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Abstract. A set S ⊆V of vertices (called codewords) of a graph G = (V ,E) is called a Multiple Intruder
Locating Dominating set (MILD set) if every non-codeword v is adjacent to at least one codeword u
which is not adjacent to any other non-codeword. This enables one to locate intruders at multiple
locations of a network and hence the name. The MILD(G) is the minimum cardinality of a MILD set
in G. Here, we show that the problem of finding MILD set for general graphs is NP-Complete. Further,
we provide a linear time algorithm to find the MILD number of trees through dynamic programming
approach and then, we extend the algorithm for unicyclic graphs.
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1. Introduction
Many varieties of Locating Dominating sets have been developed in recent times keeping in
mind the safeguarding of facilities in case of the presence of an intruder. After introducing and
working on the locating dominating sets [10], together with S. J. Seo, P. J. Slater has worked
on a variation called Open Neighborhood Locating dominating sets [7] where the possibility
that the intruder might harm a detecting device and prevent it in detecting intruder at its
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own location is considered. The possibility that a detecting device could malfunction was also
considered by P. J. Slater which led to another variation ‘Fault Tolerant Locating Dominating
sets’ [9]. A closely related problem of ‘Identifying codes’ where a detection device detects an
intruder in its closed neighborhood but not the exact location was introduced by Chakrabarty et
al. [5]. For some recent works on locating domination parameters (refer [3,4,6,8]).

It was only a matter of time that a variation of the locating domination problem would be
developed where multiple intruders can be located in a facility, and that has been done in [11].
Given a graph G = (V ,E), a set S ⊆V is called a Multiple Intruder Locating Dominating (MILD)
set if

∀ u ∈ [V \ S],∃v ∈ S such that N(v)∩ [V \ S]= {u}

In that case, the vertex v is called a devout dominator of u, and in turn, u is called the secure
non-codeword of v. The MILD number for a graph G is proved to lie between n/2 and n−1, both
inclusive. The characterization of the graphs attaining those bounds are also discussed in [11].
Naturally, one would be interested to develop an algorithm to find the MILD number of any
given graph G. The next section proceeds on this question.

It is to be noted that a locating dominating set secures a network in the presence of one
intruder. As stated before, Multiple intruder locating domination aims at securing a network
even when there are intruders at multiple locations in a network, possibly at all of them. To
achieve that, it might be tempting to think that a sensor might be required at all the locations.
But a MILD set shows that that need not be the case. In fact, for an n location network, a MILD
set can get as low as n/2. Thus, though the MILD number is higher when compared with the
other locating domination parameters, it is justified since the problem of MILD set achieves
something more than the other parameters.

2. MILD Problem in Arbitrary Graphs
We show that the MILD problem is NP-Complete for arbitrary graphs. This is done by reducing
MILD problem to 3-SAT problem which is proved to be NP-Complete by Garey and Johnson
in [2].

3-SAT Problem
INSTANCE: Collection C = {c1, c2, . . . , cM} of clauses on set U = {u1,u2, . . . ,uN } such that |ci| = 3
for 1≤ i ≤ M.
QUESTION: Is there a satisfying truth assignment for C?

Multiple-Intruder-Locating-Domination (MILD) Problem
INSTANCE: Graph G = (V ,E) and positive integer K ≤ |V |.
QUESTION: Is MILD(G)≤ K?

Theorem 1. Problem MILD is NP-complete.

Proof. It can be easily seen that MILD ∈ NP . We give a polynomial reduction from 3-SAT to
MILD. For the given instance of 3-SAT with a given U and C, construct a graph G as follows:
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(a) (b)

Figure 1. Variable and clause graphs

• For each ui construct the graph G i as shown in Figure 1a.

• For each clause ci create the vertex ci as shown in Figure 1b.

• Suppose a clause c j = {u j,1,u j,2,u j,3} where each u j,t is either ui or ui , let the vertex c j

be adjacent to {v j,1,v j,2,v j,3} where each v j,t is either vi or v′i .

