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1. Introduction and Preliminaries
An introductory definition of almost ideals of semigroups was launched by Grosek and Satko [2].
They characterized these ideals when a semigroup S contains no proper almost ideals in [2],
and afterward, they discovered minimal almost ideals and smallest almost ideals of semigroups
in [3] and [4], respectively. Later, Wattanatripop, Chinram and Changphas [10] defined quasi-
almost-ideals and fuzzy almost ideals in semigroups, gave the properties of quasi-almost-
ideals in semigroups, and provided the relationship between almost ideals and fuzzy almost
ideals in semigroups. Furthermore, they defined fuzzy almost bi-ideals in semigroups in [11].
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Almost (m,n)-ideals and fuzzy almost (m,n)-ideals in semigroups were studied by Suebsung,
Wattanatripop and Chinram in [8].

The concept of a Γ-semigroup has been introduced by Sen in 1981 [6]. In 1986, Sen and
Saha [7] changed that definition considering the following more general definition:

Definition 1.1. ([7]) Let S and Γ be nonempty sets. S is called a Γ-semigroup if

(1) aαb ∈ S for all a,b ∈ S and α ∈Γ, and

(2) (aαb)βc = aα(bβc) for all a,b, c ∈ S and all α,β ∈Γ.

Example 1.1. (1) Let (S, ·) be a semigroup. We let Γ := {·}. Then (S,Γ) is a Γ-semigroup.

(2) Let (S,Γ) be a Γ-semigroup. For each α ∈Γ, (S,α) is a semigroup.

(3) For each n ∈N, we define ·n by x ·n y= x+ y+n. Let Γ := {·n | n ∈N}. Therefore, (N,Γ) is a
Γ-semigroup.

Recently, Wattanatripop and Changphas defined the concepts of left almost ideals and right
almost ideals of a Γ-semigroup in [9]. Moreover, they characterized Γ-semigroups containing no
proper left (respectively, right) almost ideals.

Definition 1.2. ([9]) Let S be a Γ-semigroup. A nonempty subset I of S is called

(1) a left almost ideal of S if (sΓI)∩ I 6= ; for all s ∈ S.

(2) a right almost ideal of S if (IΓs)∩ I 6= ; for all s ∈ S.

In [1], some properties of quasi-Γ-ideals in Γ-semigroups were studied.

Definition 1.3. ([1]) A nonempty subset Q of a Γ-semigroup S is called a quasi-Γ-ideal of S if
SΓQ∩QΓS ⊆Q.

In 1965, Zadeh introduced the fundamental fuzzy set concept in [12]. Since then, fuzzy sets
are now applied in various fields. A fuzzy subset of a set S is a function from S into the closed
interval [0,1]. For any two fuzzy subsets f and g of S,

1. f ∪ g is a fuzzy subset of S defined by

( f ∪ g)(x)=max{ f (x), g(x)}= f (x)∨ g(x)

for all x ∈ S,

2. f ∩ g is a fuzzy subset of S defined by

( f ∩ g)(x)=min{ f (x), g(x)}= f (x)∧ g(x)

for all x ∈ S and

3. f ⊆ g if f (x)≤ g(x) for all x ∈ S.

For a fuzzy subset f of a set S, the support of f is defined by

supp( f )= {x ∈ S | f (x) 6= 0}.
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The characteristic mapping of a subset A of S is a fuzzy subset of S defined by

CA(x)=
{

1 x ∈ A,
0 x ∉ A.

The definition of fuzzy points of a set was given by Pu and Liu [5]. For x ∈ S and t ∈ (0,1], a
fuzzy point xt of a set S is a fuzzy subset of S defined by

xt(y)=
{

t y= x,
0 y 6= x.

In this paper, we define and study almost quasi-Γ-ideals and fuzzy almost quasi-Γ-ideals in
Γ-semigroups. Moreover, we give some relationship between almost quasi-Γ-ideals and fuzzy
almost quasi-Γ-ideals of Γ-semigroups.

2. Almost Quasi-Γ-ideals
We begin this section with the following definition of an almost quasi-Γ-ideal of a Γ-semigroup.

Definition 2.1. Let S be a Γ-semigroup. A nonempty subset Q of S is called an almost quasi-Γ-
ideal if

(sΓQ∩QΓs)∩Q 6= ;
for all s ∈ S.

Example 2.1. Consider the Γ-semigroup S = {a,b, c} with Γ= {α,β} and
α a b c
a a a a
b b b b
c c c c

and

β a b c
a a b c
b a b c
c a b c

The almost quasi-Γ-ideals of S are {a}, {b}, {c}, {a,b}, {a, c}, {b, c}, {a,b, c}.

