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1. Introduction
The concept of a hypersubstitution was introduced by K. Denecke, D. Lau, R. Pöschel and
D. Schweigert in 1991 [2]. They used it as the tool to study hyperidentities and solid varieties.
To recall the definition of a hypersubstitution, we recall first the concept of terms. Let n ∈N and
Xn := {x1, x2, . . . , xn} be an n-elements set. The set Xn is called an al phabet and its elements
are called variables. Let τ= (ni)i∈I be a type such that the set of operation symbols { f i | i ∈ I} is
disjoint with Xn. An n-ary term of type τ is defined inductively as the following steps.
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(i) Every variable xi ∈ Xn is an n-ary term of type τ.

(ii) If t1, t2, . . . , tni are n-ary terms of type τ and f i is an ni-ary operation symbol of type τ,
then f i(t1, t2, . . . , tni ) is an n-ary term of type τ.

The set Wτ(Xn) of all n-ary terms of type τ is the smallest set containing x1, x2, . . . , xn

that is closed under finite application of (2). The set of all terms of type τ over the alphabet
X := {x1, x2, . . .} is defined as Wτ(X ) := ⋃∞

n=1 Wτ(Xn). For any t ∈ Wτ(X ), the set of all variables
occurring in the term t is denoted by var(t).

A hypersubstitution of type τ is a mapping σ : { f i | i ∈ I} → Wτ(X ) where σ( f i) ∈ Wτ(Xni ).
Let Hyp(τ) be the set of all hypersubstitutions of type τ.

Every σ ∈Hyp(τ) induces a mapping σ̂ : Wτ(X )→Wτ(X ) as the following steps:

For any t ∈Wτ(X ), σ̂[t] is inductively defined by

(i) if t = x ∈ X then σ̂[x] := x,

(ii) if t = f i(t1, . . . , tni ) then σ̂[ f i(t1, . . . , tni )] := Sni
n (σ( f i), σ̂[t1], . . . , σ̂[tni ]),

where Sni
n : Wτ(Xni )×Wτ(Xn)ni →Wτ(Xn) is defined inductively as follows:

(i) Sni
n (x j, t1, . . . , tni ) := t j , x j ∈ Xni , t1, . . . , tni ∈Wτ(Xn),

(ii) Sni
n ( f i(s1, . . . , sni ), t1, . . . , tni ) := f i(S

ni
n (s1, t1, . . . , tni ), . . . ,S

ni
n (sni , t1, . . . , tni )).

Let σid be the hypersubstitution which maps each ni-ary operation symbol f i to the term
f i(x1, . . . , xni ). It turns out that Hyp(τ) := (Hyp(τ),◦h,σid) is a monoid where σid is the identity
element.

In 2000, S. Leeratanavalee and K. Denecke [4] generalized the concept of a hypersubstitution
to the concept of a generalized hypersubstitution. They used it as a tool to study strong
hyperidentities and used strong hyperidentities to classify varieties into collections called
strong hypervarieties. Varieties which are closed under arbitrary application of generalized
hypersubstitutions are called strongly solid.

Let τ = (ni)i∈I be a type with the sequence of operation symbols ( f i)i∈I . A generalized
hypersubstitution of type τ is a mapping σ : { f i | i ∈ I} → Wτ(X ) which maps each ni-ary
operation symbol of type τ to a term of this type which does not necessarily preserve the arity.
We denote the set of all generalized hypersubstitutions of type τ by HypG(τ). Firstly, we define
inductively the concept of generalized superposition of term Sm : Wτ(X )×Wτ(X )m →Wτ(X ) by
the following steps:

For each t1, . . . , tm ∈Wτ(X ),

(i) Sm(x j, t1, . . . , tm) := t j when 1≤ j ≤ m,

(ii) Sm(x j, t1, . . . , tm) := x j when m < j,

(iii) Sm( f i(s1, . . . , sni ), t1, . . . , tm) := f i(Sm(s1, t1, . . . , tm), . . . ,Sm(sni , t1, . . . , tm)).

To define a binary operation on HypG(τ), we extend a generalized hypersubstitution σ to a
mappimg σ̂ : Wτ(X )→Wτ(X ) inductively defined as the following steps.

(i) If t = x ∈ X then σ̂[x] := x.
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(ii) If t = f i(t1, . . . , tni ) then σ̂[ f i(t1, . . . , tni )] := Sni (σ( f i), σ̂[t1], . . . , σ̂[tni ]).

