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On Tricomi and Hermite-Tricomi Matrix Functions
of Complex Variable

A. Shehata

Abstract. In this paper, Tricomi and Hermite-Tricomi matrix functions are
introduced starting from the Hermite matrix polynomials. The convergence,
radius of regularity, integral form, generating matrix functions, matrix recurrence
relations satisfied by these Tricomi matrix functions are derived. Finally, the
generating matrix functions, matrix recurrence relations, addition theorems for
the Hermite-Tricomi matrix functions are given and matrix differential equations
satisfied by them are presented.

1. Introduction

Theory of special functions plays an important role in the formalism of
mathematical physics. Hermite and Chebyshev polynomials are among the most
important special functions, with very diverse applications to physics, engineering
and mathematical physics ranging from abstract number theory to problems of
physics and engineering. The hypergeometric matrix function has been introduced
as a matrix power series and an integral representation and the hypergeometric
matrix differential equation in [9, 12, 15, 17] and the explicit closed form general
solution of it has been given in [10]. Recently, extension to the matrix framework
of the classical families of Hermite-Hermite, Hermite, Laguerre, Bessel, Jacobi,
Chebyshev and Gegenbauer matrix polynomials have been proposed and studied
in a number of papers [1, 2, 3, 4, 7, 8, 11, 15, 16].

The primary goal of this paper is to consider a new system of matrix function,
namely the Tricomi matrix functions and Hermite-Tricomi matrix functions. The
structure of the paper is as follows: In Section 2 a definition of Tricomi matrix
functions is given and the convergence properties, radius of convergence and
integral form are given, the generating matrix functions and matrix recurrence
relations are established and the matrix differential equation of three order
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satisfied by them is presented. Finally, we define the Hermite-Tricomi matrix
functions and the matrix recurrence relations,addition theorems and matrix
differential equations are investigated in Section 3.

If D0 is the complex plane cut along the negative real axis and log(z) is denoting
the principle logarithm of z [5], then z

1
2 represents exp

� 1
2

log(z)
�
. The set of all

eigenvalues of A is denoted by σ(A). If A is a matrix in CN×N with σ(A) ⊂ D0,
then A

1
2 =
p

A = exp
� 1

2
log(A)

�
denotes the image by z

1
2 of the matrix functional

calculus acting on the matrix A. The two-norm of A is denoted by ‖A‖2 and it is
defined by

‖A‖2 = sup
x 6=0

‖Ax‖2

‖x‖2

where for a vector y in CN , ‖y‖2 = (y T y)
1
2 is the Euclidean norm of y .

If f (z) and g(z) are holomorphic functions of the complex variable z, which are
defined in an open set Ω of the complex plane and if A is a matrix in CN×N with
σ(A)⊂ Ω, then from the properties of the matrix functional calculus [5], it follows
that

f (A)g(A) = g(A) f (A). (1.1)

Hence, if B in CN×N is a matrix for which σ(B)⊂ Ω and also if AB = BA, then

f (A)g(B) = g(B) f (A). (1.2)

Let A be a positive stable matrix in CN×N satisfying the condition [9, 10]

Re(z)> 0, for all z ∈ σ(A). (1.3)

It has been seen by Defez and Jódar [2] that if A(k, n) and B(k, n) are matrices in
CN×N for n ≥ 0, k ≥ 0, it follows (in an analogous way to the proof of Lemma 11
of [13]) that

∞∑

n=0

∞∑

k=0

A(k, n) =
∞∑

n=0

n∑

k=0

A(k, n− k),

∞∑

n=0

∞∑

k=0

A(k, n) =
∞∑

n=0

[ 1
2

n]∑

k=0

A(k, n− 2k).

(1.4)

Similarly to (1.4), we can write

∞∑

n=0

n∑

k=0

A(k, n) =
∞∑

n=0

∞∑

k=0

A(k, n+ k),

∞∑

n=0

[ 1
2

n]∑

k=0

A(k, n) =
∞∑

n=0

∞∑

k=0

A(k, n+ 2k).

