3, W0 = a,W1 = b,W2 = c, n ≥ 3 (1.1)

where W0,W1,W2 are arbitrary complex (or real) numbers and r, s, t are real numbers.
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This sequence has been studied by many authors, see e.g., [2–6,13,14,16,18,20,23,25,26].
The sequence {Wn}n≥0 can be extended to negative subscripts by defining

W−n =− s
t
W−(n−1) −

r
t
W−(n−2) +

1
t
W−(n−3)

for n = 1,2,3, . . . when t 6= 0. Therefore, recurrence (1.1) holds for all integer n.
As {Wn} is a third order recurrence sequence (difference equation), it’s characteristic equation

is

x3 − rx2 − sx− t = 0 (1.2)

whose roots are

α=α(r, s, t)= r
3
+ A+B ,

β=β(r, s, t)= r
3
+ωA+ω2B ,

γ= γ(r, s, t)= r
3
+ω2A+ωB ,

where

A =
(

r3

27
+ rs

6
+ t

2
+
p
∆

)1/3

, B =
(

r3

27
+ rs

6
+ t

2
−
p
∆

)1/3

,

∆=∆(r, s, t)= r3t
27

− r2s2

108
+ rst

6
− s3

27
+ t2

4
, ω= −1+ i

p
3

2
= exp(2πi/3).

If ∆(r, s, t)> 0, then eq. (1.2) has one real (α) and two non-real solutions with the latter being
conjugate complex. So, in this case, it is well known that generalized Tribonacci numbers can
be expressed, for all integers n, using Binet’s formula

Wn = c1α
n

(α−β)(α−γ)
+ c2β

n

(β−α)(β−γ)
+ c3γ

n

(γ−α)(γ−β)
, (1.3)

where

c1 =W2 − (β+γ)W1 +βγW0, c2 =W2 − (α+γ)W1 +αγW0, c3 =W2 − (α+β)W1 +αβW0 .

Note that the Binet form of a sequence satisfying (1.2) for non-negative integers is valid for all
integers n, for a proof of this result see [9]. This result of Howard and Saidak [9] is even true in
the case of higher-order recurrence relations.

Now we consider the case r = 2, s = t = 1 and in this case we write Vn =Wn. A generalized
third order Pell sequence {Vn}n≥0 = {Vn(V0,V1,V2)}n≥0 is defined by the third-order recurrence
relations

Vn = 2Vn−1 +Vn−2 +Vn−3 (1.4)

with the initial values V0 = c0, V1 = c1, V2 = c2 not all being zero.
The sequence {Vn}n≥0 can be extended to negative subscripts by defining

V−n =−V−(n−1) −2V−(n−2) +V−(n−3)

for n = 1,2,3, . . .. Therefore, recurrence (1.4) holds for all integer n.
Next, we define three special case of the sequence {Vn}. Third-order Pell sequence{P (3)

n }n≥0,
third-order Pell-Lucas sequence {Q(3)

n }n≥0 and modified third-order Pell sequence {E(3)
n }n≥0 are
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defined, respectively, by the third-order recurrence relations

P (3)
n+3 = 2P (3)

n+2 +P (3)
n+1 +P (3)

n , P (3)
0 = 0,P (3)

1 = 1,P (3)
2 = 2 , (1.5)

Q(3)
n+3 = 2Q(3)

n+2 +Q(3)
n+1 +Q(3)

n , Q(3)
0 = 3,Q(3)

1 = 2,Q(3)
2 = 6 , (1.6)

E(3)
n+3 = 2E(3)

n+2 +E(3)
n+1 +E(3)

n , E(3)
0 = 0,E(3)

1 = 1,E(3)
2 = 1 . (1.7)

The sequences {P (3)
n }n≥0, {Q(3)

n }n≥0 and {E(3)
n }n≥0 can be extended to negative subscripts by

defining

P (3)
−n =−P (3)

−(n−1) −2P (3)
−(n−2) +P (3)

−(n−3) , (1.8)

Q(3)
−n =−Q(3)

−(n−1) −2Q(3)
−(n−2) +Q(3)

−(n−3) , (1.9)

E(3)
−n =−E(3)

−(n−1) −2E(3)
−(n−2) +E(3)

−(n−3) (1.10)

for n = 1,2,3, . . . respectively. Therefore, recurrences (1.8), (1.9) and (1.10) hold for all integer n.
In the rest of the paper, for easy writing, we drop the superscripts and write Pn,Qn and En

for P (3)
n ,Q(3)

n and E(3)
n , respectively. Note that Pn is the sequence A077939 in [17] associated

with the expansion of 1/(1−2x− x2 − x3), Qn is the sequence A276225 in [17] and En is the
sequence A077997 in [17].

For more details for the generalized third order Pell numbers, see Soykan [21].

2. Binomial Transform of the Generalized Third Order Pell
Sequence Vn

In [12, p. 137], Knuth introduced the idea of the binomial transform. Given a sequence of
numbers (an), its binomial transform (ân) may be defined by the rule

ân =
n∑

i=0

(
n
i

)
ai, with inversion an =

n∑
i=0

(
n
i

)
(−1)n−i âi,

or, in the symmetric version

ân =
n∑

i=0

(
n
i

)
(−1)i+1ai, with inversion an =

n∑
i=0

(
n
i

)
(−1)i+1âi .

For more information on binomial transform, see, e.g., [7,8,15,24] and references therein.
In this section, we define the binomial transform of the generalized third order Pell sequence

Vn and as special cases the binomial transform of the third order Pell, third Order Pell-Lucas
and modified third order Pell sequences will be introduced.

Definition 2.1. The binomial transform of the generalized third order Pell sequence Vn is
defined by

bn = V̂n =
n∑

i=0

(
n
i

)
Vi.

The few terms of bn are

b0 =
0∑

i=0

(
0
i

)
Vi =V0 ,
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b1 =
1∑

i=0

(
1
i

)
Vi =V0 +V1 ,

b2 =
2∑

i=0

(
2
i

)
Vi =V0 +2V1 +V2 .

Translated to matrix language, bn has the nice (lower-triangular matrix) form

b0
b1
b2
b3
b4
...


=



1 0 0 0 0 · · ·
1 1 0 0 0 · · ·
1 2 1 0 0 · · ·
1 3 3 1 0 · · ·
1 4 6 4 1 · · ·
...

...
...

...
... . . .





V0
V1
V2
V3
V4
...


.

As special cases of bn = V̂n, the binomial transforms of the third order Pell, third order Pell-
Lucas and modified third order Pell sequences are defined as follows: The binomial transform of
the third order Pell sequence Pn is

P̂n =
n∑

i=0

(
n
i

)
Pi ,

the binomial transform of the third order Pell-Lucas sequence Qn is

Q̂n =
n∑

i=0

(
n
i

)
Q i ,

the binomial transform of the modified third order Pell sequence En is

Ên =
n∑

i=0

(
n
i

)
E i .

Lemma 2.2. For n ≥ 0, the binomial transform of the generalized third order Pell sequence Vn

satisfies the following relation:

bn+1 =
n∑

i=0

(
n
i

)
(Vi +Vi+1) .

