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1. Introduction
The first important result on fixed points for contractive type mapping was the Banach’s
contractive principle by Banach in 1922. In 1976, Jungck [15], proved a common fixed point
theorem for commuting maps, generalizing the Banach contraction principle. Jungck [14,16]
defined a pair of self mappings to be weakly compatible if they commute at their coincidence
points. In 2007, Huang and Zhang [12] introduced the concept of cone metric space, which is a
generalized version of metric spaces. Many fixed point theorems have been proved in normal or
non-normal cone metric spaces by some authors (see [2], [13], [17], [1]).

In 2011, Cho et al. [3] introduced the concept of c-Distance in a cone metric spaces (also
see [20]) and proved some fixed point theorems in ordered cone metric spaces. This was cone
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version of w-Distance of Kada et al. [18]. Then several authors have proved fixed point theorems
for c-Distance in cone metric spaces (see [4–11,19]).

In this paper, we extend and generalize the common fixed point theorem on c-Distance of
Fadail et al. [8–11] and Dubey et al. [4,6]. In our theorems, by replacing the constant numbers
in the contractive condition with functions without assumption of normality for cones..

2. Preliminaries
Let E be a real Banach space and θ denote to the zero element in E. A cone P is the subset of E
such that

(i) P is closed, non-empty, and P 6= {θ};

(ii) a,b ∈R, a,b > 0; x, y ∈ P and R as a set of real number ⇒ ax+by ∈ P ;

(iii) x ∈ P and −x ∈ P ⇒ x = θ.

Given a cone P ⊆ E, we define a partial ordering ¹ with respect to P by x 4 y if and only if
y− x ∈ P . We write x ≺ y to indicate that x ¹ y but x 6= y, while x ¿ y will stand for y− x ∈ intP ,
intP denotes the interior of P . The cone P is called normal if there is a number K > 0 such
that, for all x, y ∈ E, θ ¹ x ¹ y implies ‖x‖6 K‖y‖. The least positive number satisfying above is
called the normal constant of P .

Definition 2.1 ([12]). Let X be a non-empty set. Suppose the mapping d : X × X → E satisfies:

(i) If θ ¹ d(x, y) for all x, y ∈ X and d(x, y)= θ if and only if x = y;

(ii) d(x, y)= d(y, x) for all x, y ∈ X ;

(iii) d(x, y)¹ d(x, z)+d(z, y) for all x, y, z ∈ X .

Then d is called a cone metric on X , and (X ,d) is called a cone metric space.

Example 2.2. Let E =R2 and P = {(x, y) ∈ E : x, y> 0}⊂R2, X =R2 and suppose that d : X×X →
E is defined by d(x, y)= d((x1, x2), (y1, y2))= (|x1− y1|+|x2− y2|,∝max{| x1− y1|, |x2− y2|}), where
∝> 0 is a constant. Then (X ,d) is cone metric space. It is easy to see that d is a cone metric
and hence (X ,d) becomes a cone metric space over (E,P). Also, we have P is a solid and normal
cone where the normal constant K = 1.

Definition 2.3 ([12]). Let (X ,d) be a cone metric space, let {xn} be a sequence in X and x ∈ X .

(i) For all c ∈ E with θ ¿ c, if there exists a positive integer N such that d(xn, x) ¿ c for
all n > N , then {xn}is said to be convergent and {xn} converges to x. We denote this by
lim

n→∞xn = x or xn → x, (n →∞).

(ii) For all c ∈ E with θ¿ c, if there exists a positive integer N such that for all n,m > N ,
d(xn, xm)¿ c, then {xn} is called a Cauchy sequence in X .

(iii) If every Cauchy sequence in X is convergent in X then (X ,d) is called a complete cone
metric space.

Lemma 2.4 ([17]). (1) If E be a real Banach space with a cone P and a ¹λa, where a ∈ P and
0≤λ< 1, then a = θ.
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(2) If c ∈ intP , θ ¹ an and an → θ, then there exists a positive integer N such that an ¿ c for
all n> N .