• Suppose a ui or ui is repeated in different clauses, then all the ui vertices are made
adjacent to each other and the corresponding ui vertices are also made adjacent to each
other. An example where u1 is repeated in the clauses c1 and c2 is shown in Figure 2.

• Finally, connect all the clause vertices with each other so as to form a clique.

c1

v1

u1

v2u2

v3 u3
u2

u1

u3

v′2

v′1

v′3

c2

v1

u1

v4u4

v5 u5
u4

u1

u5

v′4

v′1

v′5

Figure 2. An example of repeated ui

Every vertex ci is adjacent to three vertices each of which is a part of the graph containing
8 vertices. Thus there are (8× 3+ 1)M = 25M vertices. Suppose vertices up,1,up,2, . . . ,up,l

(each of them is some ui or ui) appear more than once, say, r1, r2, . . . , r l times respectively. If
r = C(r1,2)+C(r2,2)+. . .+C(r l ,2) then G contains (7×3+3)M+M

2 (M−1)+2r = 24M+M
2 (M−1)+2r

edges and hence G can be constructed from C in polynomial time.
Given a truth assignment for C, if ui is true then the vertex ui ∈ S in G i else, ui ∈ S. In G i ,

four more vertices must be included in S correspondingly as shown in Figures 3a and 3b. It
follows that MILD(G)= (5×3)M = 15M if C has a satisfying truth assignment.
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(a) (b)

Figure 3. Formation of MILD set from a given truth assignment

Conversely, given that MILD(G) = 15M. Then from the given MILD set, the truth
assignment is done for C as follows (without loss of generality):

c1
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v2u2

v3 u3
u2

u1

u3

v′2

v′1

v′3

(a)

c1

v1

u1

v2u2

v3 u3
u2

u1

u3

v′2

v′1

v′3

(b)

Figure 4. The exception case and the modification

• If both u j,t and v j,t are codewords, then assign true to the element u j,t.

• If u j,t is a non-codeword and v j,t is a codeword, then assign false to the element u j,t.

Since all the clause vertices ci form clique and MILD(G) = 15M, either all of them are
(secure) non-codewords or all of them are (devout-dominating) codewords. In the former case,
it can be easily seen that there exists a satisfying truth assignment. In the latter case, an
exception arises, for example, as shown in Figure 4a. In such a case, the question arises as to
what truth value is to be assigned for u1 (without loss of generality). To address this, we make
the following changes in the graph, as illustrated in Figure 4b:

1: Interchange the black and white vertices in the path P6 containing u1 and u1.

2: Make v1 codeword and c1 non-codeword.

Now, all the ci vertices would be (secure) non-codewords and the satisfying truth assignment
can be made. Thus, C has a satisfying truth assignment whenever MILD(G) = 15M. This
completes the proof.
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3. MILD Sets in Trees
Let γml(G) be the minimum size of a Multiple Intruder Locating Dominating set of the graph G.
i.e.,

γml(G)=min{|S|; S is a MILD set of G} .

Consider a graph G (a tree) with a chosen vertex u. A MILD set of G either contains or does not
contain u. Then:

γ1
ml(G,u)= min{|S|; S is a MILD set of G and u ∈ S},

γ0
ml(G,u)= min{|S|; S is a MILD set of G and u ∉ S}.

Lemma 2 ([1]). γml(G)=min{γ1
ml(G,u),γ0

ml(G,u)} for any graph G with a specific vertex u.

Also, we define

γ00
ml(G,u) = min{|S|; S is a MILD set of G−u with no devout-dominator adjacent to u}

Definition 1. A vertex u ∈G is said to be “dd-available” from G if @ w ∈ N(u)∩V (G)\S.