Proof. We use the following well-known identity:(
n+1

i

)
=

(
n
i

)
+

(
n

i−1

)
.

Note also that(
n+1

0

)
=

(
n
0

)
= 1 and

(
n

n+1

)
= 0 .

Then

bn+1 =V0 +
n+1∑
i=1

(
n+1

i

)
Vi

=V0 +
n+1∑
i=1

(
n
i

)
Vi +

n+1∑
i=1

(
n

i−1

)
Vi
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=V0 +
n∑

i=1

(
n
i

)
Vi +

n∑
i=0

(
n
i

)
Vi+1

=
n∑

i=0

(
n
i

)
Vi +

n∑
i=0

(
n
i

)
Vi+1

=
n∑

i=0

(
n
i

)
(Vi +Vi+1) .

This completes the proof.

Remark 2.3. From the last Lemma we see that

bn+1 = bn +
n∑

i=0

(
n
i

)
Vi+1 .

The following Theorem gives recurrent relations of the binomial transform of the generalized
third order Pell sequence.

Theorem 2.4. For n ≥ 0, the binomial transform of the generalized third order Pell sequence Vn

satisfies the following recurrence relation:

bn+3 = 5bn+2 −6bn+1 +3bn . (2.1)

Proof. To show (2.1), writing

bn+3 = A×bn+2 +B×bn+1 +C×bn

and taking the values n = 0,1,2 and then solving the system of equations

b3 = A×b2 +B×b1 +C×b0 ,

b4 = A×b3 +B×b2 +C×b1 ,

b5 = A×b4 +B×b3 +C×b2 .

We find that A = 5, B =−6, C = 3.

Note that the recurrence relation (2.1) is independent from initial values. So

P̂n+3 = 5P̂n+2 −6P̂n+1 +3P̂n ,

Q̂n+3 = 5Q̂n+2 −6Q̂n+1 +3Q̂n ,

Ên+3 = 5Ên+2 −6Ên+1 +3Ên .

The sequence {bn}n≥0 can be extended to negative subscripts by defining

b−n = 2b−n+1 − 5
3

b−n+2 + 1
3

b−n+3

for n = 1,2,3, . . .. Therefore, recurrence (2.1) holds for all integer n.
The first few terms of the binomial transform of the generalized third order Pell sequence

with positive subscript and negative subscript are given in Table 1.
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Table 1. A few binomial transform (terms) of the generalized third order Pell sequence

n bn b−n

0 V0 V0

1 V0 +V1
2
3V0 −V1 + 1

3V2

2 V0 +2V1 +V2 −5
3V1 + 2

3V2

3 2V0 +4V1 +5V2 −7
9V0 − 5

3V1 + 7
9V2

4 7V0 +11V1 +19V2 −4
3V0 − 8

9V1 + 5
9V2

5 26V0 +37V1 +68V2 −37
27V0 + 4

9V1 + 1
27V2

6 94V0 +131V1 +241V2 −7
9V0 + 49

27V1 − 16
27V2

7 335V0 +466V1 +854V2
23
81V0 + 70

27V1 − 86
81V2

8 1189V0 +1655V1 +3028V2
38
27V0 + 187

81 V1 − 91
81V2

9 4217V0 +5872V1 +10739V2
506
243V0 + 73

81V1 − 164
243V2

10 14956V0 +20828V1 +38089V2
155
81 V0 − 287

243V1 + 41
243V2

11 53045V0 +73873V1 +135095V2
602
729V0 − 752

243V1 + 793
729V2

12 188140V0 +262013V1 +479158V2 −205
243V0 − 2858

729 V1 + 1217
729 V2

13 667298V0 +929311V1 +1699487V2 −5305
2187V0 − 2243

729 V1 + 3460
2187V2

The first few terms of the binomial transform numbers of the third order Pell, Pell-Lucas
and modified Pell sequences with positive subscript and negative subscript are given in Table 2.

Table 2. A few binomial transform (terms)

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13

P̂n 0 1 4 14 49 173 613 2174 7711 27350 97006 344063 1220329 4328285

P̂−n 0 −1
3 −1

3 −1
9

2
9

14
27

17
27

38
81

5
81 −109

243 −205
243 −670

729 −424
729

191
2187

Q̂n 3 5 13 44 157 560 1990 7061 25045 88829 315058 1117451 3963394 14057438

Q̂−n 3 2 2
3 −1 −22

9 −3 −61
27 −1

3
170
81 4 1067

243
76
27 −259

729 −319
81

Ên 0 1 3 9 30 105 372 1320 4683 16611 58917 208968 741171 2628798

Ê−n 0 −2
3 −1 −8

9 −1
3

13
27

11
9

124
81

32
27

55
243 −82

81 −1463
729 −547

243 −3269
2187

Eq. (1.3) can be used to obtain Binet formula of the binomial transform of generalized third
order Pell numbers. Binet formula of the binomial transform of generalized third order Pell
numbers can be given as

bn = C1θ
n
1

(θ1 −θ2)(θ1 −θ3)
+ C2θ

n
2

(θ2 −θ1)(θ2 −θ3)
+ C3θ

n
3

(θ3 −θ1)(θ3 −θ2)
, (2.2)
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where

C1 = b2 − (θ2 +θ3)b1 +θ2θ3b0 = (V0 +2V1 +V2)− (θ2 +θ3)(V0 +V1)+θ2θ3V0 ,

C2 = b2 − (θ1 +θ3)b1 +θ1θ3b0 = (V0 +2V1 +V2)− (θ1 +θ3)(V0 +V1)+θ1θ3V0 ,

C3 = b2 − (θ1 +θ2)b1 +θ1θ2b0 = (V0 +2V1 +V2)− (θ1 +θ2)(V0 +V1)+θ1θ2V0 .

Here, θ1, θ2 and θ3 are the roots of the cubic equation x3 −5x2 +6x−3= 0. Moreover

θ1 = 5
3
+

61
54

+
√

29
36

1/3

+
61

54
−

√
29
36

1/3

,

θ2 = 5
3
+ω

61
54

+
√

29
36

1/3

+ω2

61
54

−
√

29
36

1/3

,

θ3 = 5
3
+ω2

61
54

+
√

29
36

1/3

+ω
61

54
−

√
29
36

1/3

,

where

ω= −1+ i
p

3
2

= exp(2πi/3) .

Note that

θ1 +θ2 +θ3 = 5 ,

θ1θ2 +θ1θ3 +θ2θ3 = 6 ,

θ1θ2θ3 = 3 .

For all integers n, (Binet formulas of) binomial transforms of third-order Pell, Pell-Lucas
and modified Pell numbers (using initial conditions in (2.2) can be expressed using Binet’s
formulas as

P̂n = (−1+θ1)θn
1

(θ1 −θ2)(θ1 −θ3)
+ (−1+θ2)θn

2

(θ2 −θ1)(θ2 −θ3)
+ (−1+θ3)θn

3

(θ3 −θ1)(θ3 −θ2)
,

Q̂n = θn
1 +θn

2 +θn
3

and

Ên = (−2+θ1)θn
1

(θ1 −θ2)(θ1 −θ3)
+ (−2+θ2)θn

2

(θ2 −θ1)(θ2 −θ3)
+ (−2+θ3)θn

3

(θ3 −θ1)(θ3 −θ2)
,

respectively.