Definition 2.5 ([3]). Let (X ,d) be a cone metric space. A function q : X × X → E is called a
c-Distance on X if the following coditions hold:

(q1) θ ¹ q(x, y) for all x, y ∈ X ,

(q2) q(x, z)¹ q(x, y)+ q(y, z) for all x, y, z ∈ X ,

(q3) for each x ∈ X and n ≥ 1 if q(x, yn)¹ u for some u = ux ∈ P , then q(x, y)¹ u whenever {yn}
is a sequence in X converging to a point y ∈ X ,

(q4) for all c ∈ E with θ¿ c, there exists e ∈ E with θ¿ e such that q(z, x)¿ e and q(z, y)¿ e
imply d(x, y)¿ c.

Example 2.6 ([3]). Let E = R and P = {x ∈ E : x > 0}, X = [0,∞) and define a mapping
d : X × X → E is defined by d(x, y) = |x− y|, for all x, y ∈ X . Then (X ,d) is a cone metric
space. Define a mapping q : X ×X → E by q(x, y)= y for all x, y ∈ X . Then q is a c-distance on X .

The following lemma is useful in our work.

Lemma 2.7 ([3]). Let (X ,d) be a cone metric space and q be a c-Distance on X . Let {xn} and {yn}
be a sequences in X and x, y, z ∈ X . Suppose that {un} is a sequence in P converging to θ. Then
the following hold:

(1) If q(xn, y)¹ un and q(xn, z)¹ un, then y= z.

(2) If q(xn, yn)¹ un and q(xn, z)¹ un, then {yn} converges to z.

(3) If q(xn, xm)¹ un for m > n, then {xn} is a Cauchy sequence in X .

(4) If q(y, xn)¹ un then {xn} is a Cauchy sequence in X .

Remark 2.8 ([3]). (1) If q(x, y)= q(y, x) does not necessarily for all x, y ∈ X .

(2) If q(x, y)= θ is not necessarily equivalent to x = y for all x, y ∈ X .

Definition 2.9. An element x ∈ X is called:

(1) A coincidence point of mappings f : X → X and g : X → X , if w = gx = f x and w is called a
point of coincidence.

(2) A common fixed pont of mappings f : X → X and g : X → X if x = gx = f x.

Definition 2.10. The mappings f : X → X and g : X → X are called weakly compatible if
gf x = f gx whenever gx = f x.

Now, we are ready to state and prove our main results.

3. Main Results
In our main theorems, the only assumptions are that, the mappings are weakly compatible and
the cone P is solid, that is intP 6=φ.
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Theorem 3.1. Let (X ,d) be a cone metric space over a solid cone P and q is a c-Distance on
X . Let S : X → X and T : X → X be two self mappings and suppose there exists mappings
k, l, r, t : X → [0,1) such that the following conditions hold:

(a) k(Sx)≤ k(Tx), l(Sx)≤ l(Tx), r(Sx)≤ r(Tx) and t(Sx)≤ t(Tx) for all x ∈ X ,

(b) (k+ l+ r+2t)(x)< 1 for all x ∈ X ,

(c) q(Sx,Sy)¹ k(Tx)q(Tx,T y)+l(Tx)q(Tx,Sx)+r(Tx)q(T y,Sy)+t(Tx)[q(Sx,T y)+q(Sy,Tx)]
for all x, y ∈ X .

If S(X )⊆ T(X ) and T(X ) is a complete subspace of X , then S and T have a coincidence point x∗

in X . Further, if w = Tx∗ = Sx∗ then q(w,w)= θ. Moreover, if S and T are weakly compatible,
then S and T have a unique common fixed point.

