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Perturbation of A Nonlinear Elliptic Biological

Interacting Model with Multiple Species

Joon Hyuk Kang

Abstract. In this paper, we investigate the effects of perturbations on the

coexistence state of the general competition model for multiple species. Previous

work by Kang, Lee and Oh (see [11]) established sufficient conditions for the

uniqueness of the positive solution to the following general elliptic system for

multiple competing species of animals:

∆ui + ui gi(u1, u2, . . . , ui , ui+1, . . . , uN ) = 0 in Ω, ui |∂Ω = 0

for i = 1, . . . , N . That is, they proved that under certain conditions, the species

can coexist and that the coexistence state is unique at fixed rates. In this paper,

we extend their uniqueness results by perturbing functions gi ’s of the above

model, and applying super-sub solutions, maximum principles and spectrum

estimates. Our arguments also rely on some detailed properties for the solution of

logistic equations. By applying these techniques, we obtain sufficient conditions

for the existence and uniqueness of a time independent coexistence state for the

perturbed general competition model.

1. Introduction

One of the prominent subjects of study and analysis in mathematical biology

concerns the competition of two or more species of animals in the same

environment. Especially pertinent areas of investigation include the conditions

under which the species can coexist, as well as the conditions under which

any one of the species becomes extinct, that is, one of the species is excluded

by the others. In this paper, we focus on the general competition model to

better understand the competitive interactions between species. Specifically, we

investigate the conditions needed for the coexistence of species when the factors

affecting them are perturbed.

2. Literature review

Within the academia of mathematical biology, extensive academic work has

been devoted to investigation of the simple competition model, commonly known
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as the Lotka-Volterra competition model. This system describes the competitive

interaction of species residing in the same environment in the following manner:







(ui)t(x , t) = ∆ui(x , t) + ui(x , t)(ai − biui(x , t)−
N
∑

j=1, j 6=i

ci ju j(x , t)) in Ω× R+,

ui(x , t)|∂Ω = 0,

(2.1)

for i = 1,2, . . . , N , where Ω is a bounded domain in Rn. Here, ui(x , t) designate the

population densities for the competing species. The positive constant coefficients in

this system represent growth rates (ais), self-limitation rates (bis) and competition

rates (ci js). Furthermore, we assume that both species are not residing on the

boundary of Ω.

The mathematical community has already established several results for the

existence, uniqueness and stability of the positive steady state solution to (2.1)

(see [1], [2], [3], [4], [6], [7]). The positive steady state solution is simply the

positive solution to the time-independent system






∆ui(x) + ui(x)(ai − biui(x)−
N
∑

j=1, j 6=i

ci ju j(x)) = 0 in Ω,

ui(x)|∂Ω = 0

for i = 1,2, . . . , N .

One of the initial important results for the time-independent Lotka-Volterra

model for N = 2 was obtained by Cosner and Lazer, i.e. they considered the simple

model






∆u(x) + u(x)(a− bu(x)− cv(x)) = 0

∆v(x) + v(x)(d − f v(x)− eu(x)) = 0
in Ω,

u|∂Ω = v|∂Ω = 0,

(2.2)

where a, d > 0 are growth rates, b, f > 0 are self-limitation rates, and c, e > 0 are

competition rates. In 1984, they published the following sufficient conditions for

the existence and uniqueness of a positive steady state solution to (2.2):

Theorem 2.1 ([4]). Suppose

(A) a > λ1 +
cd

f
, d > λ1 +

ae

b
, where λ1 is the smallest eigenvalue of −∆ with

homogeneous boundary conditions,

(B) 4b f >
f c2

b
sup
x∈Ω

�

ωa(x)

ωd− ae

b
(x)

�

+ 2ce +
be2

f
sup
x∈Ω

�

ωd(x)

ωa− cd

f

(x)

�

, where ωM(x) for

M > 0 is the unique positive solution to the logistic equation as mentioned in the

next section.

