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1. Introduction
Let X be a normed space and C be a nonempty subset of X . The mapping T : C → C is said to be

(1) nonexpansive, if ‖Tx−T y‖ ≤ ‖x− y‖ for all x, y ∈ C.

(2) quasi-nonexpansive, if ‖Tx− p‖ ≤ ‖x− p‖ for all x ∈ C and p ∈ F(T), where F(T) denotes
the set of all fixed point of T , i.e.,

F(T)= {x : Tx = x, x ∈ C}.
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Many nonlinear problems are formulated as fixed point problems

x = Tx (1.1)

where fixed point mapping T may be nonlinear. The solution of the problem is called a fixed
point of the mapping T .
The fixed point iteration is given by

xn+1 = Txn, ∀ n ∈ N. (1.2)

The iteration process (1.2) is also known as Picard iteration, Richardson iteration or method of
successive substitution. For the Banach contraction mapping, the Picard iteration converges
to unique fixed point of T , but this iteration fails to approximate fixed point for nonexpansive
mapping. On the other hand, this iteration method enable us to identify the existence of fixed
point of T .

In last fifty years, many researchers designed iterative process to approximate fixed point of
nonexpansive mapping and for some wider class of nonexpansive mappings (see [1,4,10,11,13])
and compare which iteration process is faster.

In 1953, Mann [10] introduced an iteration process: For an arbitrary x0 ∈ C, construct
sequence {xn} as follows

xn+1 =αnxn + (1−αn)Txn, n ≥ 0, (1.3)

where {αn} is real sequence in the interval (0,1).
In 2011, Sahu [12] introduced Normal S-iteration process: For convex subset C of normed

linear space X and a mapping T : C → T , x0 ∈ C, construct a sequence {xn} in C as follows{
xn+1 = T yn,
yn = (1−αn)xn +αnTxn, n ∈ N,

(1.4)

where {αn} is real sequence in (0,1).
The rate of convergence of Normal S-iteration is similar to the Picard iteration process and

it is faster than other fixed point iteration process (see [12, Theorem 3.5]).

Remark 1.1. If α= 0, then Normal S-iteration process (1.4) reduces to Picard iteration process.

In 2014, Kadioglu and Yildirim [5] introduced Picard Normal S-iteration process: With
C, X ,T as in Normal S-Iteration, for x1 ∈ C, construct a sequence {xn} in C as follows:

xn+1 = T yn,
yn = (1−αn)zn +αnTzn,
zn = (1−βn)xn +βnTxn, n ∈ N.

(1.5)

The rate of convergence of Picard Normal S-iteration is faster than Normal S-iteration iteration
(see [5, Theorem 5]).

Remark 1.2. (1) If βn = 0, then Picard Normal S-iteration process (1.5) reduces to Normal
S-iteration iteration process.

(2) If αn = 0, βn = 0, then Picard Normal S-iteration process (1.5) reduces to Picard iteration
process.
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In 2016, Imdad and Dashputre [3] established strong and ∆-convergence results for Picard
Normal S-iteration process (1.5) for generalized nonexpansive mappings in uniformly convex
hyperbolic space. In this paper, we design a new iteration process as follows: With C, X ,T as in
Normal S-iteration, for x1 ∈ C, construct a sequence {xn} in C as follows:

xn+1 = T yn,
yn = (1−αn)zn +αnTzn,
wn = (1−βn)wn +βnTwn,
zn = (1−γn)xn +γnTxn, n ∈ N.

(1.6)

Remark 1.3. (1) If γn = 0, then new iteration process (1.6) reduces to Picard Normal S-
iteration iteration.

(2) If βn = 0, γn = 0, then new iteration process (1.6) reduces to Normal S-iteration process.

(3) If αn = 0, βn = 0 and γn = 0, then new iteration process (1.6) reduces to Picard iteration
process.

Since the new iterative process is generalization of Picard Normal S-iteration Process,
therefore we can call it by Generalized Picard Normal S-iteration process.

In this paper, we will show Generalized Picard Normal S-iteration Process is faster than
Picard Normal S-iteration process, Normal S-iteration process, Mann iteration process and
Picard iteration process. Also, we will established strong and ∆-convergence theorems for
Generalized Picard Normal S-iteration process for generalized nonexpansive mappings in
uniformly convex hyperbolic space.