Proof. Let x0 be an arbitrary point in X . Choose a point x1 in X such that Tx1 = Sx0. This can
be done because S(X )⊆ T(X ). Continuing this process we obtain a sequence {xn} in X such that
Txn+1 = Sxn. Then, we have

q(Txn,Txn+1)= q(Sxn−1,Sxn)

¹ k(Txn−1)q(Txn−1,Txn)+ l(Txn−1)q(Txn−1,Sxn−1)

+ r(Txn−1)q(Txn,Sxn)+ t(Txn−1)[q(Sxn−1,Txn)+ q(Sxn,Txn−1)]

= k(Sxn−2)q(Txn−1,Txn)+ l(Sxn−2)q(Txn−1,Txn)

+ r(Sxn−2)q(Txn,Txn+1)+ t(Sxn−2)[q(Txn+1,Txn−1)]

¹ k(Txn−2)q(Txn−1,Txn)+ l(Txn−2)q(Txn−1,Txn)

+ r(Txn−2)q(Txn,Txn+1)+ t(Txn−2)[q(Txn−1,Txn)+ q(Txn,Txn+1)]
...

¹ k(Tx0)q(Txn−1,Txn)+ l(Tx0)q(Txn−1,Txn)

+ r(Tx0)q(Txn,Txn+1)+ t(Tx0)q[q(Txn−1,Txn)+ q(Txn,Txn+1)]

¹ k(Tx0)+ l(Tx0)+ t(Tx0)
1− r(Tx0)− t(Tx0)

q(Txn−1,Txn)

=µq(Txn−1,Txn)¹µ2q(Txn−2,Txn−1)

¹
...

¹µnq(Tx0,Tx1),

where µ= k(Tx0)+ l(Tx0)+ t(Tx0)
1− r(Tx0)− t(Tx0)

< 1.

Note that,

q(Txn,Txn+1)= q(Sxn−1,Sxn)¹µq(Txn−1,Txn). (3.1)

Let m > n ≥ 1. Then it follows that

q(Txn,Txm)¹ q(Txn,Txn+1)+ q(Txn+1,Txn+2)+·· ·+ q(Txm−1,Txm)
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¹ (µn +µn+1 +·· ·+µm−1)q(Tx0,Tx1)

¹ µn

1−µ
q(Tx0,Tx1).

Thus, Lemma 2.7(3) shows that {Txn} is a Cauchy sequence in X . Since T(X ) is complete, there
exists x∗ ∈ X such that Txn → Tx∗ as n →∞. By Definition 2.5(q3), we have

q(Txn,Tx∗)¹ µn

1−µ
q(Tx0,Tx1). (3.2)

Now, by using (3.1), we have

q(Txn,Sx∗)= q(Sxn−1,Sx∗)¹µq(Txn−1,Tx∗)

¹µ
µn−1

1−µ
q(Tx0,Tx1)

= µn

1−µ
q(Tx0,Tx1). (3.3)

Thus, Lemma 2.7(1), (3.2) and (3.3) show that Tx∗ = Sx∗.
Therefore, x∗ is a coincidence point of S and T and w is a point of coincidence of S and T

where w = Tx∗ = Sx∗ for some x∗ in X .
Suppose that w = Tx∗ = Sx∗. Then, we have

q(w,w)= q(Sx∗,Sx∗)

¹ k(Tx∗)q(Tx∗,Tx∗)+ l(Tx∗)q(Tx∗,Sx∗)

+ r(Tx∗)q(Tx∗,Sx∗)+ t(Tx∗)[q(Sx∗,Tx∗)+ q(Sx∗,Tx∗)]

= k(w)q(w,w)+ l(w)q(w,w)+ r(w)q(w,w)+ t(w)[q(w,w)+ q(w,w)]

= (k+ l+ r+2t)(w)q(w,w).

Since (k+ l+ r+2t)(w)< 1, Lemma 2.4(1) shows that q(w,w)= θ.
Finally, suppose there is another point of coincidence u of S and T such that u = Sy∗ = T y∗

for some y∗ in X . Then, we have

q(w,u)= q(Sx∗,Sy∗)

¹ k(Tx∗)q(Tx∗,T y∗)+ l(Tx∗)q(Tx∗,Sx∗)

+ r(Tx∗)q(T y∗,Sy∗)+ t(Tx∗)[q(Sx∗,T y∗)+ q(Sy∗,Tx∗)]

= k(w)q(w,u)+ l(w)q(w,w)+ r(w)q(u,u)+ t(w)[q(w,u)+ q(u,w)]

= (k+2t)(w)q(w,u).

