
Communications in Mathematics and Applications
Volume 2 (2011), Numbers 2-3, pp. 87–95
© RGN Publications

http://www.rgnpublications.com

Existence of Large Solutions for Quasilinear Elliptic Equation

Xiao Li and Zuodong Yang

Abstract. In this paper, we consider the problem
(
−div(|∇u|p−2∇u) = λu− b(x)h(u), x ∈ Ω
u=+∞, on ∂Ω.

where Ω is a smooth bounded domain in RN. The weight function b(x) is a non-
negative continuous function in the domain, h(u) is locally Lipschitz continuous,
h(u)/up−1 is increasing on (0,∞) and h(u) ∼ Hum(p−1) for sufficiently large u
with H > 0 and m > 1. We establish conditions sufficient to ensure the existence
of positive large solutions of the equation.

1. Introduction

In this paper, we are concerned with the existence of positive solution of
quasilinear elliptic equations with singular boundary value condition in the
following form

¨
−div(|∇u|p−2∇u) = λu− b(x)h(u), x ∈ Ω
u=+∞, on ∂Ω

(1.1)

whereΩ⊆ RN is a smooth bounded domain, p > 2. The boundary condition
in (1.1) is understood as u(x) → ∞ when d(x) = dist(x ,∂Ω) → 0+. The
non-negative solutions of (1.1) are called large (or blow-up).

For the following singular boundary value problem
¨
4u(x) = f (u(x)) x ∈ Ω,
u|∂Ω =∞

(1.2)

where Ω is a bounded domain in RN (N ≥ 1) arises naturally from a number
of different areas and has a long history, see [1, 8, 9, 15]. A problem with
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f (u) = eu and N = 2 was first considered by Bieberbach [1] in 1916.
Rademacher [7], using the idea of Bieberbach, extended the above result
to a smooth bounded domain in R3. In this case the problem plays an
important role, when N = 2, in the theory of Riemann surfaces of constant
negative curvature and in the theory of automorphic functions, and when
N = 3, in the study of the electric potential in a glowing hollow metal
body. Lazer and McKenna [6] extended the results for a bounded domain
Ω in RN (N ≥ 1) satisfying a uniform external sphere condition and the
non-linearity f = f (x , u) = p(x)eu, where p(x) is continuous and strictly
positive on Ω. Lazer and McKenna [15] obtained similar results when 4 is
replaced by the Monge-Ampere operator and Ω is a smooth, strictly convex,
bounded domain. Similar results were also obtained for f = p(x)ua with
a > 1.

For the following singular boundary value problem
¨
−4u= λu− b(x)h(u), x ∈ Ω
u=+∞, on ∂Ω

have been extensively studied, for example, see [13, 16, 17, 18] and the
references therein.

Quasilinear elliptic problems with boundary blow-up
¨

div(|∇u|m−2∇u) = f (u(x)), x ∈ Ω
u|∂Ω =∞.

(1.3)

have been studied, see [10, 11, 12] and the references therein. Diaz and
Letelier proved the existence and uniqueness of large solutions to the
problem (1.3) both for f (u) = uγ, γ > m − 1 (super-linear case) and
∂Ω being of the class C2. Recently, Lu, Yang and E.H. Twizell [10] proved
the existence of Large solutions to the problem (1.3) both for f (u) = uγ,
γ > m− 1, Ω = RN or Ω being a bounded domain (super-linear case) and
γ≤ m− 1, Ω = RN (sub-linear case) respectively.

Equations of the above form are mathematical models occurring in
studies of the p-Laplace equation, generalized reaction-diffusion theory,
non-Newtonian fluid theory ([2]-[3]), non-Newtonian filtration ([4])
and the turbulent flow of a gas in porous medium ([5]). In the non-
Newtonian fluid theory, the quantity p is characteristic of the medium.
Media with p > 2 are called dilatant fluids and those with p < 2 are called
pseudoplastics. If p = 2, they are Newtonian fluids.

Motivated by the results of the above cited papers, we shall attempt
to treat such equation (1.1), the results of the semilinear equations are
extended to the quasilinear ones. We can find the related existence results
for p = 2 in [13].
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2. Preliminaries

Consider the singular boundary value problem (1.1), where λ ∈ R+, Ω is
a smooth bounded domain in RN, and the weight function b(x) > 0 in Ω,
the nonlinear function h(u) satisfies:

(A ) h(u) ≥ 0 is locally Lipschitz continuous on [0,∞) and h(u)/up−1 is
increasing on (0,∞); and, for some m> 1,

H = lim
u→∞

h(u)

um(p−1)
> 0 . (2.1)

Note that (2.1) implies that h satisfies Keller-Osserman condition. Indeed,
according to (2.1), there exists ζ > 0 such that

h(u)>
H

2
um(p−1), u≥ ζ .