2. Preliminaries
Let (X ,d) be a metric space and C be a nonempty subset of X . In 2008, Suzuki [14] defined a
class of single valued mapping as follows

1
2

d(x,Tx)≤ d(x, y)→ d(Tx,T y)≤ d(x, y) (2.1)

The equation (2.1) is Suzuki-generalized nonexpansive mapping (or Condition (C)).

Remark 2.1. The Suzuki-generalized nonexpansive mapping (or Condition (C)) is weak than
nonexpansive mapping and stronger than quasi-nonexpansive mapping. But converse may not
be true.

Nonexpansive mapping ⇒ Suzuki-generalized nonexpansive mapping ⇒ Quasi-nonexpansive mapping

In [2], author introduced following generalization of nonexpansive mappings.

Definition 2.2. Let T be a mapping defined on a subset C of a metric space X and λ ∈ (0,1).
Then T is said to satisfy the condition (Cλ) if for all x, y ∈ C

λd(x,Tx)≤ d(x, y)→ d(Tx,T y)≤ d(x, y). (2.2)

For 0<λ1 <λ2 < 1, condition Cλ1 → condition Cλ2 .
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Definition 2.3. Let T be a mapping defined on a subset C of a metric space X and µ≥ 1. Then
T is said to satisfy the condition (Eµ) if for all x, y ∈ C

d(x,T y)≤µd(x,Tx)+d(x, y). (2.3)

We consider the following definition of a hyperbolic space introduced by Kohlenbach [7].

Definition 2.4. A metric space (X ,d) is a hyperbolic space if there exists a map W : X2×[0,1]→
X satisfying

(i) d(u,W(x, y,α))≤αd(u, x)+ (1−α)d(u, y),

(ii) d(W(x, y,α),W(x, y,β))= |α−β|d(x, y),

(iii) W(x, y,α)=W(y, x, (1−α)),

(iv) d(W(x, z,α),W(y,w,α))≤αd(x, y)+ (1−α)d(z,w),
for all x, y, z,w ∈ X and α,β ∈ [0,1].

Definition 2.5 ([15]). A metric space is said to be convex metric space when a triple (X ,d,W)
satisfy only (i) in Definition 2.4.

Definition 2.6 ([15]). A subset Kof a hyperbolic space X is convex if W(x, y,α) ∈ K for all
x, y ∈ K and α ∈ [0,1].

If x, y ∈ X and λ ∈ [0,1], then we use the notation (1−λ)x⊕λy for W(x, y,λ). The following
holds even for more general setting of convex metric space [15]: for all x, y ∈ X and λ ∈ [0,1],

d(x, (1−λ)x⊕λy)=λd(x, y) and d(y, (1−λ)x⊕λy)= (1−λ)d(x, y).

Thus

1x⊕0y= x and 0x⊕1y= y.

(1−λ)x⊕λx =λx⊕ (1−λ)x = x.

Definition 2.7 ([8]). A hyperbolic space (X ,d,W) is uniformly convex if for any u, x, y ∈ X , r > 0
and ε ∈ (0,2], there exists a δ ∈ (0,1] such that d

(1
2 x⊕ 1

2 y,u
) ≤ (1−δ)r whenever d(x,u) ≤ r,

d(y,u)≤ r and d(x, y)≥ εr.

Definition 2.8. A map η : (0,∞)× (0,2]→ (0,1] which provides such a δ= η(r,ε) for given r > 0
and ε ∈ (0,2], is known as modulus of uniform convexity. We call η monotone if it decreases with
r (for a fixed ε).

In [8], Luestean proved that CAT(0) spaces are uniformly convex hyperbolic spaces with
modulus of uniform convexity η(r,ε)= ε2

8 quadratic in ε.

Now, we give the concept of ∆-convergence and some of its basic properties.

Let C be a nonempty subset of metric space (X ,d) and {xn} be any bounded sequence in X
while diam(C) denotes the diameter of C. Consider a continuous functional ra(·, {xn}) : X →R+

defined by
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ra(x, {xn})= limsup
n→∞

d(xn, x), x ∈ X .

The infimum of ra(·, {xn}) over C is said to be the asymptotic radius of {xn} with respect to C
and it is denoted by ra(C, {xn}).

A point z ∈ C is said to be asymptotic center of the sequence {xn} with respect to C if

ra(z, {xn})= inf{ra(x, {xn}) : x ∈ C}.

The set of all asymptotic center of {xn} with respect to C is denoted by AC(C, {xn}). The set
AC(C, {xn}) may be empty, singleton or have infinitely many points.