Then (2.2) has a unique positive solution.
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Cosner and Lazer’s theorem implies that if the self-reproduction and self-

limitation rates are relatively large, and the competition rates are relatively small,

then there is a unique positive steady state solution to (2.2). In other words, the

two species will coexist indefinitely at unique population densities.

In 1989, Cantrell and Cosner extended these results by proving that the

reproduction and self limitation rates may vary within bounds without losing

the uniqueness result, given certain conditions. Biologically, Cantrell and Cosner’s

theorem suggests that two species can relax ecologically and maintain a

coexistence state. Their primary result is given below:

Theorem 2.2 ([3]). If a = d > λ1, b = f = 1, and 0 < c, e < 1, then there is a

neighborhood V of (a, a) such that if (a0, d0) ∈ V , then (2.2) with (a, d) = (a0, d0)

has a unique positive solution.

In Theorem 2.2, the condition 0 < c, e < 1 biologically implies that the

competition rates of both species must be relatively small. This condition plays

an important role in the proof of Cantrell and Cosner’s theorem by implying the

invertibility of the Frechet derivative (linearization) of (2.2) at a fixed reproduction

rate (a, a).

The work of Lazer, Cosner, and Cantrell provides insight into the competitive

interactions of species operating under the conditions described in the Lotka-

Volterra model. However, their results are somewhat limited by a few key

assumptions. In the Lotka-Volterra model that they studied, the rate of change

of densities largely depends on constant rates of reproduction, self-limitation, and

competition. The model also assumes a linear relationship of the terms affecting

the rate of change for both population densities.

However, in reality, the rates of change of population densities may vary in

a more complicated and irregular manner than can be described by the simple

competition model. Therefore, in the last decade, significant research has been

focused on the existence and uniqueness of the positive steady state solution of the

general competition model for possibly multiple species, i.e. the positive solution to

∆ui + ui gi(u1,u2, . . . ,ui ,ui+1, . . . ,uN ) = 0 in Ω, ui |∂Ω = 0 (2.3)

for i = 1, . . . , N , where gi ∈ C1 designate reproduction, self-limitation and

competition rates that satisfy the growth conditions (G1) and (G2) given below

(see [9], [10], [11], [13], [12]).

Because of its broader applicability, the general competition model has become

a more popular subject of research within the mathematical community over the

past few years. In 2004, Kang, Oh, and Lee (see [11]) established the following

existence, nonexistence and uniqueness result, which generalizes Theorem 2.1

obtained by Cosner and Lazer.

Theorem 2.3. Suppose

(G1)
∂ gi

∂ u j

< 0 for i, j = 1, . . . , N,
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(G2) there exist constants c1 > 0, c2 > 0, . . . , cN > 0 such that

gi(0, . . . , 0,ui , 0, . . . , 0) ≤ 0 for ui ≥ ci .

(1) If gi(c1, c2, . . . , ci−1, 0, ci+1, . . . , cN ) > λ1 for i = 1, . . . , N, then (2.3) has a

coexistence state.

(2) If gi(0, . . . , 0) ≤ λ1 for some i = 1, . . . , N, then (2.3) does not have any

positive solution.

(3) If gi(c1, . . . , ci−1, 0, ci+1, . . . , cN )> λ1 and

2 inf

�

−
∂ gi

∂ x i

�

>

N
∑

j=1, j 6=i

�

sup

�

−
∂ gi

∂ x j

�

+ K sup

�

−
∂ g j

∂ x i

��

for i = 1, . . . , N, where K = sup
i, j 6=i

θg j(0,...,0,·,0,...,0)

θgi(c1 ,...,ci−1 ,·,ci+1,...,cN )

. Then (2.3) has a unique

coexistence state.

Biologically, we can interpret the conditions in Theorem 2.3 as follows. The

functions gi ,
∂ gi

∂ u j

describe the manner in which members of each species ui interact

among themselves and with members of the other species. Hence, the conditions

imply that members of each species interact strongly among themselves and

weakly with members of the other species. If these conditions are fulfilled, then

the species residing within the same domain will coexist indefinitely at unique

densities.