Therefore∫ ∞

1

[g(t)]
−1
p d t

=

∫ ∞

1

�∫ t

0

h(u)du
�−1

p

d t

=

∫ ζ

1

�∫ t

0

h(u)du
�−1

p

d t +

∫ ∞

ζ

�∫ t

0

h(u)du
�−1

p

d t

=

∫ ζ

1

�∫ t

0

h(u)du
�−1

p

d t +

∫ ∞

ζ

�∫ ζ

0

h(u)du+

∫ t

ζ

h(u)du
�−1

p

d t

≤ M
−1
p (ζ− 1) +

∫ ∞

ζ

�
H

2

um(p−1)+1

m(p− 1)
− H

2

ξm(p−1)+1

m(p− 1)

�−1
p

d t <∞

because m(p−1)> 1 and 0< M =
∫ 1

0
h(u)du<

∫ t

0
h(u)du for t ≥ 1, so the

existence of large solutions of (1.1) is guaranteed.
Consider the problem

¨
−div(|∇u|p−2∇u) = λu− b(x)h(u), x ∈ Ω
u= φ, on ∂Ω

(2.2)

where Ω is a bounded smooth domain, φ ∈ C(∂Ω), h satisfies (A ) and
b ∈ C(Ω,R+).

Lemma 2.1 ([13]). Let u, ū ∈W 1,p(Ω̄) such that
¨
−div(|∇u|p−2∇u)≤ λu− b(x)h(u), x ∈ Ω
−div(|∇ū|p−2∇ū)≥ λū− b(x)h(ū), x ∈ Ω .

If u≤ φ ≤ ū on ∂Ω, then u(x)≤ ū(x) on Ω̄.
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Lemma 2.2 ([14]). Let φ =∞ in (2.1), let u, ū ∈W 1,p(Ω̄) such that ū=∞
on ∂Ω and u=∞ on ∂Ω. If

−div(|∇u|p−2∇u)≤ λu− b(x)h(u), x ∈ Ω
−div(|∇ū|p−2∇ū)≥ λū− b(x)h(ū), x ∈ Ω

and u ≤ ū in Ω, then there exists at least one solution u such that u ≤ u ≤ ū
and u(x)→∞ as x → ∂Ω.

Definition. A function ū ∈W 1,p is a subsolution to problem (1.1) if u=+∞
on ∂Ω and

−div(|∇u|p−2∇u)≤ λu− b(x)h(u), x ∈ Ω .

Similarly, ū is a supersolution to problem (1.1) if ū=+∞ on ∂Ω and

−div(|∇ū|p−2∇ū)≥ λū− b(x)h(ū), x ∈ Ω .

Lemma 2.3. Let b(r) : [0, R] 7→ [0,∞) be continuous function such that
b(r) > 0 for r ∈ [0, R). Define B(r) =

∫ R

r
b(s)ds, b∗(r) =

∫ R

r
B(s)ds. If

g(r) = B(r)
b(r) is differentiable in [0, R] and lim

r→R
g(r) = 0, lim

r→R
g ′(r) ≤ 0, then

we have

lim
r→R

Bµ(r)
b(r)

= 0, for all µ≥ 1, lim
r→R

b∗(r)
B(r)

= 0 and lim
r→R

(B(r))2

b∗(r)b(r)
= c0≥1.

Proof. Since Bµ(r)
b(r) =

B(r)
b(r) (B(r))

µ−1, lim
r→R

B(r)
b(r) = 0 for all µ≥ 1 follows easily.

By the L’Hospital rule, we have

lim
r→R

b∗(r)/B(r) = lim
r→R
(b∗(r)/B(r))(B(r)/B(r))

= lim
r→R

B(r)/b(r) lim
r→R

B(r)/B(r) = 0

and

lim
r→R

(B(r))2

b(r)b∗(r)
= lim

r→R

(B(r)/b(r))B(r)
b∗(r)

= lim
r→R

(B(r)/b(r))′B(r)− B(r)
−B(r)

= 1− lim
r→R
(B(r)/b(r))′

= c0 ≥ 1. ¤

3. Main results

Theorem 3.1. Suppose that Ω = BR(x0) is a ball in RN of radius R
centered at x0 and h(u) satisfies (A ), m(p − 1) is odd, λ ∈ R+ and
b(x) = b(‖x − x0‖) is a radially symmetric function on the ball, b ∈
C([0, R]; [0,∞)) satisfies b > 0 in [0, R), lim

r→R
b(r) = 0, lim

r→R
B(r)/b(r) = 0,
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and c0 = lim
r→R
(B(r))2/(b∗(r)b(r)) ≥ 1, where B(r) =

∫ R

r
b(s)ds and b∗(r) =

∫ R

r
B(s)ds. Then the problem (1.1) has a positive solution u.

