
Communications in Mathematics and Applications
Vol. 11, No. 1, pp. 57–64, 2020
ISSN 0975-8607 (online); 0976-5905 (print)
Published by RGN Publications http://www.rgnpublications.com

DOI: 10.26713/cma.v11i1.1331

Research Article

On Initial Chebyshev Polynomial Coefficient
Problem for Certain Subclass of Bi-Univalent
Functions
F. Müge Sakar1,*, and Ertuğrul Doğan2,
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1. Introduction
Let A denote the class of functions of the form

f (z)= z+
∞∑

n=2
anzn (1)

which are analytic in the open unit disc ∆= {z : z ∈C and |z| < 1}. In addition, we indicate by S
the class of all univalent functions in ∆.
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For f and g, analytic functions in ∆, the function f (z) is subordinate to g(z) in ∆, and it can
be represented by

f (z)≺ g(z) (z ∈∆)

if there exists an analytic Schwarz function w(z) being as

w(0)= 0 and |w(z)| < 1 (z ∈∆)

such that

f (z)= g(w(z)) (z ∈∆).

Especially, if the function g is univalent in ∆, then the above subordination is equivalent to
f (0)= g(0) and f (∆)⊂ g(∆).

Every function f ∈S is known to have an inverse f −1, given by

f −1( f (z))= z (z ∈∆)

and

f −1( f (w))= w
(
|w| < r0( f ); r0( f )≥ 1

4

)
,

where

f −1(w)= w−a2w2 + (2a2
2 −a3)w3 − (5a3

2 −5a2a3 +a4)w4 + . . . . (2)

In order to have bi-univalent f ∈A in ∆, both f (z) and f −1(z) must be univalent in ∆.

Let represent the class of bi-univalent functions in ∆, given by the Taylor-Maclaurin series
expansion (1) by Σ.

Some well-known subclasses of the S , which are denoted by class S∗(α) of starlike functions
of order α in ∆ and the class K(α) of convex functions of order α in ∆, are respectively shown as
follows:

S∗(α) :=
{

f : f ∈A and N

(
z f ′(z)
f (z)

)
>α; z ∈∆; 0≤α< 1

}
(3)

and

K(α) :=
{

f : f ∈A and N

(
1+ z f ′′(z)

f ′(z)

)
>α; z ∈∆; 0≤α< 1

}
. (4)

For 0≤α< 1, if both f and f −1 are respectively starlike or convex functions of order α, f ∈Σ is
in the class S∗

Σ(α) of bi-starlike function of order α, or KΣ(α) of bi-convex function of order α.

The significance of Chebyshev polynomial in numerical analysis is increased in terms of
both theoretical and practical points of view. On the other hand, many researchers have also
been dealing with orthogonal Chebyshev polynomials. One can see the details of Chebyshev
polynomials of first kind Tn(t), the second kind Un(t) and their numerous uses in different
applications in the references [4, 5, 7]. The well known first and second kinds Chebyshev
polynomials are defined as follows:

Tn(t)= cos(nθ) and Un(t)= sin(n+1)θ
sinθ

(−1< t < 1)

where the subscript n shows the polynomial degree and t is equal to cosθ.
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In geometric function theory, the Fekete-Szegö functional |a3−ηa2
2| for normalized univalent

functions of the form given by (1) is well known in this field. Historically, its origin is based on
Fekete and Szegö of the 1933 conjecture of Littlewood and Paley. In their study the coefficients
of odd univalent functions are bounded by unity (see [6]). Since Fekete-Szegö functional has
received great attention, especially in many subclasses of the family of univalent functions, this
topic had become of interest among researchers (see, e.g., [1,2,8,9,11]).

Definition 1.1. A function f ∈Σ given by the equation (1) is said to be in the class RΣ(τ,α,γ; t),
for α ≥ 1, γ ≥ 0, τ ∈ C\ {0}, t ∈ (1

2 ,1
]

and all z,w ∈∆ if the following subordination conditions
hold:

1+ 1
τ

[
(1−α)

f (z)
z

+α f ′(z)+γz f ′′(z)−1
]
≺ H(z, t) := 1

1−2tz+ z2 (5)

and

1+ 1
τ

[
(1−α)

g(w)
w

+αg′(w)+γzg′′(w)−1
]
≺ H(w, t) := 1

1−2wt+w2 , (6)

where the function g = f −1 is given by (2).

It is remarkable that if t = cosα, where α ∈ (−π/3,π/3), then

H(z, t)= 1
1−2cosαz+ z2 = 1+

∞∑
n=1

sin(n+1)α
sinα

zn (z ∈∆).

Thus

H(z, t)= 1+2cosαz+ (3cos2α−sin2α)z2 + . . . . (z ∈U).

