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Abstract. In this paper, a second-order finite difference method on non-uniform grid is proposed for
the solution of singularly perturbed boundary value problems. Replace the derivatives of the problem
with highorder finite differences on a non-uniform grid to get a discrete equation. This equation can be
effectively solved by tridiagonal method. This method performs convergence analysis and the method
produces second-order consistent convergence. The numerical experiments are used to illustrate the
method. The absolute error has been proposed to compare with other methods in the literature to
prove the rationality of the method.
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1. Introduction
Differential equations with a highest derivative multiplied by a small parameter play an
important role in various fields of science and engineering. Such as nuclear engineering, control
theory, elasticity, fluid mechanics, quantum mechanics, optimal control, chemical reactor theory,
aerodynamics, reaction diffusion processes, geophysics, etc. Various authors have proposed
different numerical methods to solve the Singular Perturbation Problem (SPP) [7, 12, 14].
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Kadalbajoo et al. [5] considered the numerical solution of the SPP using spline functions.
It knows well that most of the methods fail on an hour basis with respect to the grid size

used for the discretization of the SPP. As usually, general numerical methods cannot give a best
approximation to those equations. Awoke and Reddy [1] proposed a fitting method for solving
these equations. Habib and El-Zahar [4] have used an algorithm for solving the mechanistic SPP.
Kadalbajoo and Sharma [8] briefly investigated numerical methods for solving SPP. Kadalbajoo
and Kapil [9] have chosen a numerical method based on finite-difference singularly perturbed
boundary value problems for delay differential equations. Mohammadi [10] proposed a uniformly
converged uniform grid difference scheme using adaptive cubic splines to solve SPP. Kadalbajoo
et al. [5] gives a second-order method, which becomes a special case of the method given in [10].
Kadalbajoo et al. [6] derived a finite-difference method for the uniform convergence of a fitting
grid for this problem. Natesan and Ramanujam [11] proposed an enhanced method for SPPs
that arise in chemical reactor theory. Rao and Chakravarty [13] used a finite difference method
to deal with a singularly perturbed differential difference equation with layers and oscillation
behavior. Surla et al. [15] proposed a quadratic spline discrete minimum principle for the SPP.
Roos et al. [14] discuss numerical methods for solving SPP. Uniform numerical methods for the
initial and boundary layer problems are given by Doolan et al. [3]. Bigge and Bohl [2] proposed
the deformation of the bifurcation diagram due to the discretization.

2. Numerical Approach
Consider a model singular perturbed one parameter equation of the form:

L[θ(u)]≡ εθ′′(u)+a(u)θ′(u)+b(u)θ(u)= f (u), 0≤ u ≤ 1 (2.1)

with boundary conditions

θ(0)= γ0 and θ(1)= γ1 (2.2)

where ε (0 < ε¿ 1) is a very small positive perturbation parameter and the functions a(u),
b(u) and f (u) are sufficiently smooth functions in the given domain satisfying the conditions
a(u)≥ ã > 0, b(u)≤−ρ < 0 where ρ is a positive constant.

Let [0,1] be divided into N subintervals with variable mesh size hi = ui −ui−1 for i = 1 to N
and hi+1 = τihi . To start the computational implementation, we have to determine the value of
h1. Denote R = uN −u0. Then

R = (uN −uN−1)+ (uN−1 −uN−2)+ . . .+ (u1 −u0)

= hN +hN−1 + . . .+h1

= (τ1 +τ1τ2 + . . .+τ1τ2τ3 . . .τN−1)h1 .

Then h1 = R
(τ1+τ1τ2+...+τ1τ2τ3...τN−1) determines the value of the starting step length with which

we can compute the subsequent step lengths h2, h3, etc. In singular perturbation problems, if
the layer is at the left- end boundary u = 0, then a large collection of nodal points nearer to this
point are required. Likewise, when the layer is at the right- end boundary then a large cluster
of nodal points at this boundary is needed. The following process achieves this distribution
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of nodal points.Choose τi = τ= constant for i = 1,2, . . . , N . Then the step length h1 reduces to
h1 = R(1−τ)

(1−τN) .

If the layer is at left- end point, then we take τ> 1. It assurances that more number of nodal
points exist near to the left end boundary. If the layer exists at the right- end, then choose τ< 1
which ensures a collection of large number of nodal points near the right end boundary. When
the layer is at the both end points of the interval then take τ> 1 in the left half, τ< 1 in the
right half of the respective intervals. Then we have a symmetric mesh with a greater number of
nodal points at both ends of the domain.

Consider a non uniform higher order finite difference approximation of first and second
derivatives:

θ′i = θ̃′i −
τih2

i

6
θ′′′i +νi1 , (2.3)

θ′′i = θ̃′′i +
(1−τi)hi

3
θ′′′i +νi2 , (2.4)

where θ̃′i =
θi+1−τ2

i θi−1+(τ2
i −1)θi

τi(1+τi)hi
and θ̃′′i = 2[θi+1+τiθi−1−(1+τi)θi]

τi(1+τi)h2
i

with truncation errors

νi1 = τi(τi−1)
24 h3

iθ
(iv)
i and νi2 = (τ2

i −τi+1)
12 h2

iθ
(iv)
i .