Proof. We consider the corresponding singular problem (1.1) in radial form




−(|ψ′|p−2ψ′)′− N−1
r
|ψ′|p−2ψ′ = λψ− b(r)h(ψ) in (0, R)

lim
r→R
ψ(r) =∞

ψ′(0) = 0

(3.1)

We claim that for each ε > 0, the problem (3.1) possesses a large solution
ψε where we denoted

β =
1

p− 1
, b∗(r) =

∫ R

r

∫ R

s

b(t)d t ds.

Therefore, for each x0 ∈ RN, the function

uε(x) =ψε(r), r = ‖x − x0‖
provides us with a radially symmetric positive large solution of (1.1) with
the assumption in Theorem 3.1.

To prove the claim, we first construct a supersolution of (3.1) for each
ε > 0. Let

ψε(r) = A+ B+

�
r

R

�2

(b∗(r))−β

where A> 0 and B+ > 0. Then

ψ
′
ε(r) = 2B+

r

R2 b∗(r))−β − βB+

�
r

R

�2

(b∗(r))−β−1(b∗(r))′,

ψ
′′
ε (r) = 2B+

1

R2 (b
∗(r))−β − 4βB+

r

R2 (b
∗(r))−β−1(b∗(r))′

+ β(β + 1)B+

�
r

R

�2

(b∗(r))−β−2[(b∗(r))′]2

− βB+

�
r

R

�2

(b∗(r))−β−1(b∗(r))′′

ψε(r) → ∞ as r → R because b∗(r) → 0 as r → R and β > 0. Also

ψ
′
ε(r)→ 0 as r → 0. Then ψε(r) is a supersolution if

− (|ψ′ε(r)|p−2ψ
′
ε(r))

′− N−1

r
(|ψ′ε(r)|p−2ψ

′
ε(r))

≥ λψε(r)− b(r)h(ψε(r)) . (3.2)
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By the assumption (A ) on h, it is easy to see that for the same ε > 0

(1− ε)Hψm(p−1)
ε (r)≤ h(ψε(r))≤ (1+ ε)Hψ

m(p−1)
ε (r)

for all r ∈ [0, R), by choosing A sufficiently large, say A≥ A0. The inequality
(3.2) holds if

− (|ψ′ε(r)|p−2ψ
′
ε(r))

′− N − 1

r
(|ψ′ε(r)|p−2ψ

′
ε(r))

≥ λψε(r)− b(r)(1− ε)Hψm(p−1)
ε (r)

That is

− (p− 1)
�

2B+
r

R2 (b
∗(r))−β − βB+

�
r

R

�2

(b∗(r))−β−1 b∗(r))′
�p−2

×
�

2B+
1

R2 (b
∗(r))−β − 4βB+

r

R2 (b
∗(r))−β−1(b∗(r))′

+ β(β + 1)B+

�
r

R

�2

(b∗(r))−β−2[(b∗(r))′]2
�

− βB+

�
r

R

�2

(b∗(r))−β−1(b∗(r))′′
�

− N − 1

r

�
2B+

r

R2 (b
∗(r))−β − βB+

�
r

R

�2

(b∗(r))−β−1 b∗(r))′
�p−1

≥ λ(b∗(r))−β
�

A(b∗(r))β + B+

�
r

R

�2�

− b(r)(1− ε)H
�

A+ B+

�
r

R

�2

(b∗(r))−β
�m(p−1)

.

Multiplying both sides of this inequality by (b∗(r))mβ(p−1)

b(r) and taking into
consideration that mβ = β + 1,

0≥ λ b∗(r)
b(r)

(b∗(r))mβ(p−2)
�

A(b∗(r))β + B+

�
r

R

�2�

− (1− ε)H
�

A+ B+

�
r

R

�2

(b∗(r))−β
�m(p−1)

.

Since when r → R, b∗(r)
b(r) → 0, (b

∗(r))′

b(r) → 0, [(b
∗(r))′]2

b∗(r)b(r) → c0 ≥ 1 and
(b∗(r))′′

b(r) → 1, by Lemma 2.3, then the above inequality becomes into

0≥−(1− ε)H(B+)m(p−1) as r → R .