3. Generating Functions
The generating function of the binomial transform of the generalized third order Pell sequence
Vn is a power series centered at the origin whose coefficients are the binomial transform of the
generalized third order Pell sequence.

Next, we give the ordinary generating function fbn(x)=
∞∑

n=0
bnxn of the sequence bn.
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Lemma 3.1. Suppose that fbn(x)=
∞∑

n=0
bnxn is the ordinary generating function of the binomial

transform of the generalized third-order Pell sequence {Vn}n≥0. Then, fbn(x) is given by

fbn(x)= V0 + (V1 −4V0)x+ (V2 −3V1 +2V0)x2

1−5x+6x2 −3x3 . (3.1)

Proof. Using the definition of binomial transform, and subtracting 5x
∞∑

n=0
bnxn, −6x2

∞∑
n=0

bnxn

and 3x3
∞∑

n=0
bnxn from

∞∑
n=0

bnxn we obtain

(1−5x+6x2 −3x3)
∞∑

n=0
bnxn = (1−5x+6x2 −3x3)

∞∑
n=0

bnxn

=
∞∑

n=0
bnxn −5x

∞∑
n=0

bnxn +6x2
∞∑

n=0
bnxn −3x3

∞∑
n=0

bnxn

=
∞∑

n=0
bnxn −5

∞∑
n=0

bnxn+1 +6
∞∑

n=0
bnxn+2 −3

∞∑
n=0

bnxn+3

=
∞∑

n=0
bnxn −5

∞∑
n=1

bn−1xn +6
∞∑

n=2
bn−2xn −3

∞∑
n=3

bn−3xn

= (b0 +b1x+b2x2)−5(b0x+b1x2)+6b0x2

+
∞∑

n=3
(bn −5bn−1 +6bn−2 −3bn−3)xn

= b0 +b1x+b2x2 −5b0x−5b1x2 +6b0x2

= b0 + (b1 −5b0)x+ (b2 −5b1 +6b0)x2 .

Rearranging above equation, we obtain

fbn(x)=
∞∑

n=0
bnxn = b0 + (b1 −5b0)x+ (b2 −5b1 +6b0)x2

1−5x+6x2 −3x3 .

Using the values of b0, b1 and b2, we obtain the desired result.

Note that Barry shows in [1] that if A(x) is the generating function of the sequence {an},
then

S(x)= 1
1− x

A
( x
1− x

)
is the generating function of the sequence {bn} with bn =

n∑
i=0

(n
i
)
ai . In our case, since

A(x)= V0 + (V1 −2V0)x+ (V2 −2V1 −V0)x2

1−2x− x2 − x3 . (see [21]

We obtain

S(x)= 1
1− x

V0 + (V1 −2V0) x
1−x + (V2 −2V1 −V0)

( x
1−x

)2

1−2 x
1−x −

( x
1−x

)2 − ( x
1−x

)3

= V0 + (V1 −4V0)x+ (V2 −3V1 +2V0)x2

1−5x+6x2 −3x3 .

The previous lemma gives the following results as particular examples.
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Corollary 3.2. Generated functions of the binomial transform of the third-order Pell, Pell-Lucas
and modified Pell numbers are

∞∑
n=0

P̂nxn = x− x2

1−5x+6x2 −3x3 ,

∞∑
n=0

Q̂nxn = 3−10x+6x2

1−5x+6x2 −3x3

and
∞∑

n=0
Ênxn = x−2x2

1−5x+6x2 −3x3 ,

respectively.

4. Obtaining Binet Formula of Binomial Transform From
Generating Function

We next find Binet formula of the Binomial Transform of the generalized third order Pell
numbers {Vn} by the use of generating function for bn.

Theorem 4.1 (Binet formula of the Binomial Transform of the generalized third order Pell
numbers).

bn = d1θ
n
1

(θ1 −θ2)(θ1 −θ3)
+ d2θ

n
2

(θ2 −θ1)(θ2 −θ3)
+ d3θ

n
3

(θ3 −θ1)(θ3 −θ2)
, (4.1)

where

d1 = (V0θ
2
1 + (V1 −4V0)θ1 + (V2 −3V1 +2V0)) ,

d2 = (V0θ
2
2 + (V1 −4V0)θ2 + (V2 −3V1 +2V0) ,

d3 = (V0θ
2
3 + (V1 −4V0)θ3 + (V2 −3V1 +2V0) .

Proof. Let

h(x)= 1−5x+6x2 −3x3 .

Then for some θ1,θ2 and θ3 we write

h(x)= (1−θ1x)(1−θ2x)(1−θ3x)

i.e.,

1−5x+6x2 −3x3 = (1−θ1x)(1−θ2x)(1−θ3x) . (4.2)

Hence 1
θ1

, 1
θ2

and 1
θ3

are the roots of h(x). This gives θ1, θ2 and θ3 as the roots of

h
(
1
x

)
= 1− 5

x
+ 6

x2 − 3
x3 = 0 .

This implies x3 −5x2 +6x−3= 0. Now, by (3.1) and (4.2), it follows that
∞∑

n=0
bnxn = V0 + (V1 −4V0)x+ (V2 −3V1 +2V0)x2

1−5x+6x2 −3x3 .
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Then, we write
V0 + (V1 −4V0)x+ (V2 −3V1 +2V0)x2

(1−θ1x)(1−θ2x)(1−θ3x)
= A1

(1−θ1x)
+ A2

(1−θ2x)
+ A3

(1−θ3x)
. (4.3)

So

V0 + (V1 −4V0)x+ (V2 −3V1 +2V0)x2

= A1(1−θ2x)(1−θ3x)+ A2(1−θ1x)(1−θ3x)+ A3(1−θ1x)(1−θ2x) .

If we consider x = 1
θ1

, we get

V0 + (V1 −4V0)
1
θ1

+ (V2 −3V1 +2V0)
1
θ2

1
= A1

(
1− θ2

θ1

)(
1− θ3

θ1

)
.

This gives

A1 =
θ2

1(V0 + (V1 −4V0) 1
θ1

+ (V2 −3V1 +2V0) 1
θ2

1
)

(θ1 −θ2)(θ1 −θ3)
= (V0θ

2
1 + (V1 −4V0)θ1 + (V2 −3V1 +2V0))

(θ1 −θ2)(θ1 −θ3)
.

Similarly, we obtain

A2 =
(V0θ

2
2 + (V1 −4V0)θ2 + (V2 −3V1 +2V0)

(θ2 −θ1)(θ2 −θ3)
, A3 =

(V0θ
2
3 + (V1 −4V0)θ3 + (V2 −3V1 +2V0)

(θ3 −θ1)(θ3 −θ2)
.

Thus (4.3) can be written as
∞∑

n=0
bnxn = A1(1−θ1x)−1 + A2(1−θ2x)−1 + A3(1−θ3x)−1 .

This gives
∞∑

n=0
bnxn = A1

∞∑
n=0

θn
1 xn + A2

∞∑
n=0

θn
2 xn + A3

∞∑
n=0

θn
3 xn =

∞∑
n=0

(A1θ
n
1 + A2θ

n
2 + A3θ

n
3 )xn.

