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Abstract. In this study, we consider the spectral properties of the non-selfadjoint difference operator
L generated in l2(N) by the difference expression

4 (an−14yn−1)+ (vn −λ)2 yn = 0, n ∈N,

and a general boundary condition
∞∑

n=0
hn yn = 0,

where a0 = 1, h0 6= 0 and {an}∞n=1, {vn}∞n=1 and {hn}∞n=1 are complex sequences and {hn}∞n=1 ∈ l1(N)∩l2(N).
Along with the designation of the sets of eigenvalues and spectral singularities of the operator L, we
investigate the quantitative properties of these sets under certain conditions using the uniqueness
theorems of analytic functions.
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1. Introduction
A large number of subject in quantum physics results in determining the eigenvalues and
eigenfuctions of differential operators. For instance, Hamiltonian of a quantum particle confined
to a box involves a choice of boundary condition at the box ends. Since different choices of
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boundary condition imply different physical models, spectral theory of operators with boundary
condition constitues a progressing field of investigation [19].

The study of the spectral analysis of the non-selfadjoint Sturm Liouville operator can be
traced back to Naimark [17,18]. In his article [17] the boundary value problem (BVP){

−y′′+ q(x)y−λ2 y= 0, x ∈R+,
y′(0)−hy(0)= 0

where h ∈C and q is a complex valued function has been taken into consideration. He showed
that the spectrum of this BVP is composed of eigenvalues, spectral singularities and continuous
spectrum. He also proved that these eigenvalues and spectral singularities are of finite number
with finite multiplicity under certain conditions.

Krall [14, 15] studied the operator L0 generated by the boundary value problem (BVP)
including a differential Sturm-Liouville equation of the form

−y′′+ q(x)y=λy, 0≤ x <∞, (1.1)

where the potential function q is an arbitrary measurable complex function satisfying∫ ∞

0
|q(x)|dx <∞,

and the integral boundary condition∫ ∞

0
K(x)y(x)dx+αy′(0)−βy(0)= 0, (1.2)

where K ∈ L2(R+) is a complex valued function and λ is a spectral parameter and α, β are
complex numbers with |α|2 +|β|2 6= 0. He extended the work of Naimark by applying a suitable
boundary condition (1.2) and generated the ordinary and nonhomogeneous expansion for L0.
The adjoint L∗

0 of the operator L0 was obtained in [15]. Note that L∗
0 deserves a special interest,

since it is not purely a differential operator, i.e. L∗
0 is the combination of a differential operator

and one-dimensional vector in L2(R+).

Later on, the integral boundary condition has been applied to differential Klein-Gordon,
quadratic pencil of Schrödinger type operators and quantitative spectral properties of the new
boundary value problems has been studied in [7,9,16].

Spectral analysis of the operators including Sturm-Liouville, Klein-Gordon, quadratic pencil
of Schrödinger and Dirac type equations within the context of determination of Jost solution and
providing sufficient conditions guaranteeing the finiteness of the eigenvalues and the spectral
singularities has been major topic of the papers [4,6–9,16,21–23].

As a result of wide application areas of difference equations from physics to engineering,
investigation of discrete analogues of well known differential operators has become a popular
research area in recent years. Some basic concepts of the discrete analogue of the differential
Sturm-Liouville equation in connection with the classical moment problem and Toda lattices
has been investigated in detail in [3,20].

Guseinov [12] took into consideration the inverse problem of scattering theory for the discrete
analogue of the Sturm-Liouville equation

an yn+1 +bn yn +an−1 yn−1 =λyn, (1.3)
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where {an}n∈N, {bn}n∈N are real sequences, an > 0 and∑
n∈Z

|n|(|1−an|+ |bn|)<∞.

The Jost solution and some quantitative properties of the discrete analogues of the non-
selfadjoint Sturm-Liouville, Klein-Gordon and quadratic pencil of Schrödinger type operators
(which include the equation (1.3) as a special case) has been studied in [1, 2, 5, 10, 13, 24].
In particular, discrete analogue of the BVP (1.1)-(1.2) has been treated in [5].

Note that the equation

y′′+ [λ− p(x)]2 y= 0, x ∈R+,

is called the Klein-Gordon s-wave equation in quantum physics for a particle of zero mass with
static potential [6].

The present paper is motivated by the above mentioned studies.

In this study, we will consider the spectrum of the non-selfadjoint operator L generated by
the discrete analogue of the Klein-Gordon equation

4(an−14yn−1)+ (vn −λ)2 yn = 0, n ∈N, (1.4)

and the general boundary condition
∞∑

n=0
hn yn = 0, (1.5)

where a0 = 1, h0 6= 0 and {an}∞n=1, {vn}∞n=1 and {hn}∞n=1 are complex sequences and {hn}∞n=1 ∈
l1(N)∩ l2(N).

Observe that the dependence on the spectral parameter λ is linear in the studies [2,5,13]
while it is non-linear in (1.4). Thus, this study can be conceived as a generalization and extension
of the papers [2,5,13] to the discrete Klein-Gordon operator case.