(1.5)
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The Hermite matrix polynomials Hn(x , A) of single variable was defined by using
the generating function [1, 6, 7] in the following form

∞∑

n=0

tn

n!
Hn(x , A) = exp (x t

p
2A− t2 I) (1.6)

where I is the identity matrix in CN×N . The Hermite matrix polynomials are
explicitly expressed as follows

Hn(x , A) = n!

[ 1
2

n]∑

k=0

(−1)k

k!(n− 2k)!
(x
p

2A)n−2k, n≥ 0. (1.7)

The Hermite matrix polynomials are defined through the operational rule [1] in
the form

Hn(x , A) = exp
�
− 1

(
p

2A)2
d2

d x2

��
x
p

2A
�n. (1.8)

In addition, the inverse of (1.8) allows concluding that

(x
p

2A)n = exp
�

1

(
p

2A)2
d2

d x2

�
Hn(x , A). (1.9)

In next section, we introduce to define and study of a new matrix function
which represents of the Tricomi matrix functions as given by the relation and the
convergence properties, radius of convergence and an integral form are given.

2. Tricomi matrix functions

Let A be a matrix in CN×N satisfying the condition (1.3). The Tricomi matrix
functions Cn(z, A) is defined by the series

Cn(z, A) =
∞∑

k=0

(−1)k(z
p

2A)k

2kk!(n+ k)!
. (2.1)

Using (1.4), (1.5) and (2.1), we arrange the series

∞∑

n=−∞
tn Cn(z, A) =

∞∑

n=−∞

∞∑

k=0

(−1)k(z
p

2A)k

2kk!(n+ k)!
tn

=
∞∑

n=0

∞∑

k=0

(−1)k(z
p

2A)k

2kk!n!
tn−k

=
∞∑

n=0

1

n!
tn I

∞∑

k=0

(−1)k(z
p

2A)k

2kk!
tk

= et I− z
p

2A
2t .
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We obtain an explicit representation for the Tricomi matrix functions by the
generating matrix function in the form

F(z, t, A) =
∞∑

n=−∞
tn Cn(z, A) = et I− z

p
2A

2t . (2.2)

Now, we will investigate the convergence of the series (2.1) and by using the ratio
test, one gets

lim
k→∞

����
‖Uk+1(z)‖
‖Uk(z)‖

����= lim
k→∞

����

(−1)k+1(z

p
2A)k+1

2k+1(k+ 1)!(n+ k+ 1)!

2kk!(n+ k)!

(−1)k(z
p

2A)k


����

= lim
k→∞

����


−z
p

2A

2(k+ 1)(n+ k+ 1)


����

= lim
k→∞


z
p

2A

2(k+ 1)(n+ k+ 1)

= 0

where

Uk(z) =
(−1)k(z

p
2A)k

2kk!(n+ k)!
.

Now, we begin the study of this function by calculating its radius of convergence
R. For this purpose, we recall relation of [14], then

1

R
= limsup

k→∞
(‖Uk‖)

1
k

= lim
k→∞

sup
�
(−1)k(

p
2A)k

2kk!(n+ k)!


� 1

k

= lim
k→∞

sup
�

(−1)k(
p

2A)k

2k
p

2π k( k
e
)k
p

2π (n+ k)( n+k
e
)n+k


� 1

k

= 0.

Then, the Tricomi matrix functions is an entire function. The integral form of
Tricomi matrix functions is provided by the following theorem:

Theorem 2.1. Suppose that A is a matrix in CN×N satisfying (1.3), then

Cn(z, A) =
1

p
πΓ
�
n+ 1

2

�
∫ 1

−1

(1− t2)n−
1
2 cos(wt)dt (2.3)

where |arg(z)|< π and w2 = 2z
p

2A.

Proof. By Lemma 2 of [9], we can state that

1

(n+ k)!
=

1

Γ(n+ k+ 1)

=
1

Γ
�
n+ 1

2

�
Γ
�
k+ 1

2

�
∫ 1

−1

t2h(1− t2)n−
1
2 dt. (2.4)
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From (2.1) and (2.4), we get

Cn(z, A) =
∞∑

k=0

(−1)k(z
p

2A)k

2kk!