Therefore, comparing coefficients on both sides of the above equality, we obtain

bn = A1θ
n
1 + A2θ

n
2 + A3θ

n
3 ,

where

A1 =
(V0θ

2
1 + (V1 −4V0)θ1 + (V2 −3V1 +2V0))

(θ1 −θ2)(θ1 −θ3)
,

A2 =
(V0θ

2
2 + (V1 −4V0)θ2 + (V2 −3V1 +2V0)

(θ2 −θ1)(θ2 −θ3)
,

A3 =
(V0θ

2
3 + (V1 −4V0)θ3 + (V2 −3V1 +2V0)

(θ3 −θ1)(θ3 −θ2)
.

and then we get (4.1).

Note that from (2.2) and (4.1), we have

(V0 +2V1 +V2)− (θ2 +θ3)(V0 +V1)+θ2θ3V0 = (V0θ
2
1 + (V1 −4V0)θ1 + (V2 −3V1 +2V0)) ,

(V0 +2V1 +V2)− (θ1 +θ3)(V0 +V1)+θ1θ3V0 = (V0θ
2
2 + (V1 −4V0)θ2 + (V2 −3V1 +2V0) ,

(V0 +2V1 +V2)− (θ1 +θ2)(V0 +V1)+θ1θ2V0 = (V0θ
2
3 + (V1 −4V0)θ3 + (V2 −3V1 +2V0) .

Next, using Theorem 4.1, we present the Binet formulas of binomial transform of third-order
Pell, Pell-Lucas and modified Pell sequences.
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Corollary 4.2. Binet formulas of binomial transform of third-order Pell, Pell-Lucas and modified
Pell sequences are

P̂n = (−1+θ1)θn
1

(θ1 −θ2)(θ1 −θ3)
+ (−1+θ2)θn

2

(θ2 −θ1)(θ2 −θ3)
+ (−1+θ3)θn

3

(θ3 −θ1)(θ3 −θ2)
,

Q̂n = θn
1 +θn

2 +θn
3

and

Ên = (−2+θ1)θn
1

(θ1 −θ2)(θ1 −θ3)
+ (−2+θ2)θn

2

(θ2 −θ1)(θ2 −θ3)
+ (−2+θ3)θn

3

(θ3 −θ1)(θ3 −θ2)
respectively.

We can find Binet formulas by using matrix method which is given in [11]. Take k = i = 3 in
Corollary 3.1 in [11]. Let

Λ=
 θ2

1 θ1 1
θ2

2 θ2 1
θ2

3 θ3 1

 , Λ1 =
 θn−1

1 θ1 1
θn−1

2 θ2 1
θn−1

3 θ3 1

 ,

Λ2 =
 θ2

1 θn−1
1 1

θ2
2 θn−1

2 1
θ2

3 θn−1
3 1

 , Λ3 =
 θ2

1 θ1 θn−1
1

θ2
2 θ2 θn−1

2
θ2

3 θ3 θn−1
3

 .

Then the Binet formula for binomial transform of third-order Pell numbers is

P̂n = 1
det(Λ)

3∑
j=1

det P̂4− j(Λ j)= 1
Λ

(P̂3 det(Λ1)+ P̂2 det(Λ2)+ P̂1 det(Λ3))

= 1
det(Λ)

(14det(Λ1)+4det(Λ2)+det(Λ3))

=
14

∣∣∣∣∣∣
θn−1

1 θ1 1
θn−1

2 θ2 1
θn−1

3 θ3 1

∣∣∣∣∣∣+4

∣∣∣∣∣∣
θ2

1 θn−1
1 1

θ2
2 θn−1

2 1
θ2

3 θn−1
3 1

∣∣∣∣∣∣+
∣∣∣∣∣∣
θ2

1 θ1 θn−1
1

θ2
2 θ2 θn−1

2
θ2

3 θ3 θn−1
3

∣∣∣∣∣∣
/∣∣∣∣∣∣

θ2
1 θ1 1
θ2

2 θ2 1
θ2

3 θ3 1

∣∣∣∣∣∣
= (−1+θ1)θn

1

(θ1 −θ2)(θ1 −θ3)
+ (−1+θ2)θn

2

(θ2 −θ1)(θ2 −θ3)
+ (−1+θ3)θn

3

(θ3 −θ1)(θ3 −θ2)
.

Similarly, we obtain the Binet formulas for binomial transforms of third-order Pell-Lucas and
modified third-order Pell numbers as

Q̂n = 1
Λ

(Q̂3 det(Λ1)+ Q̂2 det(Λ2)+ Q̂1 det(Λ3))

=
44

∣∣∣∣∣∣
θn−1

1 θ1 1
θn−1

2 θ2 1
θn−1

3 θ3 1

∣∣∣∣∣∣+13

∣∣∣∣∣∣
θ2

1 θn−1
1 1

θ2
2 θn−1

2 1
θ2

3 θn−1
3 1

∣∣∣∣∣∣+5

∣∣∣∣∣∣
θ2

1 θ1 θn−1
1

θ2
2 θ2 θn−1

2
θ2

3 θ3 θn−1
3

∣∣∣∣∣∣
/∣∣∣∣∣∣

θ2
1 θ1 1
θ2

2 θ2 1
θ2

3 θ3 1

∣∣∣∣∣∣
= θn

1 +θn
2 +θn

3

and

Ên = 1
Λ

(Ê3 det(Λ1)+ Ê2 det(Λ2)+ Ê1 det(Λ3))

=
9

∣∣∣∣∣∣
θn−1

1 θ1 1
θn−1

2 θ2 1
θn−1

3 θ3 1

∣∣∣∣∣∣+3

∣∣∣∣∣∣
θ2

1 θn−1
1 1

θ2
2 θn−1

2 1
θ2

3 θn−1
3 1

∣∣∣∣∣∣+
∣∣∣∣∣∣
θ2

1 θ1 θn−1
1

θ2
2 θ2 θn−1

2
θ2

3 θ3 θn−1
3

∣∣∣∣∣∣
/∣∣∣∣∣∣

θ2
1 θ1 1
θ2

2 θ2 1
θ2

3 θ3 1

∣∣∣∣∣∣
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= (−2+θ1)θn
1

(θ1 −θ2)(θ1 −θ3)
+ (−2+θ2)θn

2

(θ2 −θ1)(θ2 −θ3)
+ (−2+θ3)θn

3

(θ3 −θ1)(θ3 −θ2)
, respectively.

5. Simson Formulas
There is a well-known Simson Identity (formula) for Fibonacci sequence {Fn}, namely,

Fn+1Fn−1 −F2
n = (−1)n

which was derived first by R. Simson in 1753 and it is now called as Cassini Identity (formula)
as well. This can be written in the form∣∣∣∣ Fn+1 Fn

Fn Fn−1

∣∣∣∣= (−1)n.

The following Theorem gives generalization of this result to the generalized Tribonacci
sequence {Wn}.