We defined a binary operation ◦G on HypG(τ) by σ◦G α := σ̂◦α where σ,α ∈HypG(τ) and ◦
denotes the usual composition of mappings.

Proposition 1.1 ([3]). For arbitrary terms t, t1, . . . , tn ∈ Wτ(X ) and for arbitrary generalized
hypersubstitutions σ,β we have

(i) σ̂[Sn(t, t1, . . . , tn)]= Sn(σ̂[t], σ̂[t1], . . . , σ̂[tn]).

(ii) (σ̂◦β)̂ = σ̂◦ β̂.

Proposition 1.2 ([3]). HypG(τ) := (HypG(τ),◦G ,σid) is a monoid where σid is the identity
element, which map each ni-ary operation symbol f i to the term f i(x1, . . . , xni ).

In this paper, we characterize all 2-potent elements of the monoid of all generalized
hypersubstitutions of type τ= (2).

2. All 2-potent Elements in HypG(2)

In 2008, all idempotent elements of HypG(2) were characterized by W. Puninagool and
S. Leeratanavalee [6], based on the concept of orders of elements on a semigroup. In this
section, we characterize all 2-potent elements in HypG(2). The concept of m-potent element of
any given semigroup was introduced by G. Ayik et al. [1].

Definition 2.1 ([1]). An element a of any given semigroup is called m-potent if

(i) am+1=am,

(ii) a,a2, . . . ,am are all distinct.

In particular, we refer to idempotent as 1-potent.

The order of an element a of a semigroup S is defined as the order of the cyclic subsemigroup
〈a〉. The order of any hypersubstitution of type τ = (2) was determined in [2]. An element a
in a semigroup S is idempotent if and only if the order of a is 1. To characterize all 2-potent
elements of HypG(2), we consider only the generalized hypersubstitutions of type τ= (2) which
are not idempotent and has order 2. We do not consider elements in HypG(2) which its orders
are infinite since they are not m-potent. We use the following theorems and propositions to
obtain our results.

First, we introduce some notations which will be used throughout this paper. For s ∈W(2)(X ),
we denote

leftmost(s) := the first variable (from the left) that occurs in s;

rightmost(s) := the last variable that occurs in s;

WG
(2)({x1}) := {s ∈W(2)(X ) | x1 ∈ var(s), x2 ∉ var(s)};

WG
(2)({x2}) := {s ∈W(2)(X ) | x2 ∈ var(s), x1 ∉ var(s)}.
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Proposition 2.2 ([6]). Let s ∈ WG
(2)({x1}) and σs be not idempotent. If leftmost(s) = xi where

xi ∈ X , i > 2, then the order of σs is 2.

Proposition 2.3 ([6]). Let s ∈ WG
(2)({x2}) and σs be not idempotent. If rightmost(s) = xi where

xi ∈ X and i > 2, then the order of σs is 2.

Theorem 2.4 ([6]). Let τ= (2) be a type. The order of any hypersubstitution of type τ is 1,2 or
infinite.

We have the following theorem and proposition:

Theorem 2.5. Let S be a semigroup and a ∈ S. If a is m-potent then a is not (m+1)-potent.

Proof. We proof this theorem by contradiction. Assume that a are m-potent and (m+1)-potent.

Since a is m-potent, am = am+1 where a,a2, . . . ,am are all distinct.

Since a is (m+1)-potent, am+1 = am+2 where a,a2, . . . ,am,am+1 are all distinct.

This is a contradiction. Therefore a is not (m+1)-potent.

Proposition 2.6. If s = f (xi, x1) where i > 2, then σs is 2-potent.

Proof. Let s = f (xi, x1) where i > 2.

Consider

σ2
s ( f )= (σs ◦G σs)( f )

= (σ f (xi ,x1)) ◦G σ f (xi ,x1))( f )

= (σ̂ f (xi ,x1) ◦ σ f (xi ,x1))( f )

= σ̂ f (xi ,x1)[ f (xi, x1)]

= S2( f (xi, x1), xi, x1)

= f (xi, xi),

and

σ3
s ( f )= (σs ◦G σ2

s )( f )

= (σ f (xi ,x1) ◦G σ2
f (xi ,x1))( f )

= (σ̂ f (xi ,x1) ◦σ2
f (xi ,x1))( f )

= σ̂ f (xi ,x1)[σ2
f (xi ,x1)( f )]

= σ̂ f (xi ,x1)[ f (xi, xi)]

= S2( f (xi, x1), xi, xi)

= f (xi, xi).