An especially significant aspect of the global uniqueness result is the stability

of the positive steady state solution, which has become an important subject of

mathematical study. Indeed, researchers have obtained several stability results for

the Lotka-Volterra model with constant rates(see [3], [4], [7], [12]). However,

the stability of the steady state solution for the general model remains open to

investigation.

The research presented in this paper therefore begins the mathematical

community’s discussion on the stability of the steady state solution for the general

competition model. In our analysis we focus on the conditions required for

the maintenance of the coexistence state of (2.3)when bounded functions gi ’s

are slightly perturbed. Mathematically, our results will generalize Theorem 2.2

developed by Cantrell and Cosner. Biologically, our conclusion implies that the

species may slightly relax ecologically and yet continue to coexist at unique

densities.

3. Preliminaries

Before entering into our primary arguments and results, we must first present

a few preliminary items that we later employ throughout the proofs detailed in

this paper. The following definition and lemmas are established and accepted

throughout the literature on our topic.
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Definition 3.1 (Super and Sub solutions). The vector functions (ū1, . . . , ūN ),

(u1, . . . ,uN ) form an super/sub solution pair for the system
¨

∆ui + g i(u1, . . . ,uN ) = 0 in Ω

ui = 0 on ∂Ω

if for i = 1, . . . , N






∆ūi + g i(u1, . . . ,ui−1, ūi ,ui+1, . . . ,uN )≤ 0

∆ui + g i(u1, . . . ,ui−1,ui ,ui+1, . . . ,uN )≥ 0

in Ω for u j ≤ u j ≤ ū j , j 6= i,

and

ui ≤ ūi on Ω

ui ≤ 0≤ ūi on ∂Ω.

Lemma 3.2 ([1]). If g i in the Definition 3.1 are in C1 and the system admits

an super/sub solution pair (u1, . . . ,uN ), (ū1, . . . , ūN ), then there is a solution of the

system in 3.1 with ui ≤ ui ≤ ūi in Ω̄. If

∆ūi + g i(ū1, . . . , ūN ) 6= 0,

∆ui + g i(u1, . . . ,uN ) 6= 0

in Ω for i = 1, . . . , N, then ui < ui < ūi in Ω.

In our proof, we also employ accepted conclusions concerning the solutions of

the following logistic equations.

Lemma 3.3 (Established in [13]). Consider

∆u+ uf (u) = 0 in Ω,

u|∂Ω = 0,u > 0,

where f is a decreasing C1 function such that there exists c0 > 0 such that f (u) ≤ 0

for u≥ c0 and Ω is a bounded domain in Rn.

If f (0) > λ1, then the above equation has a unique positive solution, where λ1 is

the first eigenvalue of −∆ with homogeneous boundary conditions. We denote this

unique positive solution as θ f .

The most important property of this positive solution, for the purposes of our

research, is that θ f is increasing as f is increasing.

We specifically note that for a > λ1, the unique positive solution of

∆u+ u(a− u) = 0 in Ω,

u|∂Ω = 0, u> 0,

is denoted by ωa ≡ θa−x . Hence, θa is increasing as a > 0 is increasing.

Having established these preliminaries, we now commence our investigation of

perturbations of the general competition model.
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4. Perturbation

We consider the model

∆ui + ui gi(u1,u2, . . . ,ui ,ui+1, . . . ,uN ) = 0 in Ω, ui |∂Ω = 0 (4.1)

for i = 1, . . . , N . Here Ω is a smooth, bounded domain in Rn. Also, two growth

conditions hold:

(P1) gi ∈ C1
B

for i = 1, . . . , N , where C1
B

is the set of all functions f such that f

is decreasing, and all the first-order partial derivatives of f are bounded and

continuous.

(P2) there are ci > 0 such that gi(0, . . . , 0,ui , 0, . . . , 0) < 0 for u ≥ ci , i = 1, . . . , N .