1

Γ
�
n+ 1

2

�
Γ
�
k+ 1

2

�
∫ 1

−1

t2h(1− t2)n−
1
2 dt

=
∞∑

k=0

(−1)k(z
p

2A)k

Γ
�
n+ 1

2

�
1

2kk!Γ
�
k+ 1

2

�
∫ 1

−1

t2h(1− t2)n−
1
2 dt

=
∞∑

k=0

(−1)k(z
p

2A)k

Γ
�
n+ 1

2

�
1

2−kpπ(2k)!

∫ 1

−1

t2h(1− t2)n−
1
2 dt

=
1

p
πΓ
�
n+ 1

2

�
∫ 1

−1

(1− t2)n−
1
2

∞∑

k=0

(−1)k(2z
p

2A)k t2k

(2k)!
dt

=
1

p
πΓ
�
n+ 1

2

�
∫ 1

−1

(1− t2)n−
1
2 cos(wt)dt

where |arg(z)|< π and w2 = 2z
p

2A, the result is established. ¤

2.1. Matrix recurrence relations

Some matrix recurrence relations will be established for the Tricomi matrix
functions. First, we obtain

Theorem 2.2. The Tricomi matrix functions Cn(x , A) satisfy the relations

d r

dz r Cn(z, A) = (−1)r
(
p

2A)r

2r Cn+r(z, A). (2.5)

Proof. Differentiating the identity (2.2) with respect to z yields
∞∑

n=−∞
tn d

dz
Cn(z, A) =−

p
2A

2t
et I− z

p
2A

2t . (2.6)

From (2.6) and (2.2), we have
∞∑

n=−∞
tn d

dz
Cn(z, A) =−

p
2A

2

∞∑

n=−∞
tn−1 Cn(z, A) . (2.7)

Hence, identifying the coefficients of tn, we obtain

d

dz
Cn(z, A) =−

p
2A

2
Cn+1(z, A) . (2.8)

Iteration (2.8) for 0 ≤ r ≤ n implies (2.5). Therefore, the expression (2.5) is
established and the proof of Theorem 2.2 is completed. ¤

The above three-terms matrix recurrence relation will be used in the following
theorem.

Theorem 2.3. Let A be a matrix in CN×N satisfying (1.3). Then, we have

z
p

2ACn+1(z, A)− 2nCn(z, A) + 2Cn−1(z, A) = 0. (2.9)
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Proof. Differentiating (2.2) with respect to z and t, we find respectively

∂ F(z, t, A)
∂ z

=
∞∑

n=−∞
tn d

dz
Cn(z, A)

=−
p

2A

2t
et I− z

p
2A

2t

=−
p

2A

2t

∞∑

n=−∞
tnCn(z, A)

and

∂ F(z, t, A)
∂ t

=
∞∑

n=−∞
ntn−1Cn(z, A)

=
�

I +

p
2Az

2t2

�
et I− z

p
2A

2t

=
�

I +

p
2Az

2t2

� ∞∑

n=−∞
tnCn(z, A)

=
∞∑

n=−∞
tnCn(z, A) +

p
2Az

2

∞∑

n=−∞
tn−2Cn(z, A).

Hence, identifying the coefficients of tn−1, we obtain

nCn(z, A) = Cn−1(z, A) +

p
2Ax

2
Cn+1(z, A).

Therefore, F(z, t, A) satisfies the partial matrix differential equation

�
I +

p
2Az

2t2

�
∂ F(z, t, A)
∂ z

+

p
2A

2t

∂ F(z, t, A)
∂ t

= 0

or

(2t2 I +
p

2Az)
∂ F(z, t, A)
∂ z

+
p

2At
∂ F(z, t, A)
∂ t

= 0

which, by virtue of (2.2), becomes

(2t2 I +
p

2Az)
∞∑

n=−∞
tn d

dz
Cn(z, A) +

p
2At

∞∑

n=−∞
ntn−1Cn(z, A) = 0.