Theorem 5.1 (Simson Formula of Generalized Tribonacci Numbers). For all integers n, we have∣∣∣∣∣∣
Wn+2 Wn+1 Wn
Wn+1 Wn Wn−1
Wn Wn−1 Wn−2

∣∣∣∣∣∣= tn

∣∣∣∣∣∣
W2 W1 W0
W1 W0 W−1
W0 W−1 W−2

∣∣∣∣∣∣ . (5.1)

Proof. Eq. (5.1) is given in Soykan [19].

Taking {Wn}= {bn} in the above theorem and considering bn+3 = 5bn+2 −6bn+1 +3bn, r = 5,
s =−6, t = 3, we have the following proposition.

Proposition 5.2. For all integers n, Simson formula of binomial transforms of generalized
third-order Pell numbers is given as∣∣∣∣∣∣

bn+2 bn+1 bn
bn+1 bn bn−1
bn bn−1 bn−2

∣∣∣∣∣∣= 3n

∣∣∣∣∣∣
b2 b1 b0
b1 b0 b−1
b0 b−1 b−2

∣∣∣∣∣∣ .

The previous Proposition gives the following results as particular examples.

Corollary 5.3. For all integers n, Simson formula of binomial transforms of third-order Pell,
Pell-Lucas and modified Pell numbers are given as∣∣∣∣∣∣

P̂n+2 P̂n+1 P̂n
P̂n+1 P̂n P̂n−1
P̂n P̂n−1 P̂n−2

∣∣∣∣∣∣=−3n−2 ,

∣∣∣∣∣∣∣
Q̂n+2 Q̂n+1 Q̂n
Q̂n+1 Q̂n Q̂n−1
Q̂n Q̂n−1 Q̂n−2

∣∣∣∣∣∣∣=−29×3n−1

and ∣∣∣∣∣∣
Ên+2 Ên+1 Ên
Ên+1 Ên Ên−1
Ên Ên−1 Ên−2

∣∣∣∣∣∣=−3n−1

respectively.
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6. Some Identities
In this section, we obtain some identities of binomial transforms of third order Pell, third order
Pell-Lucas and modified third order Pell numbers. First, we can give a few basic relations
between {P̂n} and {Q̂n}.

Lemma 6.1. The following equalities are true:

3Q̂n =−11P̂n+4 +46P̂n+3 −24P̂n+2 , (6.1)

Q̂n =−3P̂n+3 +14P̂n+2 −11P̂n+1 , (6.2)

Q̂n =−P̂n+2 +7P̂n+1 −9P̂n , (6.3)

Q̂n = 2P̂n+1 −3P̂n −3P̂n−1 , (6.4)

Q̂n = 7P̂n −15P̂n−1 +6P̂n−2 (6.5)

and

261P̂n =−16Q̂n+4 +89Q̂n+3 −108Q̂n+2 , (6.6)

87P̂n = 3Q̂n+3 −4Q̂n+2 −16Q̂n+1 , (6.7)

87P̂n = 11Q̂n+2 −34Q̂n+1 +9Q̂n , (6.8)

29P̂n = 7Q̂n+1 −19Q̂n +11Q̂n−1 , (6.9)

29P̂n = 16Q̂n −31Q̂n−1 +21Q̂n−2 . (6.10)

Proof. Note that all the identities hold for all integers n. We prove (6.1). To show (6.1), writing

Q̂n = a× P̂n+4 +b× P̂n+3 + c× P̂n+2

and solving the system of equations

Q̂0 = a× P̂4 +b× P̂3 + c× P̂2 ,

Q̂1 = a× P̂5 +b× P̂4 + c× P̂3 ,

Q̂2 = a× P̂6 +b× P̂5 + c× P̂4 ,

we find that a =−11
3 , b = 46

3 , c =−8. The other equalities can be proved similarly.

Note that all the identities in the above lemma can be proved by induction as well.
Secondly, we present a few basic relations between {P̂n} and {Ên}.

Lemma 6.2. The following equalities are true:

3Ên =−P̂n+3 +2P̂n+2 +6P̂n+1 ,

Ên =−P̂n+2 +4P̂n+1 − P̂n ,

Ên =−P̂n+1 +5P̂n −3P̂n−1

and

3P̂n = Ên+3 −4Ên+2 +3Ên+1 ,

3P̂n = Ên+2 −3Ên+1 +3Ên ,

3P̂n = 2Ên+1 −3Ên +3Ên−1 .
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Thirdly, we give a few basic relations between {Q̂n} and {Ên}.

Lemma 6.3. The following equalities are true:

3Q̂n =−4Ên+3 +18Ên+2 −9Ên+1 ,

3Q̂n =−2Ên+2 +15Ên+1 −12Ên ,

3Q̂n = 5Ên+1 −6Ên−1,

and

87Ên = 20Q̂n+3 −75Q̂n+2 +19Q̂n+1 ,

87Ên = 25Q̂n+2 −101Q̂n+1 +60Q̂n ,

29Ên = 8Q̂n+1 −30Q̂n +25Q̂n−1 .

We now present a few special identities for the binomial transform of the third order
Pell-Lucas sequence {Q̂n}.

Theorem 6.4 (Catalan’s identity). For all integers n and m, the following identity holds

Q̂n+mQ̂n−m − Q̂2
n = 1

9
(5Ên+m+1 −6Ên+m−1)(5Ên−m+1 −6Ên−m−1)− 1

3
(5Ên+1 −6Ên−1)2 .

Proof. We use the identity

Q̂n = 1
3

(5Ên+1 −6Ên−1).

Note that for m = 1 in Catalan’s identity, we get the Cassini identity for the binomial
transform of the third order Pell-Lucas sequnce

Corollary 6.5 (Cassini’s identity). For all integers n and m, the following identity holds

Q̂n+1Q̂n−1 − Q̂2
n = 1

9
(5Ên+2 −6Ên)(5Ên −6Ên−2)− 1

3
(5Ên+1 −6Ên−1)2.

The d’Ocagne’s, Gelin-Cesàro’s and Melham’ identities can also be obtained by using
Q̂n = 1

3 (5Ên+1 −6Ên−1). The next theorem presents d’Ocagne’s, Gelin-Cesàro’s and Melham’
identities of the binomial transform of third order Pell-Lucas sequence {Q̂n}.

Theorem 6.6. Let n and m be any integers. Then the following identities are true:
(a) (d’Ocagne’s identity)

Q̂m+1Q̂n − Q̂mQ̂n+1

= 1
9

((5Êm+2 −6Êm)(5Ên+1 −6Ên−1)− (5Êm+1 −6Êm−1)(5Ên+2 −6Ên)).

(b) (Gelin-Cesàro’s identity)

Q̂n+2Q̂n+1Q̂n−1Q̂n−2 − Q̂4
n

= 1
81

((5Ên+3 −6Ên+1)(5Ên+2−6Ên)(5Ên −6Ên−2)(5Ên−1−6Ên−3)−(5Ên+1 −6Ên−1)4).
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(c) (Melham’s identity)

Q̂n+1Q̂n+2Q̂n+6 − Q̂3
n+3 =

1
27

((5Ên+2−6Ên)(5Ên+3−6Ên+1)(5Ên+7−6Ên+5)−(5Ên+1 −6Ên−1)3).

Proof. Use the identity Q̂n = 1
3 (5Ên+1 −6Ên−1).