H(z, t) can be written as from reference [10],

H(z, t)= 1+U1(t)z+U2(t)z2 . . . (z ∈∆), t ∈ (−1,1)

where

Un−1 = sin(narcos t)p
1− t2

(n ∈N)

indicates the second kind of Chebyshev polynomials and we have some initial coefficients as
follows:

Un(t)= 2tUn−1(t)−Un−2(t),

and

U1(t)= 2t, U2(t)= 4t2 −1, U3(t)= 8t3 −4t, U4(t)= 16t4 −12t3 +1 . . . . (7)

The first kind of Chebyshev polynomial Tn(t), t ∈ [−1,1], is indicated by
∞∑

n=0
Tn(t)zn = 1− tz

1−2tz+ z2 (z ∈∆).

The first kind of Chebyshev polynomial Tn(t) is related to second kind of Chebyshev polynomial
Un(t) which is given below:

dTn(t)
dt

= nUn−1(t); Tn(t)=Un(t)− tUn−1(t); 2Tn(t)=Un(t)−Un−2(t) .
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Remark 1.2. (i) For τ= 1, α= λ and γ= 0, we get the class RΣ(1,λ,0; t) = BΣ(λ, t) consists of
functions f ∈Σ satisfying the condition

(1−λ)
f (z)

z
+λ f ′(z)≺ H(z, t) := 1

1−2tz+ z2

and

(1−λ)
g(w)

w
+λg′(w)≺ H(w, t) := 1

1−2tw+w2 ,

where the function g = f −1 is defined by (2) (Bulut et al. [3]).

(ii) For τ = 1, α = 1 and γ = 0, we have the class RΣ(1,1,0; t) = BΣ(t) consists of functions f
satisfying the condition

f ′(z)≺ H(z, t) := 1
1−2tz+ z2

and

g′(w)≺ H(w, t) := 1
1−2tw+w2 ,

where the function g = f −1 is defined by (2).

In the current investigation, we present a subclass RΣ(τ,α,γ; t) of analytic and bi-univalent
functions. Additionally, we derived the initial coefficient bounds and Fekete-Szegö inequality
by means of Chebyshev polynomials expansions. Furthermore, we introduce some corollaries
associated with our main results.

2. Main Results
In this section, we propose to find the estimates on the Taylor-Maclaurin coefficients |a2|, |a3|
and Fekete-Szegö inequality for functions in the class RΣ(τ,α,γ; t), which is introduced by
Definition 1.1. These inequalities are asserted by Theorem 2.1.

Theorem 2.1. For α≥ 1, γ≥ 0, τ ∈C\{0} and t ∈ (1
2 ,1

]
, let f ∈ RΣ(τ,α,γ; t). Then

|a2| ≤ 2|τ|tp2t√
|4[τ(1+2α+6γ)− (1+α+2γ)2]t2 + (1+α+2γ)2|

, (8)

|a3| ≤ 4|τ|2t2

(1+α+2γ)2 + 2|τ|t
1+2α+6γ

(9)

and for some η ∈R,

|a3 −ηa2
2| ≤



2|τ|t
1+2α+6γ

, |η−1| ≤ |(1+α+2γ)2 −4[(1+α+2γ)2 −τ(1+2α+6γ)]t2|
4(1+2α+6γ)t2

8|τ|2|η−1|t3

|(1+α+2γ)2 −4[(1+α+2γ)2 −τ(1+2α+6γ)]t2| ,

|η−1| ≥ |(1+α+2γ)2 −4[(1+α+2γ)2 −τ(1+2α+6γ)]t2|
4(1+2α+6γ)t2 .

(10)
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Proof. Let f ∈ RΣ(τ,α,γ;β). Then from the equations (5) and (6), we obtain

1+ 1
τ

[
(1−α)

f (z)
z

+α f ′(z)+γz f ′′(z)−1
]
= 1+U1(t)p(z)+U2(t)p2(z)+ . . . (11)

and

1+ 1
τ

[
(1−α)

g(w)
w

+αg′(w)+γwg′′(w)−1
]
= 1+U1(t)q(w)+U2(t)q2(w)+ ... (12)

for some analytic functions

p(z)= c1z+ c2z2 + c3z3 + . . . , (z ∈∆) (13)

q(w)= d1w+d2w2 +d3w3 + . . . , (w ∈∆) (14)

such that p(0)= q(0)= 0, |p(z)| < 1 (z ∈∆) and |q(w)| < 1 (w ∈∆).