It follows that

2
d

dz
Cn−2(z, A) +

p
2Az

d

dz
Cn(z, A) + n

p
2ACn(z, A) = 0. (2.10)

Using (2.8) and (2.10), we get (2.9). The proof of Theorem 2.3 is completed. ¤
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The above recurrence properties can be derived either from (2.8) or from (2.9).
It is easy to prove that

d

dz
Cn(z, A) =−

p
2A

2
Cn+1(z, A),

Cn−1(z, A) =
�

n+ z
d

dz

�
Cn(z, A).

(2.11)

The matrix differential equation satisfied by Cn(z, A) can be straightforwardly
inferred by introducing the shift operators

bP =−2
d

dz
,

bM = n+ z
d

dz

(2.12)

which act on Cn(z, A) according to the rules

bP Cn(z, A) =
p

2A Cn+1(z, A), bM Cn(z, A) = Cn−1(z, A). (2.13)

Using the identity

bP bM Cn(z, A) =
p

2A Cn(z, A) (2.14)

from (2.12), we find that Cn(z, A) satisfies the following ordinary matrix
differential equation of second order

�
2z

d2

dz2 + 2(n+ 1)
d

dz
+
p

2A
�

Cn(z, A) = 0. (2.15)

In the next result, the Tricomi matrix functions appear as finite series solutions
of the second order matrix differential equation.

Corollary 2.1. The Tricomi matrix functions are solutions of the matrix differential
equation of the second order

�
2z

d2

dz2 + 2(n+ 1)
d

dz
+
p

2A
�

Cn(z, A) = 0, n≥ 0. (2.16)

Proof. From (2.8) and using (2.9), becomes

Cn−1(z, A)− z
d

dz
Cn(x , A)− nCn(z, A) = 0.

Differentiating the identity (2.2) with respect to z yields

d

dz
Cn−1(z, A)− d

dz
Cn(z, A)− z

d2

dz2 Cn(z, A))− n
d

dz
Cn(z, A) = 0. (2.17)

Substituting from (2.8) into (2.17), we obtain (2.16). Thus the proof of
Corollary 2.1 is completed. ¤

Corollary 2.2. The Tricomi matrix functions satisfy the following relations

Cn(z±w, A) =
∞∑

k=0

(∓1)k(w
p

2A)k

2k k!
Cn+k(z, A). (2.18)
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Proof. Using (2.2), we get directly the equation (2.18). The proof of Corollary 2.2
is completed. ¤

3. Hermite-Tricomi Matrix Functions

Let A be a matrix in CN×N satisfying the condition (1.3). We define the new
generating matrix function which represents the Hermite-Tricomi matrix functions
in the form

∞∑

n=−∞
tn

H Cn(z, A) = exp
�

t I − z
p

2A

t
− 1

t2 I
�

(3.1)

and by the series expansion

H Cn(z, A) =
∞∑

k=0

(−1)k

k!(n+ k)!
Hk(z, A). (3.2)

It is clear that

H C−1(z, A) = 0,

H C0(z, A) =
∞∑

k=0

(−1)k

(k!)2
Hk(z, A),

H C1(z, A) =
∞∑

k=0

(−1)k

k!(k+ 1)!
Hk(z, A).

By exploiting the same argument of the previous section, it is evident that
Hermite-Tricomi matrix functions H Cn(z, A) satisfies the properties. In the following
theorem, we obtain another representation for the Hermite-Tricomi matrix
functions H Cn(z, A) as follows:

Theorem 3.1. The Hermite-Tricomi matrix functions have the following
representation

H Cn(z, A) = exp
�
− 1

(
p

2A)2
d2

dz2

�
Cn(2z, A). (3.3)

Proof. By using (1.8) and (3.2), we consider the series

H Cn(z, A) =
∞∑

k=0

(−1)k

k!(n+ k)!
Hk(z, A)