If the asymptotic radius and asymptotic center are taken with respect to X , then they
are denoted by ra(X , {xn}) = ra({xn}) and AC(X , {xn}) = AC({xn}), respectively. We know that
for x ∈ X , ra(x, {xn}) = 0 if and only if lim

n→∞xn = x and every bounded sequence has a unique
asymptotic center with respect to closed convex subset in uniformly convex Banach spaces.

Definition 2.9. The sequence {xn} in X is said to ∆-converge to x ∈ X , if x is unique asymptotic
center of {un} for every subsequence {un} of {xn}. In this case, we write ∆-lim

n
xn = x and call x is

the ∆-limit of {xn}.

Lemma 2.10 ([9]). Let (X ,d,W) be a complete uniformly convex hyperbolic space with monotone
modulus of uniform convexity η. Then every bounded sequence {xn} in X has a unique asymptotic
center with respect to any nonempty closed convex subset C of X .

Consider the following Lemma of Khan et al. [6] which we use in the sequel.

Lemma 2.11. Let (X ,d,W) be a complete uniformly convex hyperbolic space with monotone
modulus of uniform convexity η. Let x ∈ X and tn be a sequence in [a,b] for some a,b ∈ (0,1).
If {xn} and {yn} are sequences in X such that

limsup
n→∞

d(xn, x)≤ c,

limsup
n→∞

d(yn, x)≤ c,

limsup
n→∞

d(W(xn, yn, tn), x)= c,

for some c ≥ 0, then lim
n→∞d(xn, yn)= 0.

Lemma 2.12 ([3]). Let (X ,d) be complete uniformly convex hyperbolic space with monotone
modulus of convexity η. Let C be a nonempty convex closed subset of a hyperbolic space X and
T : C → C be a mapping which satisfies the condition (Cλ) for some λ ∈ (0,1) and conditionEµ on
C. Suppose that {xn} is bounded sequence in C such that lim

n→∞d(xn,Txn)= 0, then T has a fixed
point.

Definition 2.13. Let C be a nonempty convex closed subset of a hyperbolic space X and {xn} is
a sequence in X . Then {xn} is Fejér monotone with respect to C if for all x ∈ C and n ∈ N ,

d(xn+1, x)≤ d(xn, x).
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We can easily prove the following proposition:

Proposition 2.14. Let {xn} be a sequence in X and C be a nonempty subset of X . Suppose that
{xn} is Fejér monotone with respect to C. Then we have the followings:

(1) {xn} is bounded.

(2) The sequence {d(xn, p)} is decreasing and converges for allp ∈ F(T).

3. Strong and ∆-Convergence of Generalized Picard Normal
S-iteration Process

Firstly, we define Generalized Picard Normal S-iteration process in hyperbolic space as follows:
Let C be nonempty closed convex subset of a hyperbolic space X and T : C → C be a mapping
which satisfies the condition Cλ for some λ ∈ (0,1). If for any x1 ∈ C the sequence {xn} is
defined by

xn+1 =W(T yn,0,0),
yn =W(zn,Tzn,αn),
zn =W(wn,Twn,βn),
wn =W(xn,Txn,γn), n ∈ N.

(3.1)

where αn,βn and γn are in [ε,1−ε] for all n ∈ N and some ε ∈ (0,1).

Lemma 3.1. Let C be a nonempty convex closed subset of a hyperbolic space X and T : C → C be
a mapping which satisfies the condition (Cλ) for some λ ∈ (0,1). If {xn} is a sequence defined by
(3.1), then {xn} is Fejér monotone with respect to F(T).

Proof. Since for some λ ∈ (0,1) and p ∈ F(T), T satisfies condition (Cλ), therefore for all n ∈ N,

λd(p,T p)= 0≤ d(p,wn),

λd(p,T p)= 0≤ d(p, zn),

λd(p,T p)= 0≤ d(p, yn)

and

λd(p,T p)= 0≤ d(p, xn).

Therefore, we have

d(T p,Twn)≤ d(p,wn),

d(T p,Tzn)≤ d(p, zn),

d(T p,T yn)≤ d(p, yn)

and

d(T p,Txn)≤ d(p, xn).