The following theorem is our main result on coexistence for the general

competition model.

Theorem 4.1. Suppose

(A) λ1(−gi(θg1(·,0,...,0), . . . ,θgi−1(0,...,0,·,0,...,0), 0,θgi+1 (·,0,...,0), . . . ,θgN (0,...,0·))) < 0 for

i = 1, . . . , N, where in general, λ1(q) is the smallest eigenvalue of −∆+ q with

homogeneous boundary conditions, denoted simply by λ1 when q ≡ 0,

(B) (4.1) has a unique coexistence state (u1, . . . ,uN ),

(C) the Frechet derivative of (4.1) at (u1, . . . ,uN ) is invertible.

Then there is a neighborhood V of (g1, . . . , gN ) in [C1
B
(R2)]N such that if

( ḡ1, . . . , ḡN ) ∈ V, then (4.1) with ( ḡ1, . . . , ḡN ) has a unique coexistence state.

Biologically, the first condition in Theorem 4.1 indicates that the rates of

reproduction are relatively large. Similarly, the third condition, which requires

the invertibility of the Frechet derivative, signifies that the rates of self-limitation

are relatively larger than the rates of competition, a relationship that will be

established in Lemma 4.2. When these conditions are fulfilled, the conclusion

of our theorem asserts that small perturbations of the rates do not affect the

existence and uniqueness of the positive steady state. That is, the species implied

can continue to coexist even if the factors determining the population densities

vary slightly.

Now, at first glance, Theorem 4.1 may appear to be a consequence of the Implicit

Function Theorem. However, the Implicit Function Theorem only guarantees local

uniqueness. In contrast, our results in Theorem 4.1 guarantee global uniqueness.

The techniques we will use in the proof of Theorem 4.1 include the Implicit

Function Theorem and a priori estimates on solutions of (4.1).

Proof. Since the Frechet derivative of (4.1) at (u1, . . . ,uN ) is invertible, then,

by the Implicit Function Theorem, there is a neighborhood V of (g1, . . . , gN )

in (C1
B
)N and a neighborhood W of (u1, . . . ,uN ) in [C

2,α
0 (Ω̄)]

N such that for all

( ḡ1, . . . , ḡN ) ∈ V , there is a unique positive solution (ū1, . . . , ūN ) ∈ W of (4.1).

Thus, the local uniqueness of the solution is guaranteed.
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To prove global uniqueness, suppose that the conclusion of Theorem 4.1 is false.

Then there are sequences (g1n, g2n, . . . , gN n,u1n, . . . ,uN n),

(g1n, g2n, . . . , gN n, ū1n, . . . , ūN n) in V × [C
2,α
0 (Ω̄)]

N such that (u1n, . . . ,uN n) and

(ū1n, . . . , ūN n) are positive solutions of (4.1) with (g1n, g2n, . . . , gN n) and

(u1n, . . . ,uN n) 6= (ū1n, . . . , ūN n) and (g1n, g2n, . . . , gN n) → (g1, . . . , gN ). By the

Schauder’s estimate in elliptic theory and the solution estimate in the proof of

Theorem 2.3, there are constants k1 > 0, k2 > 0, . . . , kN > 0 such that

|uin|2,α ≤ ki sup
x∈Ω̄

(uin(x))≤ ki sup
x∈Ω̄

(θgin(0,...,0,·,0,...,0)(x)), i = 1, . . . , N

for all n= 1,2, . . ..

But, by the convergence of (g1n, . . . , gN n) and the monotonicity of θ f , we

conclude that |uin|2,α is uniformly bounded. Therefore, there is a uniformly

convergent subsequence of (u1n, . . . ,uN n) which again will be denoted by

(u1n, . . . ,uN n).

Thus, let

(u1n, . . . ,uN n)→ (û1, . . . , ûN ),

(ū1n, . . . , ūN n)→ (ū1, . . . , ūN ).