Computing θ′′′i using eq. (2.1), replacing it in eq. (2.3) and eq. (2.4), we get

θ′i = θ̃′i −Bi

( f ιi −aiθ
ιι
i −k3(i)θιi −bιiθi

ε

)
, (2.5)

θ′′i = θ̃′′i + A i

( f ιi −aiθ
ιι
i −k3(i)θ′i −bιiθi

ε

)
, (2.6)

where A i = (1−τi)hi

3
, Bi =

hiτ
2
i

6
, k1(i)= τ(1+τ)h2

i , k2(i)= τ(1+τ)hi , k3(i)= (a′
i +bi).

Now inserting eqs. (2.5) and (2.6) in eq. (2.1), we get the following tridiagonal relation

Uiθi−1 +Viθi +Wiθi+1 = Zi (2.7)

where Ui =
(
2L iτ−τ2Mihi−1

)
, Vi =

(
Mi(τ2−1)hi −2L i(1+τ)+Oiτ(1+τ)h2

i
)
, Wi = (2L i+Mihi−1),

L i = ε−ai A i + a2
i Bi
ε

, Mi = ai − A ik3(i)+ aiBik3(i)
ε

, Oi = aiBibιi
ε

+bi − A ibιi , Zi = f i +
(

aiBi
ε

− A i

)
f ιi .

3. Convergence Analysis
Truncation error in the proposed scheme is

Ti(hi)= τ(1+τ)
3

[
(τ−1)2

3
aiθ

′′′
i + (τ2 −τ+1)

4
(
f ′′i −aiθ

′′′
i − (2a′

i +b′
i)θ

′′
i − (a′′

i +2b′
i)θ

′
i −b′′

i θi
)]

·h4
i +O(h5

i ). (3.1)

Consider the tridiagonal system eq. (3.1) in matrix form

Pθ = D , (3.2)

where P = [pi j] for 1≤ i, j ≤ (N −1) is a tri-diagonal matrix with pii+1 =Wi , pii =Vi , pii−1 =Ui

and D = (vi) is a column vector with vi = Zi .
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We also have

Pθ−Ti(hi)= D , (3.3)

where θ = (θ0,θ1, . . . ,θN)t represents original solution and Ti(hi)= (T0(h0),T1(h1), . . . ,TN(hN))t

is the local truncation error.
From eq. (3.2) and eq. (3.3), it is clear that

P(θ−θ)= Ti(hi) (3.4)

so that the error equation is

PE = Ti(hi) , (3.5)

where E = Y −Y = (e0, e1, . . . , eN)t. Let Si be the sum of elements of the ith row of matrix P ,
then we have

Si =
N−1∑
j=1

mi j =−2τε+
(
aiτ+ 2ai(1−τ)

3

)
hi +O(h2

i ) for i = 1

=
N−1∑
j=1

mi j = (τ+1)bi

τ
h2

i +
(

(τ+1)(τ−1)b′
i

3τ2

)
h3

i +O(h4
i )=βih2

i +O(h3
i ) for i = 2,3, . . . , N−2

=
N−1∑
j=1

mi j =−2ε+
(
(1−τ)2ai

3
−ai

)
hi

τ
+O(h2

i ) for i = N −1

Since 0< ε¿ 1, P−1 exists and it has non-negative elements. So that from eq. (3.5), it has

E = P−1T(h) (3.6)

and

‖E‖ ≤ ‖P−1‖ ·‖T(h)‖ . (3.7)

Let mki be the (ki)th element of P−1. Since mki ≥ 0, from the matrix theory, we have
N−1∑
i=1

mkiSi = 1, k = 1,2, . . . , N −1 . (3.8)

Therefore,
N−1∑
i=1

mki ≤
1

min
1≤i≤N−1

Si
= 1
βi

≤ 1
|βi|

. (3.9)

We define ‖P−1‖ = max
1≤k≤N−1

N−1∑
i=1

|mki| and ‖T (h)‖ = max
1≤i≤N−1

|Ti (h)|.

Using eq. (3.1), eq. (3.6) and eq. (3.9), we get

e j =
N−1∑
i=1

mkiTi(hi), j = 1,2,3, . . . , N −1

which implies

e j ≤
kh4

i

|βi|h2
i
, for j = 1,2, . . . , N −1 (3.10)

where k = τ(1+τ)
3

[
(τ−1)2

3 aiθ
′′′
i + (τ2−τ+1)

4

(
f ′′i −aiθ

′′′
i − (2a′

i +b′
i)θ

′′
i − (a′′

i +2b′
i)θ

′
i −b′′

i θi
)]

is a constant

independent of h and βi = (τ+1)bi
τ

.
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Therefore, using eq. (3.10), we have

‖E‖ =O
(
h2

i
)

i.e., the method is second order uniformly convergent on the non-uniform mesh.

4. Numerical Experiments
To demonstrate the suggested method, it is implemented on three test examples. The maximum
error in the solution of the problem is computed and tabulated with comparison.