7. Linear Sums
The following theorem presents some linear summing formulas of generalized Tribonacci
numbers with positive subscripts.

Theorem 7.1. For n ≥ 0, we have the following formulas:
(a) (Sum of the generalized Tribonacci numbers) If r+ s+ t−1 6= 0, then

n∑
k=0

Wk =
Wn+3 + (1− r)Wn+2 + (1− r− s)Wn+1 −W2 + (r−1)W1 + (r+ s−1)W0

r+ s+ t−1
.

(b) If 2s+2rt+ r2 − s2 + t2 −1= (r+ s+ t−1)(r− s+ t+1) 6= 0 then

n∑
k=0

W2k =

(
(−s+1)W2n+2 + (t+ rs)W2n+1 + (t2 + rt)W2n + (−1+ s)W2

+(−t− rs)W1 + (−1+ r2 − s2 + rt+2s)W0

)
(r+ s+ t−1)(r− s+ t+1)

and

n∑
k=0

W2k+1 =

(
(r+ t)W2n+2 + (s− s2 + t2 + rt)W2n+1 + (t− st)W2n + (−r− t)W2

+(−1+ s+ r2 + rt)W1 + (−t+ st)W0

)
(r− s+ t+1)(r+ s+ t−1)

.

Proof. This is given in Soykan [22].

Taking r = 5, s =−6, t = 3, bn =Wn in Theorem 7.1(a,b), we obtain the following proposition
which gives sum formulas for the binomial transform of the generalized third order Pell sequence

Proposition 7.2. For n ≥ 0, we have the following formulas:

(a)
n∑

k=0
bk = bn+3 −4bn+2 +2bn+1 −b2 +4b1 −2b0.

(b)
n∑

k=0
b2k = 1

15 (7b2n+2 −27b2n+1 +24b2n −7b2 +27b1 −9b0).

(c)
n∑

k=0
b2k+1 = 1

15 (8b2n+2 −18b2n+1 +21b2n −8b2 +33b1 −21b0).

From the above proposition, we have the following corollary which gives linear sum formulas
of the binomial transform of the third order Pell numbers (take bn = P̂n with P̂0 = 0, P̂1 = 1,
P̂2 = 4).

Corollary 7.3. For n ≥ 0, binomial transform of the third order Pell numbers have the following
properties.

(a)
n∑

k=0
P̂k = P̂n+3 −4P̂n+2 +2P̂n+1.
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(b)
n∑

k=0
P̂2k = 1

15 (7P̂2n+2 −27P̂2n+1 +24P̂2n −1).

(c)
n∑

k=0
P̂2k+1 = 1

15 (8P̂2n+2 −18P̂2n+1 +21P̂2n +1).

Taking bn = Q̂n with Q̂0 = 3, Q̂1 = 5, Q̂2 = 13 in the above proposition, we have the following
corollary which presents linear sum formulas of the binomial transform of the third order
Pell-Lucas numbers.

Corollary 7.4. For n ≥ 0, binomial transform of the third order Pell-Lucas numbers have the
following properties.

(a)
n∑

k=0
Q̂k = Q̂n+3 −4Q̂n+2 +2Q̂n+1 +1.

(b)
n∑

k=0
Q̂2k = 1

15 (7Q̂2n+2 −27Q̂2n+1 +24Q̂2n +17).

(c)
n∑

k=0
Q̂2k+1 = 1

15 (8Q̂2n+2 −18Q̂2n+1 +21Q̂2n −2).

From the above Proposition, we have the following corollary which gives linear sum formulas
of the binomial transform of the third order modified Pell numbers (take bn = Ên with Ê0 = 0,
Ê1 = 1, Ê2 = 3).

Corollary 7.5. For n ≥ 0, binomial transform of the third order modified Pell numbers have the
following properties.

(a)
n∑

k=0
Êk = Ên+3 −4Ên+2 +2Ên+1 +1.

(b)
n∑

k=0
Ê2k = 1

15 (7Ê2n+2 −27Ê2n+1 +24Ê2n +6).

(c)
n∑

k=0
Ê2k+1 = 1

15 (8Ê2n+2 −18Ê2n+1 +21Ê2n +9).

The following Theorem presents some linear summing formulas (identities) of generalized
Tribonacci numbers with negative subscripts.

Theorem 7.6. For n ≥ 1, we have the following formulas:
(a) (Sum of the generalized Tribonacci numbers with negative indices) If r+ s+ t−1 6= 0, then

n∑
k=1

W−k =
−(r+ s+ t)W−n−1 − (s+ t)W−n−2 − tW−n−3 +W2 + (1− r)W1 + (1− r− s)W0

r+ s+ t−1
.

(b) If (r+ s+ t−1)(r− s+ t+1) 6= 0 then

n∑
k=1

W−2k =

(−(r+ t)W−2n+1 + (r2 + rt+ s−1)W−2n + (st− t)W−2n−1

+(1− s)W2 + (t+ rs)W1 + (1− rt−2s− r2 + s2)W0

)
(r+ s+ t−1)(r− s+ t+1)
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and

n∑
k=1

W−2k+1 =

(
(s−1)W−2n+1 − (t+ rs)W−2n − (t2 + rt)W−2n−1

+(r+ t)W2 + (1− r2 − rt− s)W1 + (t− st)W0

)
(r+ s+ t−1)(r− s+ t+1)

.

Proof. This is given in Soykan [22].

Taking r = 5, s =−6, t = 3, bn =Wn in Theorem 7.6(a,b), we obtain the following proposition
which gives sum formulas for the binomial transform of the generalized third order Pell sequence
with negative subscripts.

Proposition 7.7. For n ≥ 1, we have the following formulas:

(a)
n∑

k=1
b−k =−2b−n−1 +3b−n−2 −3b−n−3 +b2 −4b1 +2b0.

(b)
n∑

k=1
b−2k = 1

15 (−8b−2n+1 +33b−2n −21b−2n−1 +7b2 −27b1 +9b0).

(c)
n∑

k=1
b−2k+1 = 1

15 (−7b−2n+1 +27b−2n −24b−2n−1 +8b2 −33b1 +21b0).

Taking bn = P̂n with P̂0 = 0, P̂1 = 1, P̂2 = 4 in the above proposition, we have the following
corollary which gives linear sum formulas of the binomial transform of third order Pell sequence
with negative subscripts.

Corollary 7.8. For n ≥ 1, binomial transform of the third order Pell numbers have the following
properties.

(a)
n∑

k=1
P̂−k =−2P̂−n−1 +3P̂−n−2 −3P̂−n−3.

(b)
n∑

k=1
P̂−2k = 1

15 (−8P̂−2n+1 +33P̂−2n −21P̂−2n−1 +1).

(c)
n∑

k=1
P̂−2k+1 = 1

15 (−7P̂−2n+1 +27P̂−2n −24P̂−2n−1 −1).

From the last Proposition, we have the following corollary which gives linear sum formulas
of the binomial transform of the third order Pell-Lucas numbers (take bn = Q̂n with Q̂0 = 3,
Q̂1 = 5, Q̂2 = 13).

Corollary 7.9. For n ≥ 1, binomial transform of the third order Pell-Lucas numbers have the
following properties.