Proposition 2.2. Every quasi-Γ-ideal of a Γ-semigroup S is either sΓQ∩QΓs =; for some s ∈ S
or an almost quasi-Γ-ideal of S.

Proof. Assume that Q is a quasi-Γ-ideal of a Γ-semigroup S. Assume that sΓQ∩QΓs 6= ; for all
s ∈ S. Let s ∈ S. Then

sΓQ∩QΓs ⊆ SΓQ∩QΓS ⊆Q.

That is (sΓQ∩QΓs)∩Q 6= ;. Hence Q is an almost quasi-Γ-ideal of S.

Theorem 2.3. Every almost quasi-Γ-ideal of a Γ-semigroup S is a left almost ideal of S.

Proof. Assume that Q is an almost quasi-Γ-ideal of a Γ-semigroup S. Let s ∈ S. Then

; 6= (sΓQ∩QΓs)∩Q ⊆ sΓQ∩Q.

Hence Q is a left almost ideal of S.
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Similarly, every almost quasi-Γ-ideal of a Γ-semigroup S.

Example 2.4. Consider a Γ-semigroup S = {a,b, c,d, e} with Γ= {α} and
α a b c d e
a a a a d d
b a b c d e
c a c b d e
d d d d a a
e d d d a a

Let T = {b, c,d}. We have T is a left almost ideal of S but (eΓT ∩TΓe)∩T =;. Thus T is not an
almost quasi-Γ-ideal of S.

This show that a left almost ideal of a Γ-semigroup S need not be an almost quasi-Γ-ideal of
S. Similarly, a right almost ideal of S need not be an almost quasi-Γ-ideal of S.

Theorem 2.5. If Q is an almost quasi-Γ-ideal of a Γ-semigroup S and Q ⊆ H ⊆ S, then H is an
almost quasi-Γ-ideal of S.

Proof. Assume that Q is an almost quasi-Γ-ideal of a Γ-semigroup S with Q ⊆ H ⊆ S. Let s ∈ S.
Then

; 6= (sΓQ∩QΓs)∩Q ⊆ (sΓH∩HΓs)∩H.

Therefore, H is an almost quasi-Γ-ideal of S.

Theorem 2.6. The union of two almost quasi-Γ-ideals of a Γ-semigroup S is an almost quasi-Γ-
ideal of S.

Proof. Let Q1 and Q2 be any two almost quasi-Γ-ideals of a Γ-semigroup S. Let s ∈ S. Since
Q1 ⊆Q1 ∪Q2, we have

; 6= (sΓQ1 ∩Q1Γs)∩Q1 ⊆ [sΓ(Q1 ∪Q2)∩ (Q1 ∪Q2)Γs]∩ (Q1 ∪Q2).

Therefore, Q1 ∪Q2 is an almost quasi-Γ-ideal of S.

In Example 2.4, we have Q1 = {a,b} and Q2 = {b, c,d} are almost quasi-Γ-ideals of S, but
Q1 ∩Q2 = {b} is not. Thus we have:

Remark 2.7. The intersection of two almost quasi-Γ-ideals of a Γ-semigroup S need not be an
almost quasi-Γ-ideal of S.

Theorem 2.8. A Γ-semigroup S has no proper almost quasi-Γ-ideal if and only if for any a ∈ S
there exists sa such that saΓ(Sr {a})∩ (Sr {a})Γsa ⊆ {a}.

Proof. Assume that Sr {a} is not an almost quasi-Γ-ideal of S. Then there exists sa ∈ S such
that

[saΓ(Sr {a})∩ (Sr {a})Γsa]∩ (Sr {a})=;.

Therefore, saΓ(Sr {a})∩ (Sr {a})Γsa ⊆ {a}.
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Conversely, assume that for any a ∈ S there exists sa such that

saΓ(Sr {a})∩ (Sr {a})Γsa ⊆ {a}.

Then [saΓ(Sr {a})∩ (Sr {a})Γsa]∩ (Sr {a})=;. Hence Sr {a} is not an almost quasi-Γ-ideal of
S. Let A be a proper almost quasi-Γ-ideal of S. Then A ⊆ Sr {a} ⊆ S for some a ∈ S, this is a
contradiction. Therefore, S has no proper almost quasi-Γ-ideal.

3. Fuzzy almost quasi-Γ-ideals
Let S be a Γ-semigroup and F (S) be the set of all fuzzy subset of S. For each α ∈ Γ, define a
binary operation ◦α on F (S) by

( f ◦α g)(x)=
 sup

x=aαb
{min{ f (a), g(b)}} if x ∈ SαS,

0 otherwise.