So, ψε(r) = A+ B+

�
r

R

�2

(b∗(r))−β is a supersolution of (3.1).
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Next, we construct a subsolution of (3.1). Due to the assumption (A ) on
h, for u≥ A0 large, (1− ε)Hum(p−1) ≤ h(u)≤ (1+ ε)Hum(p−1).

For each A0 > 0, and 0< R0 < R, we consider the auxiliary problem




−(|ψ′|p−2ψ′)′− N−1
r
|ψ′|p−2ψ′ = λψ− b(r)h(ψ), in (0, R0)

ψ(R0) = A0,

ψ′(0) = 0.

(3.3)

By the assumption on b and h, we have

min
r∈[0,R0]

b(r)> 0, h(0) = 0, and
h(u)

u
→∞, as u→∞

Then it is easy to know that

ψ
A0
= 0, ψA0

= A0

provides us with an ordered sub-supersolution pair of (3.3). Thus (3.3)
possesses a solution ψA0

such that ψA0
(r) ∈ [0, A0] for all r ∈ [0, R0]. For

each ε > 0 sufficiently small, we claim that there exists 0 < A0 < C for
which the function

ψε(r) =

(
ψA0
(r) r ∈ [0, R0]

max{A0, C + B−(r/R)2(b∗(r))−β} r ∈ (R0, R]

provides a subsolution, where B− < 0.
In fact, denoting fc(r) = C + B−(r/R)2(b∗(r))−β we have

f ′c (r) = 2B−
r

R2 (b
∗(r))−β − βB−

�
r

R

�2

(b∗(r))−β−1(b∗(r))′

= 2B−
r

R2 (b
∗(r))−β + βB−

�
r

R

�2

(b∗(r))−β−1

∫ R

r

b(s)ds

which is strictly smaller than zero in (0, R). It follows that fc(r) is
decreasing and

lim
r→R

fc(r) =−∞, lim
r→0

fc(r) = C > A0

By the continuity of fc(r) and the intermediate-value theorem, there
exists a unique Z = Z(C) ∈ (0, R) such that

C + B−(r/R)
2(b∗(r))−β > A0 when r ∈ [0, Z(C))

C + B−(r/R)
2(b∗(r))−β ≤ A0 when r ∈ [0, Z(C))
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Let R0 = Z(C), from the definition of ψ
ε
(r) and R0, ψε(r) = ψA0

(r) in
[0, Z(C)], and then the inequality

−(|ψ′ε(r)|p−2ψ′ε(r))
′− N−1

r
(|ψ′ε(r)|p−2ψ′ε(r))≤ λψε(r)− b(r)h(ψε(r))

(3.4)

holds in [0, Z(C)]. So ψε(r) is a subsolution if the (3.4) is satisfied in
[Z(C), R].

By direct computation and by using the fact h(ψε(r)) ≤ (1 +

ε)Hψε
m(p−1)(r) in [Z(C), R]. (3.4) holds of

− (|ψ′ε(r)|p−2ψ′ε(r))
′− N − 1

r
(|ψ′ε(r)|p−2ψ′ε(r))

≤ λψε(r)− b(r)(1− ε)Hψεm(p−1)(r).

That is

− (−1)p(p− 1)
�

2B−
r

R2 (b
∗(r))−β − βB−

�
r

R

�2

(b∗(r))−β−1 b∗(r))′
�p−2

×
�

2B−
1

R2 (b
∗(r))−β − 4βB−

r

R2 (b
∗(r))−β−1(b∗(r))′

+ β(β + 1)B−

�
r

R

�2

(b∗(r))−β−2[(b∗(r))′]2]

− βB−

�
r

R

�2

(b∗(r))−β−1(b∗(r))′′
�

− (−1)p
N − 1

r

�
2B−

r

R2 (b
∗(r))−β − βB−

�
r

R

�2

(b∗(r))−β−1 b∗(r))′]p−1

≤ λ(b∗(r))−β
�

A(b∗(r))β + B−

�
r

R

�2�

− b(r)(1+ ε)H(b∗(r))−mβ(p−1)
�

A(b∗(r))β + B−

�
r

R

�2�m(p−1)

.

Multiply (b
∗(r))mβ(p−1)

b(r) by the inequality, we get

0≤−(1+ ε)H(B−)m(p−1) as r → R.

So, ψε(r) is a supersolution of (3.1). By Lemma 2.2, that completes the
theorem. ¤
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