Then (û1, . . . , ûN ), (ū1, . . . , ūN ) ∈ (C2,α)N are also solutions of (2.1) with

(g1, . . . , gN ). We claim that û1 > 0, . . . , ûN > 0, ū1 > 0, . . . , ūN > 0. To prove this

assertion, it is sufficient to show that û1, . . . , ûN are not identically zero because of

the Maximum Principle.

Suppose not. With no loss of generality, suppose û1 is identically zero. Let ũ1n =
u1n

‖ u1n ‖∞
for all n ∈ N . Then

∆ũ1n + ũ1n g1(u1n, . . . ,uN n) = 0

∆u2n + u2n g2(u1n, . . . ,uN n) = 0

...

∆uN n + uN n gN (u1n, . . . ,uN n) = 0.

By using elliptic theory again, ũ1n→ ũ1 in C2,α and

∆ũ1 + ũ1 g1(0, û2, . . . , ûN ) = 0

∆û2 + û2 g2(û1, . . . , ûN ) = 0

...

∆ûN + ûN gN (û1, . . . , ûN ) = 0.

Hence, λ1(−g1(0, û2, . . . , ûN )) = 0. Let j = 2, . . . , N . If û j is identically zero, then

û j ≡ 0≤ θg j(0,...,0,·,0,...,0).
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Suppose û j is not identically zero. Then since

∆û j + û j g j(0, . . . , 0, û j , 0, . . . , 0)

= ∆û j + û j[g j(û1, . . . , ûN )− g j(û1, . . . , ûN ) + g j(0, . . . , 0, û j , 0, . . . , 0)]

= û j[g j(0, . . . , 0, û j , 0, . . . , 0)− g j(û1, . . . , ûN )]

≥ 0,

û j is a lower solution of

∆Z + Z g j(0, . . . , 0, Z , 0, . . . , 0) = 0 in Ω, Z = 0 on ∂Ω.

Since any constant which is larger than c j is an upper solution of

∆Z + Z g j(0, . . . , 0, Z , 0, . . . , 0) = 0 in Ω, Z = 0 on ∂Ω,

by the uniqueness of positive solution,

û j ≤ θg j(0,...,0,·,0,...,0).

Consequently,

λ1(−g1(0,θg2(0,·,0,...,0), . . . ,θgN (0,...,0,·)))≥ λ1(−g1(0, û2, . . . , ûN ))

= 0,

by the monotonicity of g1 and the first eigenvalue, which contradicts our

assumption. Consequently, (û1, . . . , ûN ) and (ū1, . . . , ūN ) are coexistence states with

reproduction rate (g1, . . . , gN ). But, since the coexistence state in this case is unique

by assumption, (û1, . . . , ûN ) = (ū1, . . . , ūN ) = (u1, . . . ,uN ), which contradicts the

Implicit Function Theorem.

In biological terms, the proof of our theorem indicates that if one of the species

living in the same domain becomes extinct, that is, if one species is excluded by the

others, then the reproduction rates of the species must be small. In other words,

the region condition of reproduction rates (A) is reasonable.

Now, the condition (C) in Theorem 4.1 requiring the invertibility of the

Frechet derivative is too artificial to have any direct biological implications. We

therefore turn our attention to more applicable conditions that will guarantee the

invertibility of the Frechet derivative. We then obtain the following relationship:

Lemma 4.2. Suppose (u1, . . . ,uN ) is a positive solution to (4.1). If

2 inf

�

−
∂ gi(u1, . . . ,uN )

∂ ui

�

ui

>

N
∑

j=1, j 6=i

�

sup

�

−
∂ gi(u1, . . . ,uN )

∂ u j

�

ui + sup

�

−
∂ g j(u1, . . . ,uN )

∂ ui

�

u j

�

for i = 1, . . . , N, then the Frechet derivative of (4.1) at (u1, . . . ,uN ) is invertible.
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Proof. The Frechet derivative of (4.1) at (u1, . . . ,uN ) is A= (Ai j), where