Thus σ2
s =σ3

s . Therefore σs is 2-potent.

Proposition 2.7. If s = f (xm, t) where m > 2, t ∈W(2)(X ), x1 ∈ var(t) and x2 ∉ var(t), then σs is
2-potent.
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Proof. Let s = f (xm, t) where m > 2, t ∈W(2)(X ), x1 ∈ var(t) and x2 ∉ var(t).

Consider

σ2
s ( f )= (σs ◦G σs)( f )

= σ̂ f (xm,t)[σ f (xm,t)( f )]

= σ̂ f (xm,t)[ f (xm, t)]

= S2( f (xm, t), xm, σ̂ f (xm,t)[t])

= f (xm,u),

where u is a new term derived by substituting x1 which occurs in t by xm. Then var(σ2
f (xm,u)( f ))∩

X2 =;.

Consider

σ3
f (xm,t)( f )= (σ2

f (xm,t) ◦G σ f (xm,t))( f )

= σ̂2
f (xm,t)[σ f (xm,t)( f )]

= σ̂2
f (xm,t)[ f (xm,u)]

= S2(σ2
f (xm,t)( f ), σ̂2

f (xm,t)[xm], σ̂2
f (xm,t)[t])

= S2(σ2
f (xm,t)( f ), xm, σ̂2

f (xm,t)[t]).

Since var(σ2
f (xm,u)( f ))∩ X2 =;, σ3

s =σ2
s . Therefore σs is 2-potent.

Proposition 2.8. If s = f (t, xm) where m 6= 2, x1 ∈ var(t), x2 ∉ var(t) and leftmost(t) = xi , i > 2,
then σ f (t,xm) is 2-potent.

Proof. Let s = f (t, xm) where m 6= 2, x1 ∈ var(t), x2 ∉ var(t) and leftmost(t)= xi , i > 2.

Case 1: m = 1. Then s = f (t, x1).

Consider

σ2
f (t,x1)( f )= (σ f (t,x1) ◦G σ f (t,x1))( f )

= σ̂ f (t,x1)[σ f (t,x1)( f )]

= σ̂ f (t,x1)[ f (t, x1)]

= S2( f (t, x1), σ̂ f (t,x1)[t], x1)

= f (u, σ̂ f (t,x1)[t]),

where u is a new term derived by substituting x1 which occurs in t by σ̂ f (t,x1)[t]. So σ2
f (t,x1)( f )=

f (u, σ̂ f (t,x1)[t]) and leftmost(u)= xi . Since x1 ∈ var(t)⊆ var(s) and leftmost(t)= xi and x2 ∉ var(s),
var(σ̂ f (t,x1)[t])∩ X2 =;. Then var(u)∩ X2 =;. Therefore var(σ̂2

f (t,x1)( f ))∩ X2 =;.

Consider

σ3
f (t,x1)( f )= (σ2

f (t,x1) ◦G σ f (t,x1))( f )

= σ̂2
f (t,x1)[σ f (t,x1)( f )]

= σ̂2
f (t,x1)[ f (t, x1)]

= S2(σ2
f (t,x1)( f ), σ̂2

f (t,x1)[t], σ̂
2
f (t,x1)[x1])
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= S2(σ2
f (t,x1)( f ), σ̂2

f (t,x1)[t], x1).

Since var(σ2
f (t,x1)( f ))∩ X2 =;, σ3

s ( f )=σ2
s ( f ).

Case 2: m > 2. Then s = f (t, xm).

Consider

σ2
f (t,xm)( f )= (σ f (t,xm) ◦G σ f (t,xm))( f )

= σ̂ f (t,xm)[σ f (t,xm)( f )]

= σ̂ f (t,xm)[ f (t, xm)]

= S2( f (t, xm), σ̂ f (t,xm)[t], xm)

= S2( f (u, σ̂ f (t,xm)[t])

= f (u, xm),

where u is a new term derived by substituting x1 which occurs in t by σ̂ f (t,xm)[t]. So
σ2

f (t,xm)( f ) = f (u, xm) and leftmost(u) = xi . Since x1 ∈ var(t) ⊆ var(s) and leftmost(t) = xi and
x2 ∉ var(s), var(σ̂ f (t,xm)[t])∩ X2 =;. Then var(u)∩ X2 =;. Therefore var(σ̂2

f (t,xm)( f ))∩ X2 =;.