A vertex u ∈ S might be or might not be dd-available from G. Suppose it is not dd-available,
then it might be or might not be a devout-dominator of some vertex inside G. In order to cover
these cases, we introduce three new problems:

γ11
ml(G,u)=min{|S|; S is a MILD set of G,u ∈ S and N(u)∩ [V (G)\S]=φ}

γ100
ml (G,u)=min{|S|; S is a MILD set of G,u ∈ S and

u is a devout-dominator of some vertex w ∈V (G)\S}

γ101
ml (G,u)=min{|S|; S is a MILD set of G,u ∈ S, N(u)∩ [V (G)\S] 6=φ but

u is not a devout-dominator}

Theorem 3. Suppose G and H are graphs with specific vertices u and v, respectively. Let I be
the graph with the specific vertex u, which is obtained from the disjoint union of G and H by
joining a new edge uv. Then the following statements hold:

(1) γ1
ml(I,u)=min{γ11

ml(G,u)+min[γ00
ml(H,v),γml(H)],γ100

ml (G,u)+γ1
ml(H,v),γ101

ml (G,u)+γml(H)}

(2) γ0
ml(I,u)=min{γ0

ml(G,u)+min[γ0
ml(H,v),γ101

ml (H,v),γ11
ml(H,v)],γ00

ml(G,u)+γ11
ml(H,v)}

(3) γ00
ml(I,u)= γ00

ml(G,u)+min[γ0
ml(H,v),γ101

ml (H,v)]

(4) γ100
ml (I,u)=min{γ100

ml (G,u)+γ1
ml(H,v),γ11

ml(G,u)+γ00
ml(H,v)}

(5) γ101
ml (I,u)=min{γ101

ml (G,u)+γml(H,v),γ11
ml(G,u)+γ0

ml(H,v)}

(6) γ11
ml(I,u)= γ11

ml(G,u)+γ1
ml(H,v)

G H

u
v

Figure 5. Formation of the graph I using the graphs G and H
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Proof. (1) This follows from the fact that S is a MILD set of I with u ∈ Sif and only if S =
S′∪S′′ where, S′ is a MILD set of G with u ∈ S′ and:

(i) if u is dd-available from S′, then S′′ is a MILD set of H or H−v.
(ii) if u is not dd-available from S′ and devout-dominates some vertex in G, then S′′ is a

MILD set of H with v ∈ S′′.
(iii) if u is not dd-available and is not a devout-dominator, then S′′ is a MILD set of H.

(2) This follows from the fact that S is a MILD set of I with u ∉ S if and only if S = S′∪S′′,
where

(i) S′ is a MILD set of G with u ∉ S′ and S′′ is a MILD set of H with u ∉ S′′ or, with
u ∈ S′′ and u is not a devout-dominator or, with u ∈ S′′ and is dd-available,
or

(ii) S′ is a MILD set of G−u and S′′ is a MILD set of H with v ∈ S′′ and v is dd-available.

(3) This follows from the fact that S is a MILD set of I−u with u not being a secure neighbour
if and only if S = S′∪′′, where S′ is a MILD set of G−u with u not being a secure neighbour
and, S′′ is a MILD set of H with v ∉ S′′ or, with v ∈ S′′ and v is not a devout-dominator.

(4) This follows from the fact that S is a MILD set of I with u ∈ S and u devout-dominates a
vertex in I (and hence not dd-available from I) if and only if S = S′∪S′′, where

(i) S′ is a MILD set of G with u ∈ S′ and u devout-dominates a vertex in G and, S′′ is a
MILD set of H with v ∈ S′′,
or

(ii) S′ is a MILD set of G with u ∈ S′ and is dd-available and, S′′ is a MILD set of H−v.

(5) This follows from the fact that S is a MILD set of I with u ∈ S and ∃ w ∈ N(u)∩ [V (I)−S]
such that u is not a devout-dominator of w if and only if S = S′∪S′′, where

(i) S′ is a MILD set of G with u ∈ S′ and ∃ w ∈ N(u)∩ [V (G)−S′] such that u is not a
devout-dominator of w and, S′′ is a MILD set of H,
or

(ii) S′ is a MILD set of G with u ∈ S′ and is dd-available and, S′′ is a MILD set of H
with v ∉ S′′.