Ai j =











−∆− gi(u1, . . . ,uN )− ui

∂ gi(u1, . . . ,uN )

∂ ui

, i = j

−ui

∂ gi(u1, . . . ,uN )

∂ u j

, i 6= j

for i, j = 1, . . . , N . We need to show that N(A) = {0} by the Fredholm Alternative,

where N(A) is the null space of A. In fact, from the equations

∫

Ω

|∇φ1|
2 −

�

g1(u1, . . . ,uN ) + u1

∂ g1(u1, . . . ,uN )

∂ u1

)φ2
1

−

�

∂ g1(u1, . . . ,uN )

∂ u2

φ2 + . . .+
∂ g1(u1, . . . ,uN )

∂ uN

φN

�

u1φ1d x = 0

∫

Ω

|∇φ2|
2 −

�

g2(u1, . . . ,uN ) + u2

∂ g2(u1, . . . ,uN )

∂ u2

�

φ2
2

−

�

∂ g2(u1, . . . ,uN )

∂ u1

φ1 +
∂ g2(u1, . . . ,uN )

∂ u3

φ3+ . . .

+
∂ g2(u1, . . . ,uN )

∂ uN

φN

�

u2φ2d x = 0

...
∫

Ω

|∇φN |
2 −

�

gN (u1, . . . ,uN ) + uN

∂ gN (u1, . . . ,uN )

∂ uN

)φ2
N

−

�

∂ gN (u1, . . . ,uN )

∂ u1

φ1+ . . .+
∂ gN (u1, . . . ,uN )

∂ uN−1

φN−1

�

uNφN d x = 0,

since λ1(−gi(u1, . . . ,uN )) = 0 for i = 1, . . . , N , we see that

∫

Ω

|∇φi |
2 − gi(u1, . . . ,uN )φ

2
i
d x ≥ 0, i = 1, . . . , N .

Hence,
∫

Ω

−u1

∂ g1(u1, . . . ,uN )

∂ u1

φ2
1
−

�

∂ g1(u1, . . . ,uN )

∂ u2

φ2 + . . .

+
∂ g1(u1, . . . ,uN )

∂ uN

φN

�

u1φ1d x ≤ 0

∫

Ω

−u2

∂ g2(u1, . . . ,uN )

∂ u2

φ2
2
−

�

∂ g2(u1, . . . ,uN )

∂ u1

φ1

+
∂ g2(u1, . . . ,uN )

∂ u3

φ3 + . . .+
∂ g2(u1, . . . ,uN )

∂ uN

φN

�

u2φ2d x ≤ 0

...
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∫

Ω

−uN

∂ gN (u1, . . . ,uN )

∂ uN

φ2
N
−

�

∂ gN (u1, . . . ,uN )

∂ u1

φ1 + . . .

+
∂ gN (u1, . . . ,uN )

∂ uN−1

φN−1

�

uNφN d x ≤ 0.

Therefore,
∫

Ω

−

N
∑

i=1

ui

∂ gi(u1, . . . ,uN )

∂ ui

φ2
i
−

N
∑

i=1

uiφi

N
∑

j=1, j 6=i

∂ gi(u1, . . . ,uN )

∂ u j

φ jd x ≤ 0.

It implies that
∫

Ω

N
∑

i=1

�

− ui

∂ gi(u1, . . . ,uN )

∂ ui

φ2
i
−

N
∑

j=1, j 6=i

∂ gi(u1, . . . ,uN )

∂ u j

uiφ jφi

�

d x ≤ 0.

But

−
∂ gi(u1, . . . ,uN )

∂ u j

uiφ jφi ≤−
∂ gi(u1, . . . ,uN )

∂ u j

ui

�

φ2
i

2
+
φ2

j

2

�

.