The remainder of the manuscript is organized as follows: In Section 2, we present the Jost
solution and Green’s function of the operator L. Section 3 deals with the eigenvalues and
spectral singularities of L and investigate the quantitative properties of these eigenvalues and
spectral singularities under certain conditions.

2. Solutions of L
Assume that∑

n∈N
n(|1−an|+ |vn|)<∞, (2.1)

holds. It is known from [1] that the equation (1.4) has the unique solution

fn(z)=αneinz

(
1+

∞∑
m=1

Knmeim z
2

)
, n ∈N∪ {0}, (2.2)

for λ= 2cos
( z

2

)
, z ∈ C+. Note that the expressions of Knm and αn can be written uniquely in

terms of (an) and (vn). Moreover, the inequality

|Knm| ≤ C
∞∑

r=n+[|m
2 |]

(|1−ar|+ |vr|), (2.3)
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holds for the kernel Knm, where
[∣∣m

2

∣∣] is the integer part of m
2 and C > 0 is a constant.

Therefore, fn(z) is analytic with respect to z in C+ := {z : z ∈ C,Im z > 0} and continuous in
C+ := {z : z ∈C,Im z ≥ 0}. fn(z) is introduced as the Jost solution of the equation (1.4). Moreover,
the following asymptotics is found

fn(z)= exp(inz)[1+ o(1)], n →∞,

fn(z)=αn exp(inz)[1+ o(1)], Im z →∞.

Let us define ϕn(z) as the solution of (1.3) subject to the conditions

ϕ0(z)= 0, ϕ1(z)= 1,

where

ϕn(z)= ϕ̂n(λ)=
{
ϕ̂n

(
2cos

z
2

)}
, z ∈C+, n ∈N∪ {0}.

It is clear that, ϕ is entire function and

ϕ(z)=ϕ(z+4π).

If we use the usual definition of Wronskian, we obtain

W[ f ,ϕ]=W[ fn(z),ϕn(z)]= an[ fn(z)ϕn+1(z)− fn+1(z)ϕn(z)]

= f0(z), z ∈C+.

Let us introduce the functions

N(z) :=
∞∑

n=0
hn fn(z),

Ñ(z) :=
∞∑

n=0
hnϕn(z),

Sk(z) := −1
W[ f ,ϕ]

{
N(z)ϕk+1(z)− Ñ(z) fk+1(z)−

∞∑
n=k+1

hn fn(z)ϕk+1(z)+
∞∑

n=k+1
hnϕn(z) fk+1(z)

}
.

We also define the semi-strips P0 := {z : z ∈C, z = ξ+ iτ,−0≤ ξ≤ 4π,τ> 0} and P := P0 ∪ [0,4π].

For all z ∈ P and f0(z) 6= 0, the Green’s function of the operator L is obtained by the standard
techniques as

Gnk(z)=G(1)
nk(z)+G(2)

nk(z),

where

G(1)
nk(z) := fn(z)Sk(z)

N(z)
, (2.4)

and

G(2)
nk(z) :=

{
0, k < n,
ϕk+1(z) fn(z)−ϕn(z) fk+1(z)

W[ f ,ϕ] , k ≥ n.
(2.5)

Hence, for φ= {φk} ∈ l2(N), k ∈N∪ {0}, we obtain that(
Rλ(L)φ

)
n :=

∞∑
k=0

Gnk(z)φk+1, n ∈N∪ {0} , (2.6)

is the resolvent of the operator L.
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3. Eigenvalues and Spectral Singularities of L

Let us denote the set of eigenvalues and spectral singularities of L by σd and σss, respectively.
From (2.4)-(2.6) and definition of the eigenvalues and the spectral singularities, we get

σd =
{
λ :λ= 2cos

z
2

, z ∈ P0, N(z)= 0
}

, (3.1)

σss =
{
λ :λ= 2cos

z
2

, z ∈ P, N(z)= 0
}

. (3.2)

We define the sets

A1 := {z : z ∈ P0, N(z)= 0} ,

A2 := {z : z ∈ P, N(z)= 0} ,

and A3 and A4 as the sets of accumulation points of the sets A1 and A2, respectively, and A5

as the set of zeros in P0 of N(z) with infinite multiplicity. It can be seen that

A1 ∩ A5 =;, A3 ⊂ A2, A4 ⊂ A2, A5 ⊂ A2,

and the linear Lebesgue measures of A2, A3, A4 and A5 are zero. From the continuity of the all
derivatives of N(z) on the real axis, we find

A3 ⊂ A5 and A4 ⊂ A5. (3.3)

Also, we can rewrite the sets of eigenvalues and spectral singularities of L as

σd =
{
λ :λ= 2cos

z
2

, z ∈ A1

}
,

σss =
{
λ :λ= 2cos

z
2

, z ∈ A2

}
.

Theorem 3.1. If the conditions (2.1) and {hn}∞n=1 ∈ l1(N)∩ l2(N) hold, then

(i) The set of eigenvalues of L is bounded, countable and its limit points can lie only in [−2,2] .

(ii) σss ⊂ [−2,2] , σss =σss, and µ(σss)= 0 where µ denotes the linear Lebesgue measure.

