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Abstract. In this paper, singularly perturbed multipoint boundary value problem with a right
boundary layer is considered. This problem is discretized using finite difference method on Bakhvalov-
Shishkin type mesh. We give uniform error estimate in a discrete maximum norm. The first-order of
accuracy difference schemes for the approximate solutions of the problem are presented. The obtained
numerical results demonstrate that the convergence rate of difference scheme is in accord with the
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1. Introduction
In this study, we solve the following singularly perturbed equation, which has a boundary layer
at x = 1, with help of finite difference method based on Bakhvalov-Shishkin mesh:

−εu′′(x)+a(x)u′(x)+b(x)u(x)= f (x), 0< x < 1, (1)

equipped with the multipoint boundary conditions

u(0)= A, (2)
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u(1)−
m−2∑
i=1

ciu(si)= B, (3)

where 0 < ε ¿ 1 is a very small perturbation parameter, B and ci are given constants;
0 < s1 < s2 < . . . < sm−2 < 1, i = 1,2, . . . ,m−2; a(x) ≥ α > 0, b(x) and f (x) are assumed to be
continuous functions in [0,1].

Singularly perturbed equations belong to class of ordinary differential equations in
which the highest derivative is multiplied by a small parameter. Also, singularly perturbed
differential equations see usually in fluid mechanics and other branches of applied mathematics
[2, 4, 9, 10, 17, 18, 26, 27] and the references cited therein. The first time, nonlocal boundary
value problems have been defined as different cases by Bitsadze and Samarskii [10].
Nonlocal boundary value problems have also been examined seriously in the literature
[1, 3, 5–8, 11–16, 18, 19] such as Amiraliyev and Cakir [3] studied to solve reaction-diffusion
singularly perturbed problem with nonlocal boundary condition, Cakir and Amiraliyev [15]
gave uniform finite difference method on piecewise uniform Shishkin type mesh for solving
singularly perturbed three-point boundary value problem. Cakir [5] proposed hybrid scheme on
Shishkin mesh for solving singularly perturbed boundary value problem with nonlocal boundary
condition. The study of existence and uniqueness of these problems can be seen in [21–23].

Because of the ε-perturbation parameter, standard discretization methods for these
singularly perturbed problems create instability. Therefore, we can propose suitable numerical
methods such as finite difference method, finite element method, etc. We solve singularly
perturbed convection-diffusion problem with multi-point condition using finite difference method
in this study as well. Bakhvalov-Shishkin mesh is a modification of the Shishkin mesh described
that incorporates idea by Bakhvalov. But the original Bakhvalov mesh requires the solution of
a nonlinear equation to determine the transition point where the mesh switches from coarse to
fine. Instead, the transition points are as in the Shishkin mesh [24]. There are many studies on
the B-S (Bakhvalov-Shishkin) mesh [20,24,25,28,29].

This study is prepared as follows: Properties of the exact solution and its derivation will
be determined in Section 2. In Section 3, the finite difference method will be presented. The
reminder terms will be evaluated in Section 4. In Section 5, the results of numerical experiment
will be presented. These will be shown by table and figures.

Henceforth, in the paper, C and C0 will mean a positive constant independent of ε and the
mesh parameter.

2. Properties of the Exact Solution
Herein we will give important properties of the solution of (1)-(3), which are needed in next
sections for the examination of numerical solution.

Lemma 1. If a(x), b(x) and f (x) be sufficiently smooth functions on interval [0,1] and

w(1)− [c1w (s1)+ c2w (s2)+ c3w (s3)] 6= 0, (4)

where w(x) is the solution of the following problem:

−εw′′+a(x)w′(x)+b(x)w(x)= 0,

w(0)= 0, w(1)= 1.
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Then, for the solution u(x) of the problem (1)-(3) the following estimates hold:

‖u(x)‖C[0,1] ≤ C0, (5)

and

|u′(x)| ≤ C
{

1+ 1
ε

(e−
α(1−x)

ε )
}

, 0< x < 1. (6)

Proof. We take u(1)=λ and u(x) solution of (1) as u(x)= v(x)+λw(x), where

λ=
b−v(1)+

m−2∑
i=1

civ(si)

w(1)−
m−2∑
i=1

ciw(si)
,

and, the functions v(x) and w(x) is the solution of the following problems:

Lv = f (x),

v(0)= A, v′(0)= 0,

Lw = 0,

w(0)= 0, w′(0)= 1.