Let Γ? := {◦α |α ∈Γ}. Then (F (S),Γ?) is a Γ-semigroup.
Next, we define fuzzy almost quasi-Γ-ideals in semigroups and give some relationship

between almost quasi-Γ-ideals and fuzzy almost quasi-Γ-ideals of Γ-semigroups.

Definition 3.1. Let f be a fuzzy subset of a Γ-semigroup S such that f 6= 0. f is called a
fuzzy almost quasi-Γ-ideal of S if for all fuzzy point xt of S, there exist α,β ∈ Γ such that
[( f ◦α xt)∩ (xt ◦β f )]∩ f 6= 0.

Theorem 3.1. Let f be a fuzzy almost quasi-Γ-ideal of a semigroup S and g be a fuzzy subset of
S such that f ⊆ g. Then g is a fuzzy almost quasi-Γ-ideal of S.

Proof. Assume that f is a fuzzy almost quasi-Γ-ideal of a Γ-semigroup S and g is a fuzzy
subset of S such that f ⊆ g. Then for all a fuzzy point xt of S, there exist α,β ∈ Γ such that
[( f ◦α xt)∩ (xt ◦β f )]∩ f 6= 0. We have

[( f ◦α xt)∩ (xt ◦β f )]∩ f ⊆ [(g ◦α xt)∩ (xt ◦β g)]∩ g.

This implies [(g ◦α xt)∩ (xt ◦β g)]∩ g 6= 0. Therefore g is a fuzzy almost quasi-Γ-ideal of S.

Corollary 3.2. Let f and g be fuzzy almost quasi-Γ-ideals of a Γ-semigroup S. Then f ∪ g is a
fuzzy almost quasi-Γ-ideal of S.

Proof. Since f ⊆ f ∪ g, by Theorem 3.1, f ∪ g is a fuzzy almost quasi-Γ-ideal of S.

Example 3.3. Consider the Γ-semigroup Z5 where Γ= {0} and aγb = a+γ+b. Let f :Z5 → [0,1]
defined by

f (0)= 0, f (1)= 0.4, f (2)= 0, f (3)= 0.2, f (4)= 0.3

and g :Z5 → [0,1] defined by

g(0)= 0, g(1)= 0.3, g(2)= 0.5, g(3)= 0, g(4)= 0.9.

We have f and g are fuzzy almost quasi-Γ-ideals of Z5 but f ∩ g is not a fuzzy almost quasi-Γ-
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ideal of Z5.

Theorem 3.4. Let Q be a nonempty subset of a Γ-semigroup S. Then Q is an almost quasi-Γ-
ideal of S if and only if CQ is a fuzzy almost quasi-Γ-ideal of S.

Proof. Assume that Q is an almost quasi-Γ-ideal of a Γ-semigroup S and let xt be a fuzzy
point of S. Then [(QΓx)∩ (xΓQ)]∩Q 6= ;. Thus there exists y ∈ (QΓx)∩ (xΓQ) and y ∈Q. Thus
y ∈ (Qαx)∩ (xβQ) for some α,β ∈ Γ. So [(CQ ◦α xt)∩ (xt ◦β CQ)](y) 6= 0 and CQ(y) = 1. Hence
[(CQ ◦α xt)∩ (xt ◦βCQ)]∩CQ 6= 0. Therefore CQ is a fuzzy almost quasi-Γ-ideal of S.

Conversely, assume that CQ is a fuzzy almost quasi-Γ-ideal of S. Let s ∈ S. Then

[(CQ ◦α s1)∩ (s1 ◦βCQ)]∩CQ 6= 0

for some α,β ∈Γ. Then there exists x ∈ S such that

[(CQ ◦α s1)∩ (s1 ◦βCQ)∩CQ](x) 6= 0.

Hence x ∈ [(QΓs)∩ (sΓQ)]∩Q. So [(QΓs)∩ (sΓQ)]∩Q 6= ;. Consequently, Q is an almost quasi-Γ-
ideal of S.

Theorem 3.5. Let f be a fuzzy subset of a Γ-semigroup S. Then f is a fuzzy almost quasi-Γ-ideal
of S if and only if supp( f ) is an almost quasi-Γ-ideal of S.

Proof. Assume that f is a fuzzy almost quasi-Γ-ideal of a Γ-semigroup S. Let s ∈ S and t ∈ (0,1].
Then [( f ◦α st)∩ (st ◦β f )]∩ f 6= 0. Hence there exists x ∈ S such that

[( f ◦α st)∩ (st ◦β f )∩ f ](x) 6= 0.