Consider

σ3
f (t,xm)( f )= (σ2

f (t,xm) ◦G σ f (t,xm))( f )

= σ̂2
f (t,xm)[σ f (t,xm)( f )]

= σ̂2
f (t,xm)[ f (t, xm)]

= S2(σ2
f (t,xm)( f ), σ̂2

f (t,xm)[t], σ̂
2
f (t,xm)[xm])

= S2(σ2
f (t,xm)( f ), σ̂2

f (t,xm)[t], xm).

Since var(σ2
f (t,xm)( f ))∩ X2 =;, σ3

f (t,xm)( f )=σ2
f (t,xm)( f ). Therefore σs is 2-potent.

Proposition 2.9. If s = f (t1, t2) where x2 ∉ var(t1), x2 ∉ var(t2), x1 ∈ var(t1)∪ var(t2) and
leftmost(t1)= xi , i > 2, then σ f (t1,t2) is 2-potent.

Proof. Let s = f (t1, t2) where x2 ∉ var(t1), x2 ∉ var(t2), x1 ∈ var(t1)∪var(t2) and leftmost(t1)= xi ,
i > 2.

Case 1: x1 ∈ var(t1), x1 ∉ var(t2).

Consider

σ2
f (t1,t2)( f )= (σ f (t1,t2) ◦G σ f (t1,t2))( f )

= σ̂ f (t1,t2)[σ f (t1,t2)( f )]

= σ̂ f (t1,t2)[ f (t1, t2)]

= S2( f (t1, t2), σ̂ f (t1,t2)[t1], σ̂ f (t1,t2)[t2])

= f (u, t2),

where u is a new term derived by substituting x1 which occurs in t1 by σ̂ f (t1,t2)[t1]. So
σ2

f (t1,t2)( f ) = f (u, t2) and leftmost(u) = xi . Since x1 ∈ var(t1) ⊆ var(s) and leftmost(t1) = xi and
x2 ∉ var(s), var(σ̂ f (t1,t2)[t1])∩ X2 =;. Then var(u)∩ X2 =;.

Therefore var(σ̂2
f (t1,t2)( f ))∩ X2 =;.
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Consider

σ3
f (t1,t2)( f )= (σ2

f (t1,t2) ◦G σ f (t1,t2))( f )

= σ̂2
f (t1,t2)[σ f (t1,t2)( f )]

= σ̂2
f (t1,t2)[ f (t1, t2)]

= S2(σ2
f (t1,t2)( f ), σ̂2

f (t1,t2)[t1], σ̂2
f (t1,t2)[t2]).

Since var(σ2
f (t1,t2)( f ))∩ X2 =;, σ3

f (t1,t2)( f )=σ2
f (t1,t2)( f ). Therefore σs is 2-potent.

Case 2: x1 ∈ var(t2), x1 ∉ var(t1).

Consider

σ2
f (t1,t2)( f )= (σ f (t1,t2) ◦G σ f (t1,t2))( f )

= σ̂ f (t1,t2)[σ f (t1,t2)( f )]

= σ̂ f (t1,t2)[ f (t1, t2)]

= S2( f (t1, t2), σ̂ f (t1,t2)[t1], σ̂ f (t1,t2)[t2])

= f (t1,u),

where u is a new term derived by substituting x1 which occurs in t2 by σ̂ f (t1,t2)[t1]. So
σ2

f (t1,t2)( f ) = f (t1,u) and leftmost(t1) = xi . Since x1 ∈ var(t2) ⊆ var(s) and var(t1)∩ X2 = ;,
var(σ̂ f (t1,t2)[t1])∩ X2 =;. Then var(u)∩ X2 =;. Therefore var(σ̂2

f (t1,t2)( f ))∩ X2 =;.

Consider

σ3
f (t1,t2)( f )= (σ2

f (t1,t2) ◦G σ f (t1,t2))( f )

= σ̂2
f (t1,t2)[σ f (t1,t2)( f )]

= σ̂2
f (t1,t2)[ f (t1, t2)]

= S2(σ2
f (t1,t2)( f ), σ̂2

f (t1,t2)[t1], σ̂2
f (t1,t2)[t2]).