After using the Maximum Principle for the above problems, we deduce the evaluations as

|v(x)| = |v(0)|+ |v′(0)|+α−1‖ f (x)‖C[0,1] ≤ C, (7)

and

|w(x)| = |w(0)|+ |w′(0)| ≤ 1. (8)

Ultimately, from (7) and (8), we have

|u(x)| = |v(x)|+ |λ||w(x)| ≤ C+1≤ C0 .

This result show us the estimation (5).

Let us prove (6) as follows:
Initially, we take as u′(x)= v(x) and G(x)= f (x)−b(x)u(x) in equation (1), then rewrite (1) for
proving (6) as

−εv′(x)+a(x)v(x)=G(x),

and we give solution of this equation

v(x)= u′(x)= e
1
ε

∫ x
0 a(ξ)dξ

[
u′(0)−

∫ x

0
G(τ)e

−1
ε

∫ x
τ a(η)dηdτ

]
.

After this equation is integrated over (0, x) and some arrangements, it is obtained that

|u′(x)| ≤ C+ C
ε

(e−
α(1−x)

ε )≤ C
{

1+ 1
ε

(e−
α(1−x)

ε )
}

.

Finally, the proof of Lemma 1 is obtained.

3. Mesh and Generating of the Difference Scheme
In this section, we will define the well-known Bakhvalov mesh and then construct difference
scheme for the problem (1)-(3).

Bakhvalov-Shishkin Mesh. For the positive even integer discretization parameter N , we
divide the interval [0,1] into the two subintervals [0,1−σ] and [1−σ,1]. In practice, we usually
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has σ<< 1. Here σ is transition point which is called as following:

σ=min
{

1
2

,α−1ε ln N
}

. (9)

We define a set of the mesh points ω̄N = {xi}N
i=0 as

xi =


ih, h = 2(1−σ)

N , xi ∈ [0,1−σ], i = 1, . . . , N
2 ;

1+α−1ε ln
[
1−2(1−N−1)

(
1− i

N
)]

, σ< 1
2 ,

xi ∈ [1−σ,1] , i = N
2 +1, . . . , N.

Difference Scheme. In what follows, we denote by ωN nonuniform mesh and define the
following finite difference for any mesh function g i = g(xi) given on ω̄N :

ωN = {0< x1 < x2 < . . .< xN−1 < 1} , ω̄N =ωN ∪ {x0 = 0, xN = 1} ,

and

g x̄,i = g i − g i−1

hi
, gx,i = g i+1 − g i

hi+1
, g0

x,i
= gx,i + g x̄,i

2
,

g x̂,i = g i+1 − g i

~i
, g x̄x̂,i =

gx,i − g x̄,i

~i
, ~i = hi +hi+1

2
, hi = xi − xi−1,

‖g‖∞ ≡ ‖g‖∞,ω̄N
:= max

0≤i≤N
|g i| .

To obtain difference approximation for (1), we integrate (1) over (xi−1, xi+1):

~−1
i

∫ xi+1

xi−1

Lu(x)ϕi(x)dx = ~−1
i

∫ xi+1

xi−1

f (x)ϕi(x)dx, i = 1, . . . , N −1. (10)

The relation (10) can be rewritten as

ε~−1
i

∫ xi+1

xi−1

u′(x)ϕ′
i(x)dx+ai~−1

i

∫ xi+1

xi−1

u′(x)ϕi(x)dx+biui = f i +Ra,i +Rb,i, (11)

which yields relation

−εθiu x̄x̂,i +ηiu x̂,i +biui = f i +Ra,i +Rb,i = Ri, i = 1, . . . , N −1, (12)

where Ri = f i +Ra,i +Rb,i , and the functions
{
ϕi(x)

}N−1
i=1 have the form

ϕi(x)=


ϕ(1)

i (x)= e
ai(x−xi−1)

ε −1

e
ai hi
ε −1

, xi−1 < x < xi,

ϕ(2)
i (x)= 1−e

ai(x−xi+1)
ε

1−e−
ai hi+1

ε

, xi < x < xi+1,

0, x ∉ (xi−1, xi+1) ,
where

θi =
aihi
ε

1− e−
ai hi
ε

, (13)

ηi = −aihi

hi+1[1− e−
ai hi
ε ]

+ ai

1− e
ai hi+1

ε

. (14)

With the local truncation error

Ri=~−1
i

xi+1∫
xi−1

[a(xi)−a(x)]u′(x)ϕi(x)dx+~−1
i

xi+1∫
xi−1

[b(xi)−b(x)]u(x)ϕi(x)dx+~−1
i

xi+1∫
xi−1

[ f (x)− f (xi)]ϕi(x)dx.