So there exist y1, y2 ∈ S such that x = y1αs = sβy2, f (x) 6= 0, f (y1) 6= 0 and f (y2) 6= 0. That is
x, y1, y2 ∈ supp( f ). Thus [(Csupp( f ) ◦α st)∩ (st ◦β Csupp( f ))](x) 6= 0 and Csupp( f )(x) 6= 0. Therefore
[(Csupp( f ) ◦α st)∩ (st ◦βCsupp( f ))]∩Csupp( f ) 6= 0. Hence Csupp( f ) is a fuzzy almost quasi-Γ-ideal of
S. By Theorem 3.4, supp( f ) is an almost quasi-Γ-ideal of S.

Conversely, assume that supp( f ) is an almost quasi-Γ-ideal of S. By Theorem 3.4, Csupp( f ) is
a fuzzy almost quasi-Γ-ideal of S. Then for each fuzzy point st of S, we have

[(Csupp( f ) ◦α st)∩ (st ◦βCsupp( f ))]∩Csupp( f ) 6= 0

for some α,β ∈Γ. Then there exists x ∈ S such that

[(Csupp( f ) ◦α st)∩ (st ◦βCsupp( f ))∩Csupp( f )](x) 6= 0.

Hence [(Csupp( f ) ◦α st)∩ (st ◦βCsupp( f ))](x) 6= 0 and Csupp( f )(x) 6= 0. Then there exist y1, y2 ∈ S such
that x = y1αs = sβy2, f (x) 6= 0, f (y1) 6= 0 and f (y2) 6= 0. This means [( f ◦α st)∩ (st ◦β f )]∩ f 6= 0.
Therefore f is a fuzzy almost quasi-Γ-ideal of S.

Next, we define minimal fuzzy almost quasi-Γ-ideals in Γ-semigroups and give some
relationship between minimal almost quasi-Γ-ideals and minimal fuzzy almost quasi-Γ-ideals
of Γ-semigroups.
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Definition 3.2. A nonzero fuzzy almost quasi-Γ-ideal f is called minimal if for each fuzzy
almost quasi-Γ-ideal g of S such that g ⊆ f , we have supp(g)= supp( f ).

Theorem 3.6. Let Q be a nonempty subset of a Γ-semigroup S. Then Q is a minimal almost
quasi-Γ-ideal of S if and only if CQ is a minimal fuzzy almost quasi-Γ-ideal of S.

Proof. Assume that Q is a minimal almost quasi-Γ-ideal of a Γ-semigroup S. By Theorem 3.4,
CQ is a fuzzy almost quasi-Γ-ideal of S. Let g be a fuzzy almost quasi-Γ-ideal of S such that
g ⊆ CQ . Then supp(g) ⊆ supp(CQ) = Q. Since g ⊆ Csupp(g), we have Csupp(g) is a fuzzy almost
quasi-Γ-ideal of S. By Theorem 3.4, supp(g) is an almost quasi-Γ-ideal of S. Since Q is minimal,
supp(g)=Q = supp(CQ). Therefore, CQ is minimal.

Conversely, assume that CQ is a minimal fuzzy almost quasi-Γ-ideal of S. Let Q′ be an
almost quasi-Γ-ideal of S such that Q′ ⊆Q. Then CQ′ is a fuzzy almost quasi-Γ-ideal of S such
that CQ′ ⊆ CQ . Hence Q′ = supp(CQ′)= supp(CQ)=Q. Therefore, Q is minimal.

Corollary 3.7. Let Q be a nonempty subset of a Γ-semigroup S. Then Q has no proper almost
quasi-Γ-ideal of S if and only if for all fuzzy almost quasi-Γ-ideal f of S, supp( f )= S.

4. Conclusion
A Γ-semigroup is an algebraic structure that it is a one of generalization of semigroups. Many
authors investigated interesting results in this algebraic system. Also, the concept of fuzzy
subsets is interesting to play with it. In this paper, we define almost quasi-Γ-ideals and fuzzy
almost quasi-Γ-ideals of Γ-semigroups. The union of two almost quasi-Γ-ideals [fuzzy almost
quasi-Γ-ideals] is also an almost quasi-Γ-ideal [a fuzzy almost quasi-Γ-ideal]. However, the
intersection of two almost quasi-Γ-ideals [fuzzy almost quasi-Γ-ideals] need not be an almost
quasi-Γ-ideal [a fuzzy almost quasi-Γ-ideal]. Moreover, we investigate some relationship between
almost quasi-Γ-ideals and fuzzy almost quasi-Γ-ideals in Theorem 3.4, 3.5 and 3.6.
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