Since (k+2t)(w)< 1, Lemma 2.4(1) shows that q(w,u)= θ.
Also, we have q(w,w)= θ. Thus, Lemma 2.7(1) shows that w = u. Therefore, w is the unique

point of coincidence.
Now, let w = Tx∗ = Sx∗. Since S and T are weakly compatible, we have

Tw = TTx∗ = TSx∗ = STx∗ = Sw.

Hence Tw is a point of coincidence. The uniqueness of the point of coincidence implies that
Tw = Tx∗. Therefore, w = Tw = Sw. Hence, w is the unique common fixed point of S and T.
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We have the following result (immediate consequence of Theorem 3.1).

Theorem 3.2. Let (X ,d) be a complete cone metric space over a solid cone P and q is a c-Distance
on X . Let S : X → X be a self mapping and suppose there exists mappings k, l, r, t : X → [0,1)
such that the following conditions hold:

(a) k(Sx)≤ k(x), l(Sx)≤ l(x), r(Sx)≤ r(x) and t(Sx)≤ t(x) for all x ∈ X ,

(b) (k+ l+ r+2t)(x)< 1 for all x ∈ X ,

(c) q(Sx,Sy)¹ k(x)q(x, y)+ l(x)q(x,Sx)+ r(x)q(y,Sy)+ t(x)[q(Sx, y)+ q(Sy, x)] for all x, y ∈ X .
Then S has a fixed point point x∗ in X . Further, if v = Sv then q(v,v) = θ. The fixed point is
unique.

Theorem 3.3. Let (X ,d) be a cone metric space over a solid cone P and q is a c-Distance on
X . Let S : X → X and T : X → X be two self mappings and suppose there exists mappings
k, l, r : X → [0,1) such that the following conditions hold:

(a) k(Sx)≤ k(Tx), l(Sx)≤ l(Tx), r(Sx)≤ r(Tx) for all x ∈ X ,

(b) (k+2l+2r)(x)< 1 for all x ∈ X ,

(c) q(Sx,Sy) ¹ k(Tx)q(Tx,T y)+ l(Tx)[q(Tx,Sy)+ q(T y,Sx)]+ r(Tx)[q(Tx,Sx)+ q(T y,Sy)],
for all x, y ∈ X .

If S(X )⊆ T(X ) and T(X ) is a complete subspace of X , then S and T have a coincidence point x∗

in X . Further, if w = Tx∗ = Sx∗ then q(w,w)= θ. Moreover, if S and T are weakly compatible,
then S and T have a unique common fixed point.

Proof. The proof of this theorem is similar as Theorem 3.1.

The following corollary can be obtained as consequences of Theorem 3.1 and Theorem 3.3.

Corollary 3.4. Let (X ,d) be a cone metric space over a solid cone P and q is a c-Distance on
X . Let S : X → X and T : X → X be two self mappings and suppose there exists mappings
k : X → [0,1) such that the following conditions hold:

(a) k(Sx)≤ k(Tx) for all x ∈ X ,

(b) q(Sx,Sy)¹ k(Tx)q(Tx,T y) for all x, y ∈ X .

If S(X )⊆ T(X ) and T(X ) is a complete subspace of X , then S and T have a coincidence point x∗

in X . Further, if w = Tx∗ = Sx∗ then q(w,w)= θ. Moreover, if S and T are weakly compatible,
then S and T have a unique common fixed point.

4. Conclusion
In this attempt, we have proved some coincidence point and common fixed point results in cone
metric spaces under c-distance. These results generalizes and improves the recent results of
Fadail et al. [8–11] and Dubey et al. [4, 6] in the sense that in our results, we are employing
c-distance and in contractive conditions, replacing the constants with functions, which extends
the further scope of our results.
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