Since var(σ2
f (t1,t2)( f ))∩ X2 =;, σ3

f (t1,t2)( f )=σ2
f (t1,t2)( f ). Therefore σs is 2-potent.

Case 3: x1 ∈ var(t1)∩var(t2).

Consider

σ2
f (t1,t2)( f )= (σ f (t1,t2) ◦G σ f (t1,t2))( f )

= σ̂ f (t1,t2)[σ f (t1,t2)( f )]

= σ̂ f (t1,t2)[ f (t1, t2)]

= S2( f (t1, t2), σ̂ f (t1,t2)[t1], σ̂ f (t1,t2)[t2])

= f (u,v),

where u and v are a new term derived by substituting x1 which occurs in t1 and t2 respectively
by σ̂ f (t1,t2)[t1]. So σ2

f (t1,t2)( f ) = f (u,v) and leftmost(u) = xi . Since x1 ∈ var(t1)∩var(t2) ⊆ var(s)
where leftmost(t1) = xi and x2 ∉ var(s), var(σ̂ f (t1,t2)[t1])∩ X2 = ;. Then var(u)∩ X2 = ; and
var(v)∩ X2 =;. Therefore var(σ̂2

f (t1,t2)( f ))∩ X2 =;.

Consider

σ3
f (t1,t2)( f )= (σ2

f (t1,t2) ◦G σ f (t1,t2))( f )
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= σ̂2
f (t1,t2)[σ f (t1,t2)( f )]

= σ̂2
f (t1,t2)[ f (t1, t2)]

= S2(σ2
f (t1,t2)( f ), σ̂2

f (t1,t2)[t1], σ̂2
f (t1,t2)[t2]).

Since var(σ2
f (t1,t2)( f ))∩ X2 =;, σ3

f (t1,t2)( f )=σ2
f (t1,t2)( f ). Therefore σs is 2-potent.

Proposition 2.10. If s = f (x2, x j) where j > 2, then σs is 2-potent.

Proof. Let s = f (x2, x j) where j > 2.

Consider

σ2
s ( f )= (σs ◦G σs)( f )

= (σ f (x2,x j)) ◦G σ f (x2,x j))( f )

= (σ̂ f (x2,x j) ◦ σ f (x2,x j))( f )

= σ̂ f (x2,x j)[ f (x2, x j)]

= S2( f (x2, x j), x2, x j)

= f (x j, x j),

and

σ3
s ( f )= (σs ◦G σ2

s )( f )

= (σ f (x2,x j) ◦G σ2
f (x2,x j))( f )

= (σ̂ f (x2,x j) ◦σ2
f (x2,x j))( f )

= σ̂ f (x2,x j)[σ
2
f (x2,x j)( f )]

= σ̂ f (x2,x j)[ f (x j, x j)]

= S2( f (x2, x j), x j, x j)

= f (x j, x j).

Thus σ2
s =σ3

s . Therefore σs is 2-potent.

Proposition 2.11. If s = f (xm, t) where m 6= 1, x2 ∈ var(t), x1 ∉ var(t) and rightmost(t) = xi ,
i > 2, then σ f (xm,t) is 2-potent.

Proof. Case 1: m = 2. Then s = f (x2, t).

Consider

σ2
f (x2,t)( f )= (σ f (x2,t) ◦G σ f (x2,t))( f )

= σ̂ f (x2,t)[σ f (x2,t)( f )]

= σ̂ f (x2,t)[ f (x2, t)]

= S2( f (x2, t), x2, σ̂ f (x2,t)[t])

= f (σ̂ f (x2,t)[t],u),

where u is a new term derived by substituting x2 which occurs in t by σ̂ f (x2,t)[t]. So
σ2

f (x2,t)( f )= f (σ̂ f (x2,t)[t],u) and rightmost(u)= xi . Since x2 ∈ var(t)⊆ var(s) and rightmost(t)= xi
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and x1 ∉ var(s), var(σ̂ f (x2,t)[t])∩X2 =;. Then var(u)∩X2 =;. Therefore var(σ̂2
f (x2,t)( f ))∩X2 =;.

Consider

σ3
f (x2,t)( f )= (σ2

f (x2,t) ◦G σ f (x2,t))( f )

= σ̂2
f (x2,t)[σ f (x2,t)( f )]

= σ̂2
f (x2,t)[ f (x2, t)]

= S2(σ2
f (x2,t)( f ), σ̂2

f (x2,t)[x2], σ̂2
f (x2,t)[t]).