=
∞∑

k=0

(−1)k

k!(n+ k)!
exp
�
− 1

(
p

2A)2
d2

dz2

��
z
p

2A
�k

= exp
�
− 1

(
p

2A)2
d2

dz2

� ∞∑

k=0

(−1)k

k!(n+ k)!
�
z
p

2A
�k

= exp
�
− 1

(
p

2A)2
d2

dz2

�
Cn(2z, A).
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The proof of Theorem 3.1 is completed. Furthermore, in view of (3.3), we can
write

Cn(2z, A) = exp
�

1

(
p

2A)2
d2

dz2

�
H Cn(z, A). ¤ (3.4)

The new properties of the Hermite-Tricomi matrix functions generated by (3.1)
yields as given in the following theorem.

Theorem 3.2. The Hermite-Tricomi matrix functions satisfy the following relations

H Cn(z+w, A) =
∞∑

k=0

(−w
p

2A)k

k! H Cn+k(z, A). (3.5)

Proof. Using (3.1), the series can be given in the form

∞∑

n=−∞
H Cn(z+w, A)tn = exp

�
t − (z +w)

p
2A

t
− 1

t2

�

= exp
�
− w
p

2A

t

�
exp
�

t I − z
p

2A

t
− 1

t2 I
�

=
∞∑

n=−∞
H Cn(z, A)tn

∞∑

k=0

(−w
p

2A)k t−k

k!

=
∞∑

n=−∞

∞∑

k=0

(−w
p

2A)k

k! H Cn(z, A)tn−k.

Comparing the coefficients of tn, we get (3.5) and the proof is established. ¤

In the following corollary, we obtain the properties of Hermite-Tricomi functions
as follows:

Corollary 3.1. The addition corollary is easily derived from (3.5) which yields

H Cn(z±w, A) =
∞∑

k=0

(∓ w
p

2A)k

k! H Cn+k(z, A). (3.6)

Proof. By exploiting the addition formula

H Cn(z−w, A) =
∞∑

k=0

(w
p

2A)k

k! H Cn+k(z, A).

Hence, the proof of Corollary 3.1 is established. ¤

3.1. Matrix recurrence relations

Some matrix recurrence relation is carried out on the Hermite-Tricomi matrix
functions. We obtain the following
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Theorem 3.3. Suppose that A is a matrix in CN×N satisfying (1.3). The Hermite-
Tricomi matrix functions satisfies the following relations

dk

dzk H Cn(z, A) = (−
p

2A)k H Cn+k(z, A), 0≤ k ≤ n. (3.7)

Proof. Differentiating the identity (3.1) with respect to z yields
∞∑

n=−∞
H C ′n(z, A)tn =

−p2A

t
exp
�

t I − z
p

2A

t
− 1

t2 I
�

. (3.8)

From (3.1) and (3.8), we have
∞∑

n=−∞
H C ′n(z, A)tn =−

p
2A

∞∑

n=−∞
H Cn(z, A)tn−1. (3.9)

Hence, from identifying coefficients in tn, it follows that

H C ′n(z, A) =−
p

2A H Cn+1(z, A). (3.10)

Iteration (3.10), for 0 ≤ k ≤ n, implies (3.7). Hence for particular values of k and
n, (3.7) yield

H Cn(z, A) = (−
p

2A)k−n dn−k

dzn−k H Ck(z, A). (3.11)

Therefore, the expression (3.7) is established and the proof of Theorem 3.3 is
completed. Differentiating the identity (3.1) with respect to t yields

∞∑

n=−∞
n H Cn(z, A)tn−1 = (t3 I + zt

p
2A+ 2I)

∞∑

n=−∞
H Cn(z, A)tn−3

from which by comparing the coefficients of tn on both sides of the identity, we
obtain both the pure matrix recurrence relation

(n+ 1) H Cn+1(z, A) = H Cn(z, A) + z
p

2A H Cn+2(z, A) + 2 H Cn+3(z, A). ¤ (3.12)

The above matrix recurrence relation will be used in the following theorem.