(a)
n∑

k=1
Q̂−k =−2Q̂−n−1 +3Q̂−n−2 −3Q̂−n−3 −1.

(b)
n∑

k=1
Q̂−2k = 1

15 (−8Q̂−2n+1 +33Q̂−2n −21Q̂−2n−1 −17).

(c)
n∑

k=1
Q̂−2k+1 = 1

15 (−7Q̂−2n+1 +27Q̂−2n −24Q̂−2n−1 +2).
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Taking bn = Ên with Ê0 = 0, Ê1 = 1Ê2 = 3 in the above proposition, we have the following
corollary which gives linear sum formulas of the binomial transform of third order modified Pell
sequence with negative subscripts.

Corollary 7.10. For n ≥ 1, binomial transform of the third order modified Pell numbers have
the following properties.

(a)
n∑

k=1
Ê−k =−2Ê−n−1 +3Ê−n−2 −3Ê−n−3 −1.

(b)
n∑

k=1
Ê−2k = 1

15 (−8Ê−2n+1 +33Ê−2n −21Ê−2n−1 −6).

(c)
n∑

k=1
Ê−2k+1 = 1

15 (−7Ê−2n+1 +27Ê−2n −24Ê−2n−1 −9).

8. Matrices Related with Binomial Transform of Generalized
Third-Order Pell numbers

Matrix formulation of Wn can be given as Wn+2
Wn+1
Wn

=
 r s t

1 0 0
0 1 0

n  W2
W1
W0

 . (8.1)

For matrix formulation (8.1), see [10]. In fact, Kalman give the formula in the following form Wn
Wn+1
Wn+2

=
 0 1 0

0 0 1
r s t

n  W0
W1
W2

 .

We define the square matrix A of order 3 as:

A =
 5 −6 3

1 0 0
0 1 0


such that det A = 3. From (2.1) we have bn+2

bn+1
bn

=
 5 −6 3

1 0 0
0 1 0

 bn+1
bn

bn−1

 (8.2)

and from (8.1) (or using (8.2) and induction), we have bn+2
bn+1
bn

=
 5 −6 3

1 0 0
0 1 0

n  b2
b1
b0

 .

If we take bn = P̂n in (8.2), we have P̂n+2
P̂n+1
P̂n

=
 5 −6 3

1 0 0
0 1 0

 P̂n+1
P̂n

P̂n−1

 . (8.3)
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For n ≥ 0, we also define

Bn =



n+1∑
k=0

P̂k −3
(
2

n∑
k=0

P̂k −
n−1∑
k=0

P̂k

)
3

n∑
k=0

P̂k

n∑
k=0

P̂k −3
(
2

n−1∑
k=0

P̂k −
n−2∑
k=0

P̂k

)
3

n−1∑
k=0

P̂k

n−1∑
k=0

P̂k −3
(
2

n−2∑
k=0

P̂k −
n−3∑
k=0

P̂k

)
3

n−2∑
k=0

P̂k


and

Cn =
 bn+1 −6bn +3bn−1 3bn

bn −6bn−1 +3bn−2 3bn−1
bn−1 −6bn−2 +3bn−3 3bn−2

 .

By convention, we assume that
−1∑
k=0

P̂k = 0,
−2∑
k=0

P̂k =
1
3

,
−3∑
k=0

P̂k =
2
3

.

Theorem 8.1. For all integer m,n ≥ 0, we have
(a) Bn = An,

(b) C1An = AnC1,

(c) Cn+m = CnBm = BmCn.

Proof. (a) Proof can be done by mathematical induction on n.

(b) After matrix multiplication, (b) follows.

(c) We have

ACn−1 =
 5 −6 3

1 0 0
0 1 0

 bn −6bn−1 +3bn−2 3bn−1
bn−1 −6bn−2 +3bn−3 3bn−2
bn−2 −6bn−3 +3bn−4 3bn−3


=

 bn+1 −6bn +3bn−1 3bn
bn −6bn−1 +3bn−2 3bn−1

bn−1 −6bn−2 +3bn−3 3bn−2

= Cn.

i.e. Cn = ACn−1. From the last equation, using induction we obtain Cn = An−1C1. Now

Cn+m = An+m−1C1 = An−1AmC1 = An−1C1Am = CnBm

and similarly

Cn+m = BmCn.

Some properties of matrix An can be given as

An = 5An−1 −6An−2 +3An−3 = 2An+1 − 5
3

An+2 + 1
3

An+3 ,

An+m = An Am = Am An

and

det(An)= 3n

for all integer m,n ≥ 0.
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Theorem 8.2. For m,n ≥ 0, we have

bn+m = bn

m+1∑
k=0

P̂k +bn−1

(
−6

m∑
k=0

P̂k +3
m−1∑
k=0

P̂k

)
+3bn−2

m∑
k=0

P̂k (8.4)

=
(

m∑
k=0

P̂k

)
(3bn−2 −6bn−1)+3

(
m−1∑
k=0

P̂k

)
bn−1 +

(
m+1∑
k=0

P̂k

)
bn . (8.5)

Proof. From the equation Cn+m = CnBm = BmCn we see that an element of Cn+m is the product
of row Cn and a column Bm. From the last equation we say that an element of Cn+m is the
product of a row Cn and column Bm. We just compare the linear combination of the 2nd row
and 1st column entries of the matrices Cn+m and CnBm. This completes the proof.

Corollary 8.3. For m,n ≥ 0, we have

P̂n+m = P̂n

m+1∑
k=0

P̂k + P̂n−1

(
−6

m∑
k=0

P̂k +3
m−1∑
k=0

P̂k

)
+3P̂n−2

m∑
k=0

P̂k ,

Q̂n+m = Q̂n

m+1∑
k=0

P̂k + Q̂n−1

(
−6

m∑
k=0

P̂k +3
m−1∑
k=0

P̂k

)
+3Q̂n−2

m∑
k=0

P̂k ,

Ên+m = Ên

m+1∑
k=0

P̂k + Ên−1

(
−6

m∑
k=0

P̂k +3
m−1∑
k=0

P̂k

)
+3Ên−2

m∑
k=0

P̂k .

From Corollary 7.3, we know that for n ≥ 0,
n∑

k=0
P̂k = P̂n+3 −4P̂n+2 +2P̂n+1 .

Thus Theorem 8.2 and Corollary 8.3 can be written in the following forms:

Theorem 8.4. For m,n ≥ 0, we have

bn+m = bn(P̂m+3 −4P̂m+2 +3P̂m+1)+bn−1(−4P̂m+3 +17P̂m+2 −12P̂m+1)
+3bn−2(P̂m+3 −4P̂m+2 +2P̂m+1).

Corollary 8.5. For m,n ≥ 0, we have

P̂n+m = P̂n(P̂m+3 −4P̂m+2 +3P̂m+1)+ P̂n−1(−4P̂m+3 +17P̂m+2 −12P̂m+1)
+3P̂n−2(P̂m+3 −4P̂m+2 +2P̂m+1),

Q̂n+m = Q̂n(P̂m+3 −4P̂m+2 +3P̂m+1)+ Q̂n−1(−4P̂m+3 +17P̂m+2 −12P̂m+1)

+3Q̂n−2(P̂m+3 −4P̂m+2 +2P̂m+1),
Ên+m = Ên(P̂m+3 −4P̂m+2 +3P̂m+1)+ Ên−1(−4P̂m+3 +17P̂m+2 −12P̂m+1)

+3Ên−2(P̂m+3 −4P̂m+2 +2P̂m+1).