(6) This follows from the fact that S is a MILD set of I with u ∈ S and is dd-available from I
if and only if S = S′∪S′′, where S′ is a MILD set of G with u ∈ S′ and is dd-available from
G, and S′′ is a MILD set of H with v ∈ S′′.

Hence the proof.

By using the lemmas and the theorem above, we get the following dynamic programming
algorithm for the Multiple Intruder Locating Domination problem in trees.

Algorithm MILDTree
Determine the Multiple Intruder Locating Domination number of a tree.
Input. A tree Twith a tree ordering[v1,v2, . . .vn].
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Output. The MILD number γml(T) of T .
Method.

(Stage 1 ↓)

for i = 1 to n do

γ1
ml(vi)← 1

γ0
ml(vi)←∞

γ00
ml(vi)← 0

γ100
ml (vi)←∞

γ101
ml (vi)←∞

γ11
ml(vi)← 1

end for

(Stage 2 ↓)

for i = 1 to n−1 do

let v j be the parent of vi

γml(vi)←min{γ1
ml(vi),γ0

ml(vi)}

γ1
ml(v j)←min{γ11

ml(v j)+min[γ00
ml(vi),γml(vi)], γ100

ml (v j)+γ1
ml(vi), γ101

ml (v j)+γml(vi)}

γ0
ml(v j)←min{γ0

ml(v j)+min[γ0
ml(vi),γ101

ml (vi),γ11
ml(v j)],γ00

ml(v j)+γ11
ml(vi)}

γ00
ml(v j)← γ00

ml(v j)+min[γ0
ml(vi),γ101

ml (vi)]

γ100
ml (v j)←min{γ100

ml (v j)+γ1
ml(vi),γ11

ml(v j)+γ00
ml(vi)}

γ101
ml (v j)←min{γ101

ml (v j)+γml(vi),γ11
ml(v j)+γ0

ml(vi)}

γ11
ml(v j)← γ11

ml(v j)+γ1
ml(vi)

end for

(Stage 3 ↓)

γml(T)←min{γ1
ml(vn),γ0

ml(vn)}.

Complexity of Algorithm MILDTree
In Stage 1 of the algorithm, each of the statements in the body of the loop takes constant time.
That collection of statements is executed n times by the for loop. Thus, the execution time of
Stage 1 increases linearly with the input size, i.e., Stage 1 is executed in O(n) time. Similar
argument follows for stage two, and, Stage 3 is a single statement. Hence, the algorithm is
executed in O(n) time.
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4. MILD sets in Unicyclic Graphs
To extend our Algorithm MILDTree to unicyclic graphs, we first discuss a labeling of vertices.

Labeling
Let Un be a unicyclic graph with n vertices in its cycle. For our algorithm, we look at the
unicyclic graph Un as a set of n trees (each with vertices ≥ 1), one vertex of each coming
together to form a cycle.

Suppose Un has N vertices in total and p(= N −n) vertices not belonging to the cycle. We
label the p vertices of the trees one-by-one using pre-order (i.e., by the rule: label a parent
vertex only after all its children are labelled) as v1,v2,v3, . . . ,vp. Now, choose a vertex of the
cycle, label it as vp+1. Label its two parent vertices as vp+2 and vp+3. Next label the parent
of vp+2 as vp+4 and the parent of vp+3 as vp+5, and so on. This ends with vp+odd number if the
number of vertices in the cycle is odd, else it ends with vp+even number.

Algorithm MILDUnicyclic
Determine the Multiple Intruder Locating Domination number of a unicyclic graph.
Input. A unicyclic graph Un with N vertices, n of them in the cycle.
Output. The MILD number γml(Un) of Un.

Method
Step 1. Label the vertices of Un by the labeling procedure as indicated.