By (3.1), we have

d(wn, p)= d(W(xn,Txn,γn), p)

= d((1−γn)xn +γnTxn, p)

Communications in Mathematics and Applications, Vol. 11, No. 3, pp. 389–401, 2020



Strong and ∆-Convergence Results for Generalized Nonexpansive Mapping. . . : S. Dasputre et al. 395

≤ (1−γn)d(xn, p)+γnd(Txn, p).

≤ d(xn, p). (3.2)

From (3.2), we have

d(zn, p)= d(W(wn,Twn,βn), p)

= d((1−βn)wn +βnTwn, p)

≤ (1−βn)d(wn, p)+βnd(Twn, p)

≤ d(wn, p)

≤ d(xn, p). (3.3)

From (3.2), (3.3), we have

d(yn, p)= d(W(zn,Tzn,αn), p)

= d((1−αn)zn +αnTzn, p)

≤ (1−αn)d(zn, p)+αnd(Tzn, p)

≤ d(zn, p)

≤ d(xn, p). (3.4)

From (3.2), (3.3) and (3.4), we have

d(xn+1, p)= d(W(T yn,0,0), p)

= d(T yn, p)

≤ d(yn, p)

≤ d(xn, p). (3.5)

Thus

d(xn+1, p)≤ d(xn, p) for all p ∈ F(T).

Therefore, {xn} is Fejéer monotone with respect to F(T).

Lemma 3.2. Let C be a nonempty convex closed subset of a hyperbolic space X with monotone
modulus of convexity η and T : C → C be a mapping which satisfies the condition (Cλ) for some
λ ∈ (0,1). If {xn} is a sequence defined by (3.1), then F(T) is nonempty if and only if the sequence
{xn} is bounded and lim

n→∞d(xn,Txn)= 0.

Theorem 3.3. Let C be a nonempty convex closed subset of a hyperbolic space X with monotone
modulus of convexity η and T : C → C be a mapping which satisfies the condition (Cλ) for some
λ ∈ (0,1) and (Eµ) for some µ≥ 1 on C with F(T) 6= ;. If {xn} is a sequence defined by (3.1), then
sequence {xn} is ∆-converges to a fixed point of T .

Proof. From Lemma 3.2, we observe that {xn} is a bounded sequence, therefore {xn} has a
∆-convergent subsequence. Now, we will prove that every ∆-convergent subsequence of {xn} has
unique ∆-limit F(T). For this, let u and v be ∆-limits of the subsequences {un} and {vn} of {xn},
respectively. Now, by Lemma 2.10, AC(C, {un}) = {un} and AC(C, {vn}) = {vn}. By Lemma 3.2,
we have lim

n→∞d(un,Tun)= 0.
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Now, we will prove u and v are fixed points of T and they are unique.

By Lemma 2.12, u and v are fixed points of T.
Now, we will show u=v. If not, then by the uniqueness of asymptotic center

limsup
n→∞

d(xn,u)= limsup
n→∞

d(un,u)

< limsup
n→∞

d(un,v)

= limsup
n→∞

d(xn,v)

= limsup
n→∞

d(vn,v)

< limsup
n→∞

d(vn,u)

= limsup
n→∞

d(xn,u)

which is a contradiction. Hence u = v, and sequence {xn} ∆-converges to a fixed point of T .

Theorem 3.4. Let C be a nonempty convex closed subset of a hyperbolic space X with monotone
modulus of convexity η and T : C → C be a mapping which satisfies the condition (Cλ) for some
λ ∈ (0,1) and Eµ for some µ≥ 1 on C with F(T) 6= ;. If {xn} is a sequence defined by (3.1), then
sequence {xn} converges strongly to some fixed point of T if and only if liminf

n→∞ D(xn,F(T)) = 0,
where D(xn,F(T))= inf

x∈F(T)
d(xn, x).

Proof. It is easy to prove necessary part. We only prove sufficient part. First we show that the
fixed point set F(T) is closed, let {xn} be a sequence in F(T) which converges to some fixed point
w ∈ C. As

λd(xn,Txn)= 0≤ d(xn,w).

By condition of Cλ, we have

d(xn,Tw)= d(xn,Tw)≤ d(xn,w).

On taking limit as n →∞ both the sides, we get

lim
n→∞d(xn,Tw)≤ lim

n→∞d(xn,w)= 0.

In view of the uniqueness of the limit, we have w = Tw, so that F(T) is closed. Suppose

liminf
n→∞ D(xn,F(T))= 0.

From (3.5), we have

D(xn+1,F(T))≤ D(xn,F(T)).