Since var(σ2
f (x2,t)( f ))∩ X2 =;, σ3

f (x2,t)( f )=σ2
f (x2,t)( f ).

Case 2: m > 2. Then s = f (xm, t).
Consider

σ2
f (xm,t)( f )= (σ f (xm,t) ◦G σ f (xm,t))( f )

= σ̂ f (xm,t)[σ f (xm,t)( f )]

= σ̂ f (xm,t)[ f (xm, t)]

= S2( f (xm, t), xm, σ̂ f (xm,t)[t])

= f (xm,u),

where u is a new term derived by substituting x2 which occurs in t by σ̂ f (xm,t)[t].
So rightmost(u) = xi . Since x2 ∈ var(t) ⊆ var(s) and rightmost(t) = xi and x1 ∉ var(s),
var(σ̂ f (xm,t)[t])∩ X2 =;. Then var(u)∩ X2 =;. Therefore var(σ̂2

f (xm,t)( f ))∩ X2 =;.

Consider

σ3
f (xm,t)( f )= (σ2

f (xm,t) ◦G σ f (xm,t))( f )

= σ̂2
f (xm,t)[σ f (xm,t)( f )]

= σ̂2
f (xm,t)[ f (xm, t)]

= S2(σ2
f (xm,t)( f ), σ̂2

f (xm,t)[xm], σ̂2
f (xm,t)[t]).

Since var(σ2
f (xm,t)( f ))∩ X2 =;, σ3

f (xm,t)( f )=σ2
f (xm,t)( f ). Therefore σs is 2-potent.

Proposition 2.12. If s = f (t, xm) where m > 2, x2 ∈ var(t) and x1 ∉ var(t), then σs is 2-potent.

Proof. Let s = f (t, xm) where m > 2, x2 ∈ var(t) and x1 ∉ var(t).

Consider

σ2
s ( f )= (σs ◦G σs)( f )

= σ̂ f (t,xm)[σ f (t,xm)( f )]

= σ̂ f (t,xm)[ f (t, xm)]

= S2( f (t, xm), σ̂ f (t,xm)[t], xm)

= f (u, xm),

where u is a new term derived by substituting x2 which occurs in t by xm. Since x2 ∈ var(t)⊆
var(s) and x1 ∉ var(s), var(u)∩ X2 =;. Then var(σ2

f (t,xm)( f ))∩ X2 =;.

Communications in Mathematics and Applications, Vol. 11, No. 2, pp. 221–232, 2020



230 All 2-potent Elements in H ypG(2): A. Sareeto and S. Leeratanavalee

Consider

σ3
f (t,xm)( f )= (σ2

f (t,xm) ◦G σ f (t,xm))( f )

= σ̂2
f (t,xm)[σ f (t,xm)( f )]

= σ̂2
f (t,xm)[ f (t, xm)]

= S2(σ2
f (t,xm)( f ), σ̂2

f (t,xm)[t], σ̂
2
f (t,xm)[xm]).

Since var(σ2
f (t,xm)( f ))∩ X2 =;, σ3

f (t,xm)( f )=σ2
f (t,xm)( f ). Therefore σs is 2-potent.

Proposition 2.13. If s = f (t1, t2) where x1 ∉ var(t1), x1 ∉ var(t2), x2 ∈ var(t1)∪ var(t2) and
rightmost(t2)= xi , i > 2, then σ f (t1,t2) is 2-potent.

Proof. Let s = f (t1, t2) where x1 ∉ var(t1), x1 ∉ var(t2), x2 ∈ var(t1)∪var(t2) and rightmost(t2)=
xi , i > 2.

Case 1: x2 ∈ var(t1), x2 ∉ var(t2).
Consider

σ2
f (t1,t2)( f )= (σ f (t1,t2) ◦G σ f (t1,t2))( f )

= σ̂ f (t1,t2)[σ f (t1,t2)( f )]

= σ̂ f (t1,t2)[ f (t1, t2)]

= S2( f (t1, t2), σ̂ f (t1,t2)[t1], σ̂ f (t1,t2)[t2])

= f (u, t2),

where u is a new term derived by substituting x2 which occurs in t1 by σ̂ f (t1,t2)[t2]. So
σ2

f (t1,t2)( f ) = f (u, t2) and rightmost(t2) = xi , x2 ∈ var(t1) ⊆ var(s) and var(t2)∩ X2 = ; and
x1 ∉ var(s), var(σ̂ f (t1,t2)[t2])∩ X2 =;. Then var(u)∩ X2 =;.