Theorem 3.4. Suppose that A is a matrix in CN×N satisfying (1.3). Then Hermite-
Tricomi matrix functions, we have

2 H Cn+1(z, A) + z
p

2A H Cn(z, A)− (n− 1) H Cn−1(x) + H Cn−2(x) = 0. (3.13)

Proof. We define the new generating matrix function which represents of the
Hermite-Tricomi matrix functions by

W (z, t, A) =
∞∑

n=−∞
H Cn(z, A)tn = exp

�
t I − z

p
2A

t
− 1

t2 I
�

. (3.14)

Differentiating (3.14) with respect to z and t, we find respectively

∂W (z, t, A)
∂ z

=
∞∑

n=−∞
H C ′n(z, A)tn =−

p
2A

∞∑

n=−∞
H Cn(z, A)tn−1
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and

∂W (z, t, A)
∂ t

=
∞∑

n=−∞
n H Cn(z, A)tn−1

= (t3 I + x t
p

2A+ 2I)
∞∑

n=−∞
H Cn(z, A)tn−3.

Therefore, W (z, t, A) satisfies the partial matrix differential equation

(t3 I + zt
p

2A+ 2I)
∂W (z, t, A)

∂ z
+ t2
p

2A
∂W (z, t, A)

∂ t
= 0

which, by using (3.1), becomes

(t3 I + zt
p

2A+ 2I)
∞∑

n=−∞
H C ′n(z, A)tn + t2

p
2A

∞∑

n=−∞
n H Cn(z, A)tn−1 = 0

it follows

H C ′n−3(x) + z
p

2A H C ′n−1(x) + 2 H C ′n(x) + (n− 1)
p

2A H Cn−1(x) = 0. (3.15)

Using (3.10) and (3.15), we get (3.13) and the proof of Theorem 3.4 is
completed. ¤

The following result, the Hermite-Tricomi matrix functions appear as finite
series solutions of the three order matrix differential equation.

Corollary 3.2. The Hermite-Tricomi matrix functions are solutions of the matrix
differential equation of the three order in the form
�

2
d3

dz3 − z(
p

2A)2
d2

dz2 − (n+ 1)(
p

2A)2
d

dz
− (
p

2A)3
�

H Cn(z, A) = 0. (3.16)

Proof. Using (3.10) gives

d

dz H Cn(z, A) =−
p

2A H Cn+1(z, A),

d2

dz2 H Cn(z, A) =−
p

2A
d

dz H Cn+1(z, A) = (−
p

2A)2 H Cn+2(z, A),

d3

dz3 H Cn(z, A) =
d2

dz2 (−
p

2A H Cn+1(z, A))

= (−
p

2A)2
d

dz H Cn+2(z, A) = (−
p

2A)3 H Cn+3(z, A).

(3.17)

Substituting from (3.17) into (3.12) to obtain (3.16). Thus the proof of
Corollary 3.2 is completed. ¤

Finally, the extension to forms of the type in (2.1) and (3.2) are straightforward
to give definitions of this family matrix functions and will be reported here.
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It is the purpose of this end section to introduce a new matrix function of
complex variable which can be stated in the following form:

Jn(z, A) =
∞∑

k=0

(−1)k(
p

2A)k

2kk!(n+ k)!

�
z

2

�n+2k

(3.18)

where A is a matrix in CN×N satisfying (1.3), this is known as Bessel matrix
functions and is characterized by the following link with Tricomi matrix functions
of complex variable:

Jn(z, A) =
�

z

2

�n

Cn

�
z2

4
, A
�

. (3.19)

The Hermite-Bessel matrix polynomials is defined by the series expansion

H Jn(z, A) =
∞∑

k=0

(−1)k

k!(n+ k)!
Hn+2k(z, A). (3.20)

Further examples proving the usefulness of the present methods can be easily
worked out, but are not reported here for conciseness. These last identities indicate
that the method described in this paper can go beyond the specific problem
addressed here and can be exploited in a wider context.
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