From Lemma 3.1 and Proposition 2.14, we have lim
n→∞d(xn,F(T)) exists. Hence

lim
n→∞D(xn,F(T))= 0.

Consider the subsequence {xnk } of {xn} such that d(xnk , pk) < 1
2k for all k ≥ 1, where {pk} is in

F(T).
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From Lemma 3.1, we have

d(xnk+1 , pk)≤ d(xnk , pk)< 1
2k

which implies that

d(pk+1, pk)≤ d(pk+1, xnk+1)+d(xnk+1 , pk)< 1
2k+1 + 1

2k

< 1
2k−1 .

This shows that {pk} is a Cauchy sequence. Since F(T) is closed, {pk} is a convergent sequence.
Let lim

k→∞
pk = p. Then we know that {xn} converges to p. Since

d(xnk , p)≤ d(xnk , pk)+d(pk, p).

As k →∞, we have

lim
k→∞

d(xnk , p)= 0.

Since lim
n→∞d(xn, p) exists, therefore the sequence {xn} converges to p.

4. Example
Consider the mapping T : [0,1]→ [0,1] defined by

Tx =
{

1
2 +2x, x ∈ [

0, 1
6

)
;

1− x
3 , x ∈ [1

6 ,1
]
.

(4.1)

Put x = 1
6 and y= 6

42 , then ‖Tx−T y‖ = 10
21 and ‖x− y‖ = 1

42 . Thus, we have ‖Tx−T y‖ ≥ ‖x− y‖.
Therefore, T is not nonexpansive mapping. Now, we will check the mapping T satisfies
Condition (C). For this we consider two cases.

Case I: Let x ∈ [0, 1
6 ), then 1

2‖x−Tx‖ = 1
4 (2x+1). For 1

2 ‖x−Tx‖ ≤ ‖x−y‖, we have 1
4 (2x+1)≤ y−x,

i.e. y≥ 3
2 + 1

4 . Hence y ∈ (1
2 ,1

]
.

Now, for all x ∈ [
0, 1

6

)
and y ∈ (1

2 ,1
]
, we have

‖Tx−T y‖ =
∣∣∣∣12x+2y−3

6

∣∣∣∣< 1
6

and ‖x− y‖ = |x− y| > 1
4

.

Hence 1
2‖x−Tx‖ ≤ ‖x− y‖→‖Tx−T y‖ ≤ ‖x− y‖. Thus T satisfies Condition (C).

Case II: Let x∈[1
6 ,1

]
, then 1

2‖x−Tx‖ = 1
2

(4x−3
3

)
. For 1

2‖x−Tx‖≤‖x−y‖, we have 1
2

(4x−3
3

)≤ |x−y|.
Again there are two possibilities:

A1: If y > x, then 1
2

(4x−3
3

) ≤ y− x. Here y ∈ [1
6 ,1

]
. Now, for x, y ∈ [1

6 ,1
]
, we have ‖Tx−T y‖ ≤

1
3‖x− y‖. Thus 1

2‖x−Tx‖ ≤ ‖x− y‖→‖Tx−T y‖ ≤ ‖x− y‖. Thus T satisfies Condition (C).

A2: If y < x, then 1
2

(4x−3
3

) ≤ x− y, i.e., y ≤ 2x+3
6 . Therefore, y ∈ [5

9 , 5
6

]
. For all x ∈ [1

6 ,1
]

and
y ∈ [5

9 , 5
6

]
, we have ‖Tx−T y‖ ≤ 1

3‖x− y‖. Thus 1
2‖x−Tx‖ ≤ ‖x− y‖→‖Tx−T y‖ ≤ ‖x− y‖. Thus

T satisfies Condition (C).

In above example, we see that T is not nonexpansive but T satisfies Condition (C), i.e. T is
Suzuki-generalized nonexpansive mapping.
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5. Numerical Results
We compare the new iteration process, i.e., Generalized Picard Normal S-iteration process with
Picard Normal S-iteration process, Normal S-iteration process, Mann iteration process and
Picard iteration process. We set the stop parameter to d(xn, p)≤ 10−14.

For above example, consider the following parameter:

PI: αn = 1

(n+1)
1
4

, βn = n

(2n+7)
1
2

, γn = 1

(3n+5)
1
2

.

Also, we compare the number of iterations for following set of parameters:

PII: αn = 1
(n+11)1/8 , βn = 1

(n+1)
1
4

, γn = 1

(n+1)
2
5

.