If

−
∂ gi(u1, . . . ,uN )

∂ ui

ui >−

N
∑

j=1, j 6=i

�

∂ gi(u1 ,...,uN )

∂ u j

ui

2
+

∂ g j(u1 ,...,uN )

∂ ui

u j

2

�

, i = 1, . . . , N ,

then the integrand in above inequality is positive definite, which means

(φ1, . . . ,φN ) is trivial. But, it holds if

2 inf

�

−
∂ gi(u1, . . . ,uN )

∂ ui

�

ui

>

N
∑

j=1, j 6=i

�

sup

�

−
∂ gi(u1, . . . ,uN )

∂ u j

�

ui + sup

�

−
∂ g j(u1, . . . ,uN )

∂ ui

�

u j

�

,

i = 1, . . . , N .

Combining Theorem 2.3, Theorem 4.1, and Lemma 4.2, we obtain the following

corollary, which is the main result in this section. The importance of Corollary 4.3

is that it improves the results found by Kang, Oh and Lee, as described in

Theorem 2.3.

Corollary 4.3. Suppose

(A) gi(c1, . . . , ci−1, 0, ci+1, . . . , cN )> λ1, and

(B)

2 inf

�

−
∂ gi(u1, . . . ,uN )

∂ ui

�

>

N
∑

j=1, j 6=i

�

sup

�

−
∂ gi(u1, . . . ,uN )

∂ u j

�

+ K sup

�

−
∂ g j(u1, . . . ,uN )

∂ ui

��

for i = 1, . . . , N, where K = sup
i 6= j

θg j(0,...,0,·,0,...,0)

θgi(c1,...,ci−1 ,·,ci+1,...,cN )

.
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Then there is a neighborhood V of (g1, . . . , gN ) in (C1
B
)N such that if ( ḡ1, . . . , ḡN ) ∈ V ,

then (4.1) with ( ḡ1, . . . , ḡN ) has a unique coexistence state.

Proof. Since θgi(0,...,0,·,0,...,0) < ci for i = 1, . . . , N , then by the monotonicity of gi

and λ1, we have

λ1(−gi(θg1(·,0,...,0), . . . ,θgi−1(0,...,0,·,0,...,0), 0,θgi+1 (·,0,...,0), . . . ,θgN (0,...,0·)))

≤ λ1(−gi(c1, . . . , ci−1, 0, ci+1, . . . , cN ))

= λ1 − gi(c1, . . . , ci−1, 0, ci+1, . . . , cN )

< 0

for i = 1, . . . , N . By Theorem 2.3, (4.1) has a unique coexistence state (u1, . . . ,uN ).

Furthermore, by the estimate of the solution in the proof of Theorem 2.3,

2 inf

�

−
∂ gi(u1, . . . ,uN )

∂ ui

�

>
∑

j=1, j 6=i

�

sup

�

−
∂ gi

∂ u j

�

+
θg j(0,...,0,·,0,...,0)

θgi(c1 ,...,ci−1 ,·,ci+1,...,cN )

sup

�

−
∂ g j

∂ ui

��

≥
∑

j=1, j 6=i

�

sup

�

−
∂ gi

∂ u j

�

+
u j

ui

sup

�

−
∂ g j

∂ ui

��

for i = 1, . . . , N . By Lemma 4.2, this result implies that the Frechet derivative

of (4.1) at (u1, . . . ,uN ) is invertible. Therefore, Corollary 4.3 follows from

Theorem 4.1.

In biological terms, the results obtained in Corollary 4.3 confirm that under

certain conditions, the species who relax ecologically can continue to coexist at

fixed rates. The requirements given in (A) and (B) simply state that each species

must interact strongly with itself and weakly with the other species.

5. perturbation of region

Consider the model

∆ui + ui gi(u1,u2, . . . ,ui ,ui+1, . . . ,uN ) = 0 in Ω, ui |∂Ω = 0, (5.1)

for i = 1, . . . , N . Here Ω is a bounded smooth domain in Rn and gi ∈ C1
B
= { f :

RN → R ∈ C1| f is strictly decreasing with respect to each ui , f and all of it’s first

order partial derivatives are bounded}.