Proof. From (2.3), we get the analycity of N(z) in the upper half-plane and continuity of N(z)
in the real axis. In addition to this, the asymptotic

N(z)=α0h0 [1+ o(1)] , Im z > 0, Im z →∞, (3.4)

satisfies. Making use of (3.1), (3.2) and (3.4) and uniqueness theorems of analytic functions [11],
we obtain (i) and (ii).

Definition 3.1. The multiplicity of a zero of N(z) in P is called the multiplicity of the
corresponding eigenvalue or spectral singularity of the operator L.

Now, we will consider the condition
∞∑

n=1
eεn (|1−an|+ |vn|+ |hn|)<∞, ε> 0. (3.5)

Theorem 3.2. If (3.5) holds, then L has a finite number of eigenvalues and spectral singularities
and each of them is of finite multiplicity.
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Proof. From (2.3) and (3.5), we get

|Knm| ≤ C exp
(−ε

2
(n+m)

)
, (3.6)

for all C > 0 is a constant, n = 0,1,2, . . . and m = 1,2, . . .. Using (3.6) and (2.2), we have

|N(z)| ≤
∞∑

m=1
e−m( ε4+Im z

2 ). (3.7)

It is seen from (3.7) that N(z) has analytic continuation to the half-plane Im z > −ε
2 . Because

of N(z) is a 4π periodic, the limit points of its zeros in P cannot lie in [0,4π]. For this reason
and using Theorem 3.1, we find the finiteness of eigenvalues and spectral singularities of L.

The condition (3.5) ensures the analytic continuation of N(z) from the real axis to the lower
half-plane. Now, we will consider the condition

∞∑
n=1

eεnβ (|1−an|+ |vn|+ |hn|)<∞, ε> 0,
1
2
≤β< 1, (3.8)

which is weaker then (3.5). Obviously, N(z) is analytic in the upper half-plane and infinitely
differentiable on the real axis. However N(z) does not have an analytic continuation from the
real axis to the lower half-plane. Thus, a different method to investigate the finiteness of the
eigenvalues and spectral singularities of L has to be thought. We will use the following lemma.

Lemma 3.1 ([2]). Assume that the 4π periodic function ξ is analytic in the open half-plane, all
of its derivatives are continuous in the closed upper half-plane and

sup
z∈P

|ξ(k)(z)| ≤ ηk, k ∈N∪ {0}. (3.9)

If the set G with linear Lebesgue measure zero is the set of all zeros of the function ξ with infinite
multiplicity in P , if∫ ω

0
ln t(s)dµ(Gs)>−∞,

where t(s)= inf
k

ηksk

k! , k ∈N∪ {0}, µ(Gs) is the Lebesgue measure of the s-neighborhood of G, and

ω ∈ (0,4π) is an arbitrary constant, then ξ≡ 0.

Theorem 3.3. Under the condition (3.8), A5 =;.

Proof. We will apply the previous lemma to our case. Using (3.8), (2.2) and (2.3), the following
inequality can be written

|N(k)(z)| ≤ ηk, k ∈N∪ {0},

for the k.th derivative of N(z) where

ηk = 2kC
∞∑

m=1
mk exp(−εmβ),

and C > 0 is a constant. Also, we obtain the following estimation

ηk ≤ 2kC
∫ ∞

0
xke−εxβdx ≤ Ddkk!kk 1−β

β , (3.10)

where D and d are constants depending C, ε and β.
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Hence, we can write that∫ ω

0
ln t(s)dµ(A5,s)>−∞, (3.11)

where t(s) = inf
k

ηksk

k! , k ∈N∪ {0}, µ(A5,s) is the Lebesgue measure of the s-neighborhood of A5

and ηk is defined by (3.10).

Now, we have

t(s)≤ D exp
{
−1−β

β
e−1d− β

1−β s−
β

1−β
}

, (3.12)

by (3.10). From (3.11) and (3.12), we get∫ ω

0
s−

β
1−β dµ(A5,s)<∞. (3.13)

Since β

1−β ≥ 1 (3.13) holds for arbitrary s if and only if µ(A5,s)= 0 or A5 =;.

Now, we can present the major theorem of our study using the previous result.

Theorem 3.4. Assume that (3.8) holds, then L has a finite number of eigenvalues and spectral
singularities, and each of them is of finite multiplicity.

Proof. We are supposed to show that the function N(z) has a finite number of zeros with finite
multiplicities in P . From (3.3) and the previous theorem, it is seen that A3 = A4 =;. Hence, the
bounded sets A1 and A2 do not have limit points, i.e., N(z) has only finite number of zeros in P.
Since, A5 =;, these zeros are of finite multiplicity.

4. Conclusion
In this paper, we mainly take into consideration the spectrum of the boundary value problem
including Klein-Gordon difference operator and a general boundary condition. We present the
Jost solution of the problem, and state the Green’s function. After determining the sets of
eigenvalues and spectral singularities of the problem, we investigate the quantitative properties
of these sets under the Naimark’s and Pavlov’s conditions using the uniqueness theorems of
analytic functions.
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