Step 2. Perform Stage 1 of algorithm MILDTree by replacing the first line with

for i = 1 to N do

Step 3. Perform Stage 2 of algorithm MILDTree by replacing its first line by

for i = 1 to p do

(If p = 0, then the loop will not be entered, thus, Stage 2 will not be performed.)

Step 4. Now, the next vertex vp+1 has two parents, viz. vp+2 and vp+3. For convenience in the
further discussion, we shall name vp+1 as w, vp+2 as u, vp+3 as v as shown in Figure 6.

Figure 6

Step 5a. We get the following cases and, the corresponding changes to be done are indicated:

Case 5a.1. w can devout-dominate(γ11
ml(w)), u is unsecured and is ready to be secured by w

(γ00
ml(u) for which v must be a codeword.

γ0
ml(u)← γ00

ml(u)
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γ00
ml(u)= γ11

ml(u)= γ100
ml (u)= γ101

ml (u)=∞
γ0

ml(v)= γ00
ml(v)=∞

other values: no change.
λ= γ11

ml(w)
go to Step 5b

Case 5a.2. interchange u and v in Case 5a.1.
go to Step 5b

Case 5a.3. w can devout-dominate(γ11
ml(w)) but u and v are not affected by that fact.

All values for u and v remain same.
λ= γ11

ml(w)
go to Step 5b

Case 5a.4. w is unsecured and is ready to be secured by u (γ00
ml(w),γ11

ml(u)) and hence v cannot
be a devout dominating vertex.

γ100
ml (u)← γ11

ml(u)

γ0
ml(u)= γ11

ml(u)= γ101
ml (u)= γ00

ml(u)=∞
γ100

ml (v)=∞, γ101
ml (v)←min{γ101

ml (v),γ11
ml(v)}

other values: no change.
λ= γ00

ml(w)
go to Step 5b

Case 5a.5. interchange u and v in case (iv).
go to Step 5b

Case 5a.6. w is a secure non-codeword (γ0
ml(w)) and hence u and v cannot be devout dominating

vertices.

γ101
ml (u)←min{γ101

ml (u),γ11
ml(u)}

γ101
ml (v)←min{γ101

ml (v),γ11
ml(v)}

γ11
ml(u)= γ100

ml (u)= γ11
ml(v)= γ100

ml (v)=∞,
other values: no change.
λ= γ0

ml(w)
go to Step 5b

Case 5a.7. w is a devout dominator (γ100
ml (w)) and hence u and v must be codewords.

γ0
ml(u)= γ00

ml(u)= γ0
ml(v)= γ00

ml(v)=∞
other values: no change
λ= γ100

ml (w)
go to Step 5b

Case 5a.8. w is a codeword but not a devout dominator (γ101
ml (w)) and hence u and v remain

unaffected.
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All values remain same for both u and v.
λ= γ101

ml (w)
go to Step 5b

Step 5b

do
{

(i): Perform Stage 2 of algorithm MILDTree by replacing its first line by

for i = p+2 to N −1 do

(ii): γml(Un)(k)←min{γ1
ml(vN),γ0

ml(vN)}+λ

}
end do

k ← k+1

if (k ≤ 8)
go to case k in Step 5a

else
go to step 6

Step 6
γml(Un)←min{γml(Un)(1),γml(Un)(2), . . . ,γml(Un)(7),γml(Un)(8)}

Complexity of Algorithm MILDUnicyclic
As in the discussion of the complexity of MILDTree algorithm, Steps 1 and 2 of Algorithm
MILDUnicyclic run in linear time. Steps 3 and 5b are together executed in O(n) time whereas
the Steps 4, 5 and 6 take constant time. It can be noted that none of the loops are nested. Hence,
this algorithm is executed in O(n) time too.

5. Conclusion
The MILD problem is proved to be NP-Complete for arbitrary graphs. However, when restricted
to trees, a linear time algorithm can be formed, and that is done by the method of dynamic
programming. The algorithm is then modified to a case where there would be a single cycle in a
given graph, and thus, a linear time algorithm to find the MILD number of unicyclic graphs is
obtained.
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