(15)
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Thus, by neglecting Ri in the equation (12), we suggest the following difference scheme for
approximating (1)-(3):

−εθi yx̄x̂,i +ηi yx̂,i +bi yi = f i, i = 1, . . . , N −1, (16)

y0 = A, (17)

yN =
m−2∑
i=1

ci yNi

(
xNi

)+B, (18)

where xNi are the mesh points nearest to si , and also θi and ηi are given by (13) and (14),
respectively.

4. Convergence Analysis
Let zi = yi − ui, i = 0,1, . . . , N . Then, the error in the numerical solution satisfies where the
truncation error Ri is given by (15)

−εθi zx̄x̂,i +ηi zx̂,i +bi zi=−R i, i = 1, . . . , N −1, (19)

z0 = 0, (20)

zN =
m−2∑
i=1

ci zNi . (21)

Lemma 2. Let zi be the solution of problem (19)-(21). Then, the estimate

‖z‖∞,ω̄N ≤ C‖R‖∞,ωN , (22)

holds.

Proof. According to the maximum principle, we have the following inequalities:

w(x)=±zi +α−1 ‖R‖∞,ωN , (23)

w(0)=±z0 +α−1 ‖R‖∞,ωN ≥ 0, (24)

and

w(1)=±zN +α−1 ‖R‖∞,ωN ≥ 0. (25)

From (23)-(25), we obtain that

‖zi‖ ≤α−1 ‖R‖∞,ωN ≤ C‖R‖∞,ωN ,

which proves Lemma 2.

Lemma 3. If a(x),b(x), f (x) ∈ C1 [0,1] , then for the truncation error Ri we have

|Ri| ≤ CN−1. (26)

Proof. We can rewrite for the truncation error Ri as

|Ri| ≤ ~−1
i

xi+1∫
xi−1

|a (xi)−a(x)|u′(x)ϕi(x)dx+~−1
i

xi+1∫
xi−1

|b (xi)−b(x)|u(x)ϕi(x)dx

+~−1
i

xi+1∫
xi−1

| f (x)− f (xi) |ϕi(x)dx. (27)
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Using the mean value theorem for |a (xi)−a(x)|, |b (xi)−b(x)| and | f (x)− f (xi) | in (27), we get

|a(x)−a(xi)| = |a′(ξ)| |x− xi| ≤ Chi,

|b(xi)−b(x)| = |b′(ξ)| |x− xi| ≤ Chi,

| f (x)− f (xi)| = | f ′(ξ)| |x− xi| ≤ Chi, ξ ∈ [xi, x], i = 0, . . . , N,

and also we evaluate (6) as follows:

|u′(x)| ≤ C
{
hi + e−

α(1−xi+1)
ε − e−

α(1−xi−1)
ε

}≤ Chi, i = 1, . . . , N −1,

where

e−
α(1−xi+1)

ε − e−
α(1−xi−1)

ε ≤ e−
α(1−xi+1)

ε
(
1− e−

α(xi+1−xi−1)
ε

)≤ Chi .

From here with (6) and (27), we have

|Ri| ≤ Chi, i = 0, . . . , N. (28)

Now, we can begin to evaluate for (27) on the intervals [0,1−σ] and [1−σ,1], respectively.
In the first case xi ∈ [0,1−σ]:

xi =σ+
(
i− N

2

)
h, i = 0, . . . ,

N
2

,

where

α−1ε ln N < 1
2

, h = 2(1−α−1ε ln N)
N

≤ CN−1. (29)

It then follows from (27) and (29), we have

hi = h, |Ri| ≤ Ch ≤ CN−1. (30)

In the second case xi ∈ [1−σ,1]:
For σ< 1

2 ,

xi−1 = 1+α−1ε ln
[
1−2(1−N−1)

(
1− i−1

N

)]
, (31)

hi =α−1ε ln
[
1−2(1−N−1)

(
1− i

N

)]
−α−1ε ln

[
1−2(1−N−1)

(
1− i−1

N

)]
. (32)

Applying the mean value theorem in (32), we obtain that

hi =α−1ε
2(1−N−1)N−1

1−2i1(1−N−1)N−1 ≤ CN−1. (33)

Thus, from (27) and (33), we can write

|Ri| ≤ CN−1, i = N
2
+1, . . . , N.