Now, we consider non-positive subscript cases. For n ≥ 0, we define

B−n =


−

n−2∑
k=0

P̂−k 3(2
n−1∑
k=0

P̂−k −
n∑

k=0
P̂−k) −3

n−1∑
k=0

P̂−k

−
n−1∑
k=0

P̂−k 3(2
n∑

k=0
P̂−k −

n+1∑
k=0

P̂−k) −3
n∑

k=0
P̂−k

−
n∑

k=0
P̂−k 3(2

n+1∑
k=0

P̂−k −
n+2∑
k=0

P̂−k) −3
n+1∑
k=0

P̂−k
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and

C−n =
 b−n+1 −6b−n +3b−n−1 3b−n

b−n −6b−n−1 +3b−n−2 3b−n−1
b−n−1 −6b−n−2 +3b−n−3 3b−n−2

 .

By convention, we assume that
−1∑
k=0

P̂−k = 0,
−2∑
k=0

P̂−k =−1.

Theorem 8.6. For all integer m,n ≥ 0, we have
(a) B−n = A−n,

(b) C−1A−n = A−nC−1,

(c) C−n−m = C−nB−m = B−mC−n.

Proof. (a) Proof can be done by mathematical induction on n.

(b) After matrix multiplication, (b) follows.

(c) We have

A−1C−n−1 =
 5 −6 3

1 0 0
0 1 0

 b−n −6b−n−1 +3b−n−2 3b−n−1
b−n−1 −6b−n−2 +3b−n−3 3b−n−2
b−n−2 −6b−n−3 +3b−n−4 3b−n−3


=

 b−n+1 −6b−n +3b−n−1 3b−n
b−n −6b−n−1 +3b−n−2 3b−n−1

b−n−1 −6b−n−2 +3b−n−3 3b−n−2

= C−n.

i.e. C−n = A−1C−n−1. From the last equation, using induction we obtain C−n = A−n−1C−1.
Now

C−n−m = A−n−m−1C−1 = A−n−1A−mC−1 = A−n−1C−1A−m = C−nB−m

and similarly

C−n−m = B−mC−n.

Some properties of matrix A−n can be given as

A−n = 5A−n−1 −6A−n−2 +3A−n−3 = 2A−n+1 − 5
3

A−n+2 + 1
3

A−n+3 ,

A−n−m = A−n A−m = A−m A−n

and

det(A−n)= 3−n

for all integer m,n ≥ 0.

Theorem 8.7. For m,n ≥ 0, we have

b−n−m =−b−n

m−2∑
k=0

P̂−k −b−n−1

(
−6

m−1∑
k=0

P̂−k +3
m∑

k=0
P̂−k

)
−3b−n−2

(
m−1∑
k=0

P̂−k

)

=−3

(
m∑

k=0
P̂−k

)
b−n−1 −b−n

m−2∑
k=0

P̂−k − (3b−n−2 −6b−n−1)
m−1∑
k=0

P̂−k .
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Proof. From the equation C−n−m = C−nB−m = B−mC−n we see that an element of C−n−m is the
product of row C−n and a column B−m. From the last equation we say that an element of C−n−m
is the product of a row C−n and column B−m. We just compare the linear combination of the 2nd
row and 1st column entries of the matrices C−n−m and C−nB−m. This completes the proof.

Corollary 8.8. For m,n ≥ 0, we have

P̂−n−m =−P̂−n

m−2∑
k=0

P̂−k − P̂−n−1

(
−6

m−1∑
k=0

P̂−k +3
m∑

k=0
P̂−k

)
−3P̂−n−2

(
m−1∑
k=0

P̂−k

)
,

Q̂−n−m =−Q̂−n

m−2∑
k=0

P̂−k − Q̂−n−1

(
−6

m−1∑
k=0

P̂−k +3
m∑

k=0
P̂−k

)
−3Q̂−n−2

(
m−1∑
k=0

P̂−k

)
,

Ê−n−m =−Ê−n

m−2∑
k=0

P̂−k − Ê−n−1

(
−6

m−1∑
k=0

P̂−k +3
m∑

k=0
P̂−k

)
−3Ê−n−2

(
m−1∑
k=0

P̂−k

)
.

From Corollary 7.8, we know that for n ≥ 1,
n∑

k=1
P̂−k =−2P̂−n−1 +3P̂−n−2 −3P̂−n−3.

Since P̂0 = 0, it follows that
n∑

k=0
P̂−k =−2P̂−n−1 +3P̂−n−2 −3P̂−n−3.

Thus Theorem 8.7 and Corollary 8.8 can be written in the following forms.

Theorem 8.9. For m,n ≥ 0, we have

b−n−m =−b−n(−7P̂−m +9P̂−m−1 −6P̂−m−2)−9b−n−1(P̂−m − P̂−m−1 + P̂−m−2)
−3b−n−2(−2P̂−m +3P̂−m−1 −3P̂−m−2).

Corollary 8.10. For m,n ≥ 0, we have

P̂−n−m =−P̂−n(−7P̂−m +9P̂−m−1 −6P̂−m−2)−9P̂−n−1(P̂−m − P̂−m−1 + P̂−m−2)
−3P̂−n−2(−2P̂−m +3P̂−m−1 −3P̂−m−2),

Q̂−n−m =−Q̂−n(−7P̂−m +9P̂−m−1 −6P̂−m−2)−9Q̂−n−1(P̂−m − P̂−m−1 + P̂−m−2)

−3Q̂−n−2(−2P̂−m +3P̂−m−1 −3P̂−m−2),
Ê−n−m =−Ê−n(−7P̂−m +9P̂−m−1 −6P̂−m−2)−9Ê−n−1(P̂−m − P̂−m−1 + P̂−m−2)

−3Ê−n−2(−2P̂−m +3P̂−m−1 −3P̂−m−2)).

9. Conclusion
In the literature, there have been so many studies of the sequences of numbers and the
sequences of numbers were widely used in many research areas, such as physics, engineering,
architecture, nature and art. We introduced the binomial transform of the generalized third-
order Pell sequence and as special cases, the binomial transform of the third-order Pell, third-
order Pell-Lucas and modified third-order Pell sequences have been defined. In Section 1,
we present some background about the generalized Tribonacci numbers and the generalized
third-order Pell numbers. In Section 2, we defined the binomial transform of the generalized
third-order Pell sequence. In Sections 3 and 4, we gave generating functions and Binet’s
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formulas of the binomial transform of the generalized third-order Pell sequence. In Section 5,
we present Simson formulas of the binomial transform of the generalized third-order Pell
sequence. In Section 6, we obtained some identities of the binomial transform of the generalized
third-order Pell sequence. In Section 7, we present sum formulas of the binomial transform of
the generalized third-order Pell sequence. In Section 8, we gave some matrix formulation of the
binomial transform of the generalized third-order Pell sequence.
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