Therefore var(σ̂2
f (t1,t2)( f ))∩ X2 =;.

Consider

σ3
f (t1,t2)( f )= (σ2

f (t1,t2) ◦G σ f (t1,t2))( f )

= σ̂2
f (t1,t2)[σ f (t1,t2)( f )]

= σ̂2
f (t1,t2)[ f (t1, t2)]

= S2(σ2
f (t1,t2)( f ), σ̂2

f (t1,t2)[t1], σ̂2
f (t1,t2)[t2]).

Since var(σ2
f (t1,t2)( f ))∩ X2 =;, σ3

f (t1,t2)( f )=σ2
f (t1,t2)( f ).

Case 2: x2 ∈ var(t2), x2 ∉ var(t1).

Consider

σ2
f (t1,t2)( f )= (σ f (t1,t2) ◦G σ f (t1,t2))( f )

= σ̂ f (t1,t2)[σ f (t1,t2)( f )]

= σ̂ f (t1,t2)[ f (t1, t2)]

= S2( f (t1, t2), σ̂ f (t1,t2)[t1], σ̂ f (t1,t2)[t2])

= f (t1,u),
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where u is a new term derived by substituting x2 which occurs in t2 by σ̂ f (t1,t2)[t2]. So
σ2

f (t1,t2)( f ) = f (t1,u) and rightmost(t2) = xi . Since x2 ∈ var(t2) ⊆ var(s) and rightmost(t2) = xi

and x1 ∉ var(s), var(σ̂ f (t1,t2)[t2])∩X2 =;. So var(u)∩X2 =;. Therefore var(σ̂2
f (t1,t2)( f ))∩X2 =;.

Consider

σ3
f (t1,t2)( f )= (σ2

f (t1,t2) ◦G σ f (t1,t2))( f )

= σ̂2
f (t1,t2)[σ f (t1,t2)( f )]

= σ̂2
f (t1,t2)[ f (t1, t2)]

= S2(σ2
f (t1,t2)( f ), σ̂2

f (t1,t2)[t1], σ̂2
f (t1,t2)[t2]).

Since var(σ2
f (t1,t2)( f ))∩ X2 =;, σ3

f (t1,t2)( f )=σ2
f (t1,t2)( f ).

Case 3: x2 ∈ var(t1)∩var(t2).

Consider

σ2
f (t1,t2)( f )= (σ f (t1,t2) ◦G σ f (t1,t2))( f )

= σ̂ f (t1,t2)[σ f (t1,t2)( f )]

= σ̂ f (t1,t2)[ f (t1, t2)]

= S2( f (t1, t2), σ̂ f (t1,t2)[t1], σ̂ f (t1,t2)[t2])

= f (u,v),

where u and v are a new term derived by substituting x2 which occurs in t1 and t2 respectively
by σ̂ f (t1,t2)[t2]. So σ2

f (t1,t2)( f )= f (u,v) and rightmost(v)= xi . Since x2 ∈ var(t1)∩var(t2)⊆ var(s)
and rightmost(t2) = xi and x1 ∉ var(s), var(σ̂ f (t1,t2)[t2])∩ X2 = ;. Then var(u)∩ X2 = ; and
var(v)∩ X2 =;. Therefore var(σ̂2

f (t1,t2)( f ))∩ X2 =;.

Consider

σ3
f (t1,t2)( f )= (σ2

f (t1,t2) ◦G σ f (t1,t2))( f )

= σ̂2
f (t1,t2)[σ f (t1,t2)( f )]

= σ̂2
f (t1,t2)[ f (t1, t2)]

= S2(σ2
f (t1,t2)( f ), σ̂2

f (t1,t2)[t1], σ̂2
f (t1,t2)[t2]).

Since var(σ2
f (t1,t2)( f ))∩ X2 =;, σ3

f (t1,t2)( f )=σ2
f (t1,t2)( f ). Therefore σs is 2-potent.

3. Conclusion
We use the concept of orders of elements on a semigroup to characterize all 2-potent elements of
HypG(2). For the characterization, we consider only the generalized hypersubstitutions of type
τ= (2) which are not idempotent and has order 2 because the generalized hypersubstitutions of
type τ= (2) which have infinite order are not m-potent.
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