According to all these situations, we have

|Ri| ≤ CN−1, i = 0, . . . , N.

Now, we can formulate the main convergence result:

Theorem 1. Let u(x) be the solution of the problem (1)-(3) and yi be the solution of the difference
scheme (16)-(18). Then, the following uniform error estimate satisfies

‖y−u‖∞,ω̄N
≤ CN−1.
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5. Numerical Results
In this section we will solve a convection-diffusion problem with the Bakhvalov-Shishkin mesh.
Firstly, we construct an algorithm and then using a computer program, we obtain numarical
results, table and figures.

Example 2. Consider a convection-diffusion problem:

−εu′′(x)+u′(x)= 1, 0< x < 1,

u(0)= 0, u(1)= u(0.25)+2u
(
1
3

)
+3u (0.5)+d.

The exact solution is

u(x)=
exp

(
− xp

ε

)
+exp

(
x−1p
ε

)
1+exp

(
− 1p

ε

) −cos2 (πx) .

The corresponding ε-uniform convergence rates are computed using the formula

PN = ln
(
eN /e2N)
ln2

.

The error estimates are denoted by

eN =max
ε

eN
ε , eN

ε = ‖y−u‖∞,ω̄N
.

Table 1. The computed maximum pointwise errors eN and rates of convergence pN of Example.

ε N = 24 N = 48 N = 96 N = 192 N = 384 N = 768

2−10 0.04166666 0.02083333 0.01041667 0.00520785 0.00255726 0.00098445

0.99 0.99 1.00 1.00 1.31

2−12 0.04166665 0.02083334 0.01041667 0.00520832 0.00260416 0.00130196

0.99 1.00 1.00 0.99 1.00

2−14 0.04166667 0.02083338 0.01041666 0.00520832 0.00260417 0.00130207

0.99 1.00 1.00 0.99 1.00

2−16 0.04166626 0.02083325 0.01041647 0.00520834 0.00260414 0.00130207

0.99 1.00 0.99 1.00 0.99

2−18 0.04166681 0.02083366 0.01041777 0.00520797 0.00260409 0.00130199

0.99 1.00 0.99 0.99 1.00

2−20 0.04166353 0.02083475 0.01041231 0.00520910 0.00260409 0.00130169

0.99 1.00 0.99 1.00 1.00

eN 0.04166681 0.02083475 0.01041777 0.00520910 0.00260409 0.00130207

pN 0.99 0.99 0.99 0.99 0.99

The resulting errors and the corresponding numbers for ε= 2−2i , i = 5,6,7,8,9,10 are listed
in Table 1. Table 1 verifies first-order the ε-uniform convergence of the numerical solution
on both subintervals and computed rates are essentially in agreement with our theoretical
analysis.
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Figure 1. Comparison of approximate solution and exact solution of Example for N = 96, ε= 2−14.

Figure 2. Error distribution of Example for ε= 2−16.

The exact solution and approximate solution curves are almost identical as shown in Figure 1.
In Figure 2, the errors in boundary layer region are maximum because of the irregularity caused
by the sudden and rapid change of the solution in the layer region around x = 1 for different ε
and N values.
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6. Conclusion
In this work, the finite difference scheme is proposed to compute the solution of singularly
perturbed problems with multipoint boundary condition. It is proved that the error estimate
of numerical solution is first-order on Bakhvalov-Shishkin mesh. The errors and rates of
convergence are tabulated in Table 1 for the considered example in support of the theoretical
results. The figures of the exact and the numerical solution of the problem for different values of
ε-perturbation parameter were plotted in Figure 1. In Figure 2, error distributions of Example
for ε= 2−16, N = 24,48,96,192,384,768 are plotted. Thus, we say that this study can solve the
singularly perturbed problems with more complicated multipoint boundary condition.
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