Obviously, if |p(z)| < 1 and |q(w)| < 1, then

|c j| ≤ 1 and |d j| ≤ 1 for j ∈ N. (15)

From (11), (12), (13) and (14), we have

1+ 1
τ

[
(1−α)

f (z)
z

+α f ′(z)+γz f ′′(z)−1
]
= 1+U1(t)c1z+ [U1(t)c2 +U2(t)c2

1]z2 + . . . (16)

and

1+ 1
τ

[
(1−α)

g(w)
w

+αg′(w)+γwg′′(w)−1
]
= 1+U1(t)d1w+ [U1(t)d2 +U2(t)d2

1]w2 + . . . . (17)

When we equate the coefficients (16) and (17), we have
1
τ

(1+α+2γ)a2 =U1(t)c1 , (18)

1
τ

(1+2α+6γ)a3 =U1(t)c2 +U2(t)c2
1 , (19)

− 1
τ

(1+α+2γ)a2 =U1(t)d1 , (20)

1
τ

(1+2α+6γ)(2a2
2 −a3)=U1(t)d2 +U2(t)d2

1 . (21)

From (18) and (20), we obtain

c1 =−d1 (22)

and
2
τ2 (1+α+2γ)2a2

2 =U2
1 (t)(c2

1 +d2
1). (23)

Also, by using (19) and (21), we obtain
2
τ

(1+2α+6γ)a2
2 =U1(t)(c2 +d2)+U2(t)(c2

1 +d2
1). (24)

By using (23) in (24), we get[
2
τ

(1+2α+6γ)− 2U2(t)
τ2U2

1 (t)
(1+α+2γ)2

]
a2

2 =U1(t)(c2 +d2). (25)

From the eqs. (7), (15) and (25), we obtain the inequality (8).
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Thereafter, we get the following equality, by subtracting (21) from (19)
2
τ

(1+2α+6γ)(a3 −a2
2)=U1(t)(c2 −d2)+U2(c2

1 −d2
1). (26)

In addition, in the light of (22), we get

a3 = a2
2 +

τU1(t)(c2 −d2)
2(1+2α+6γ)

. (27)

Thus, we get convenient inequality (9) by using (23) and applying (7).

Now, we get the following equalities by using (25) and (27) for some η ∈R

(a3 −ηa2
2)= (1−η)

[
τ2U3

1 (t)(c2 +d2)

2τU2
1 (t)(1+2α+6γ)−2U2(t)(1+α+2γ)2

]
+ τU1(t)(c2 −d2)

2(1+2α+6γ)
(28)

and

a3 −ηa2
2 = τU1(t)

[(
h(η)+ 1

2(1+2α+6γ)

)
c2 +

(
h(η)− 1

2(1+2α+6γ)

)
d2

]
,

where

h(η)= τU2
1 (t)(1−η)

(2τU2
1 (t)(1+2α+6γ)−2U2(t)(1+α+2γ)2)

.

So, we conclude that

|a3 −ηa2
2| ≤


2|τ|t

1+2α+6γ
, 0≤ |h(η)| ≤ 1

2(1+2α+6γ)

4|τ| |h(η)|t, |h(η)| ≥ 1
2(1+2α+6γ)

.

So, this is the proof which confirms Theorem 2.1. In the special case, we can obtain the
Corollary 2.2 for the parameters τ= 1, α=λ and γ= 0 in Theorem 2.1.

Corollary 2.2 ([3]). Let the function f ∈BΣ(λ, t), for λ≥ 1 and t ∈ (1/2,1]. Then

|a2| ≤ 2t
p

2t√
|(1+λ)2 −4λ2t2|

,

|a3| ≤ 4t2

(1+λ)2 + 2t
(1+2λ)

and for some η ∈R,

|a2 −ηa3| ≤


2t

1+2λ
, |η−1| ≤ |(1+λ)2 −4λ2t2|

4(1+2λ)t2

8|η−1|t3

|(1+λ)2 −4λ2t2| , |η−1| ≥ |(1+λ)2 −4λ2t2|
4(1+2λ)t2 .

In the special case, we can obtain the following Corollary 2.3 for the parameters τ= 1, α= 1 and
γ= 0 in Theorem 2.1.

Corollary 2.3. Let the function f ∈ BΣ(t), for t ∈ (1
2 ,1

]
. Then

|a2| ≤ t
p

2t√
|1− t2|

,
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|a3| ≤ t2 + 2t
3

,

and for some η ∈ R,

|a3 −ηa2
2| ≤


2t
3

, |η−1| ≤ 1− t2

3t2

2|η−1|t3

1− t2 , |η−1| ≥ 1− t2

3t2 .

3. Conclusion
Using the concept of Chebyshev polynomials, we have introduced a new subclass in the unit
disc associated with subordination. We have then derived the initial coefficient estimations
using by Chebyshev polynomials expansions, and also Fekete-Szegö inequalities for functions
belonging to this subclass. Our main result is stated and proved as Theorem 2.1. Additionally,
by specializing the some parameters, some relevant interesting consequences of these results
which were studied in previous works, are obtained. So, these general results presented in this
paper, are motivated essentially by the earlier works which are pointed out.

Competing Interests
The authors declare that they have no competing interests.

Authors’ Contributions
All the authors contributed significantly in writing this article. The authors read and approved
the final manuscript.

References
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