PIII: αn = n2

n2+61 , βn = ( 1
2n+1

) 2
9 , γn = n

4n+3 .

PIV: αn = ( n2

(n3+1)

) 1
9 , βn = n

2n+1 , γn = ( 1
9n+2

) 1
5 .

Table 1. Comparison of iteration of different iteration process for initial value 0.1

Initial New iteration Picard Normal Normal Mann Picard
value process S-iteration S-iteration iteration iteration

1 0.74017268433791 0.73182071694926 0.79848738361592 0.60453784915223 0.7
2 0.74999496573282 0.74998442643975 0.75021195851703 0.75190762665326 0.76666666666667
3 0.74999999324209 0.74999996752023 0.74999595929642 0.75010909899660 0.74444444444444
4 0.74999999993773 0.74999999955770 0.75000014593171 0.75001182046826 0.75185185185185
5 0.74999999999867 0.74999999998653 0.74999999279701 0.75000175032601 0.74938271604938
6 0.74999999999995 0.74999999999932 0.75000000043286 0.75000031555308 0.75020576131687
7 0.75000000000000 0.74999999999995 0.74999999997010 0.75000006538110 0.74993141289438
8 0.75000000000000 0.75000000000229 0.75000001505071 0.75002286236854
9 0.74999999999981 0.75000000376586 0.74999237921049
10 0.75000000000002 0.75000000100875 0.75000254026317
11 0.75000000000000 0.75000000028610 0.74999915324561
12 0.75000000008520 0.75000028225146
13 0.75000000002647 0.74999990591618
14 0.75000000000854 0.75000003136127
15 0.75000000000285 0.74999998954624
16 0.75000000000098 0.75000000348459
17 0.75000000000034 0.74999999883847
18 0.75000000000012 0.75000000038718
19 0.75000000000005 0.74999999987094
20 0.75000000000002 0.75000000004302
21 0.75000000000001 0.74999999998566
22 0.75000000000000 0.75000000000478
23 0.74999999999841
24 0.75000000000053
25 0.74999999999982
26 0.75000000000006
27 0.74999999999998
28 0.75000000000001
29 0.75000000000000
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Figure 1. Comparison among number of iterations

Table 2. Comparison of number of iteration of different iteration process for different set of parameters

Initial New iteration Picard Normal Normal Mann Picard
Value S-iteration S-iteration iteration iteration

PI PII PIII PIV PI PII PIII PIV PI PII PIII PIV PI PII PIII PIV PI PII PIII PIV

0.1 7 4 9 7 8 5 10 9 11 9 14 10 21 13 20 13 29 29 29 29

0.2 7 4 9 7 8 5 10 8 11 8 14 10 21 12 20 13 30 30 30 30

0.3 7 4 9 7 8 5 10 8 10 8 14 10 21 12 20 13 30 30 30 30

0.4 7 4 9 7 8 5 10 8 10 8 14 10 21 12 19 13 30 30 30 30

0.5 7 4 9 7 8 5 10 8 10 8 14 10 20 12 19 12 29 29 29 29

0.6 7 4 9 7 8 5 9 8 10 8 14 10 20 11 19 12 29 29 29 29

0.7 6 3 8 7 7 5 9 8 10 8 13 10 19 11 19 12 28 28 28 28

0.8 6 3 8 7 7 5 9 8 10 8 13 10 19 11 19 12 28 28 28 28

0.9 7 4 9 7 8 5 9 8 10 8 14 10 20 11 19 12 29 29 29 29

1.0 7 4 9 7 8 5 10 8 10 8 14 10 20 12 19 13 29 29 29 29

By the above results, i.e., Table 2 and Figure 1, it is clear that Generalized Picard Normal
S-iteration process is faster than Picard Normal S-iteration process, Normal S-iteration process,
Mann iteration process and Picard iteration process.
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6. Conclusion
We introduced a new iteration process named as Generalized Picard Normal S-iteration process
in Hyperbolic space. Also we proved the strong and ∆-convergence results for this iteration
process. We presented an example of Suzuki-generalized nonexpansive mapping which is not
nonexpansive mapping. With the help of numerical example, we showed that Generalized Picard
Normal S-iteration process is faster than some famous iteration process such as Picard Normal
S-iteration process, Normal S-iteration process, Mann iteration process and Picard iteration
process.
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