Example 1. εθ′′(u)+θ′(u)= 0, with θ(0)= 1, θ(1)= e
−1
ε .

The exact solution is θ(u)= e−u/ε.

Table 1. Comparison of the maximum absolute error of Example 1

HH
HHHHε ↓

N →
64 128 256 512 1024

Results by the proposed scheme
2−6 3.20(−2) 7.70(−3) 1.90(−3) 4.93(−4) 1.4509(−4)
2−7 1.142(−1) 3.17(−2) 7.60(−3) 1.90(−3) 4.6970(−4)
2−8 2.75(−1) 1.136(−1) 3.13(−2) 7.40(−3) 1.80(−3)
2−9 4.881(−1) 2.741(−1) 1.125(−1) 3.05(−2) 7.00(−3)

Results in [10]
2−6 3.45(−2) 7.87(−3) 1.92(−3) 4.79(−4) 1.19(−4)
2−7 1.35(−1) 3.45(−2) 7.87(−3) 1.92(−3) 4.79(−4)
2−8 3.510(−1) 1.35(−1) 3.45(−2) 7.87(−3) 1.92(−3)
2−9 6.00(−1) 3.51(−1) 1.35(−1) 3.45(−2) 7.87(−3)

Figure 1. Graphical representation of the solution in Example 1
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Example 2. −εθ′′(u)+θ′(u)= eu, θ(0)= 0, θ(1)= 0.

The exact solution is θ(u)= 1
ε−1

[
1− e−1

e
1
ε −1

+ (e−1)e
u
ε

e
1
ε −1

− eu

]
.

Table 2. Comparison of the maximum absolute error of Example 2

HHH
HHHε ↓
N →

64 128 256 512 1024

Results by the proposed scheme

2−1 5.0796(−6) 2.0215(−6) 5.0708(−7) 1.2865(−7) 3.5256(−8)

2−4 3.1(−3) 7.5966(−4) 1.8963(−4) 4.7332(−5) 1.1771(−5)

2−8 5.986(−1) 2.31(−1) 5.91(−2) 1.35(−2) 3.30(−3)

Results in [10]

2−1 5.34(−5) 1.33(−5) 3.34(−6) 8.35(−7) 2.08(−7)

2−4 3.53(−3) 8.79(−4) 2.19(−4) 5.48(−5) 1.37(−5)

2−8 6.06(−1) 2.33(−1) 5.95(−2) 1.35(−2) 3.32(−3)

Figure 2. Graphical representation of the solution in Example 2

Example 3. εθ′′− 1
u+1

θ′− 1
u+2

θ = f (u) with θ(0)= 1+2
−1
ε ,

θ(1)= e+2 f (u)= eu
(
ε− 1

u+1 −
1

u+2

)
−2

−1
ε

(u+1)1+ 1
ε

u+2
.

The exact solution is θ(u)= eu +2
−1
ε (u+1)1+ 1

ε .
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Figure 3. Graphical representation of the solution in Example 3

Table 3. Comparison of the maximum absolute error of Example 3

HHH
HHHε ↓
N →

64 128 256 512 1024

Results by the proposed scheme

2−4 8.1296(−4) 2.0378(−4) 5.1420(−5) 1.3359(−5) 3.9075(−6)

2−5 3.5308(−3) 8.8004(−4) 2.2076(−4) 5.6146(−5) 1.5032(−5)

2−6 1.4909(−2) 3.6816(−3) 9.1909(−4) 2.3137(−4) 5.9725(−5)

2−7 6.3188(−2) 1.5220(−2) 3.7648(−3) 9.4190(−4) 2.3885(−4)

2−8 2.2808(−1) 6.3711(−2) 1.5385(−2) 3.8116(−3) 9.5725(−4)

2−9 5.5208(−1) 2.2869(−1) 6.3987(−2) 1.5476(−2) 3.8424(−3)

Results in [10]

2−4 1.00(−3) 2.50(−4) 6.27(−5) 1.56(−5) 3.91(−6)

2−5 3.90(−3) 9.71(−4) 2.41(−4) 6.06(−5) 1.50(−5)

2−6 1.57(−2) 3.86(−3) 9.62(−4) 2.39(−4) 6.00(−5)

2−7 6.91(−2) 1.56(−2) 3.85(−3) 9.59(−4) 2.39(−4)

2−8 2.69(−1) 6.90(−2) 1.57(−2) 3.85(−3) 9.58(−4)

2−9 6.97(−1) 2.70(−1) 6.90(−2) 1.57(−2) 3.85(−3)

5. Discussions and Conclusion
For the solution of the SPP, a finite difference method on non-uniform grid is proposed. The
discretized equation is obtained by inserting a high-order finite-difference approximation to the
first-order and second-order derivatives of the problem using a geometric grid. To illustrate
the proposed solution, it was verified in three examples. The numerical results are compared
with the results of the method [7] to prove the proposed solution. We noticed that the proposed
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method gives better results. From the graphical representation of the solutions, we observed
that the numerical solution is very accurate. The convergence of the suggested method is
established. This method is very simple and requires little computational effort to produce
accurate results.
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