The following theorem is the main result.

Theorem 5.1. Suppose

(A) Γis a closed, bounded, convex region in C1
B

such that for all (g1, . . . , gN ) ∈ Γ,

λ1(−gi(θg1(·,0,...,0), . . . ,θgi−1(0,...,0,·,0,...,0), 0,θgi+1 (0,...,0,·,0,...,0), . . . ,θgN (0,...,0,·))) < 0

for i = 1, . . . , N,

(B) there exist ci > 0 such that for all (g1, . . . , gN ) ∈ Γ, gi(0, . . . , 0,ui , 0, . . . , 0) ≤ 0

for ui ≥ ci , i = 1, . . . , N
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(C) (5.1) has a unique positive solution for every (g1, . . . , gN ) ∈ ∂LΓ, where

∂LΓ = {(λg2,...,gN
, g2, . . . , gN ) ∈ Γ for any fixed g2, . . . , gN ,‖λg2 ,...,gN

‖ =

inf{‖g1‖ |(g1, . . . , gN ) ∈ Γ}},

(D) for all (g1, . . . , gN ) ∈ Γ, the Frèchet derivative of (5.1) at every positive solution

to (5.1) is invertible.

Then for all (g1, . . . , gN ) ∈ Γ, (5.1) has a unique positive solution. Furthermore, there

is an open set W in [C1
B
]N such that Γ ⊆ W and for every (g1, . . . , gN ) ∈ W, (5.1)

has a unique positive solution.

Theorem 5.1 goes even further than Theorem 4.1 which states uniqueness in the

whole region of (g1, . . . , gN ) whenever we have uniqueness on the left boundary

and invertibility of the linearized operator at any particular solution inside the

domain.

Proof. For each fixed g2, . . . , gN , consider (g1, g2, . . . , gN ) ∈ ∂LΓ and

( ḡ1, g2, . . . , gN ) ∈ Γ. We need to show that for all 0 ≤ t ≤ 1, (5.1) with

(1− t)(g1, . . . , gN ) + t( ḡ1, g2, . . . , gN ) has a unique positive solution. Since (5.1)

with (g1, . . . , gN ) has a unique positive solution (u1, . . . ,uN ) and the Frechet

derivative of (5.1) at (u1, . . . ,uN ) is invertible, Theorem 4.1 implies that there is an

open neighborhood V of (g1, . . . , gN ) in (C1
B
)N such that if (g10, g20, . . . , gN0) ∈ V ,

then (5.1) with (g10, g20, . . . , gN0) has a unique positive solution.

Let λs = sup{0 ≤ λ ≤ 1| (5.1) with (1 − t)(g1, . . . , gN ) + t( ḡ1, g2, . . . , gN )

has a unique coexistence state for 0 ≤ t ≤ λ}. We need to show that λs = 1.

Suppose λs < 1. From the definition of λs, there is a sequence {λn} such

that λn → λ
−
s

and there is a sequence (u1n,u2n, . . . ,uN n) of the unique positive

solution of (5.1) with (1 − λn)(g1, . . . , gN ) + λn( ḡ1, g2, . . . , gN ). Then by the

elliptic theory, there is (u10,u20, . . . ,uN0) such that (u1n,u2n, . . . ,uN n) converges

to (u10,u20, . . . ,uN0) uniformly and (u10,u20, . . . ,uN0) is a solution of (5.1) with

(1 − λs)(g1, . . . , gN ) + λs( ḡ1, g2, . . . , gN ). We claim that u10,u20, . . . ,uN0 are not

identically zero. Suppose this is false. With no loss of generality, suppose u10 is

identically zero. Let ũ1n =
u1n

‖u1n‖∞
for all n ∈ N . Then













∆ũ1n + ũ1n((1−λn)g1(u1n, . . . ,uN n) +λn ḡ1(u1n, . . . ,uN n)) = 0

∆u2n + u2n g2(u1n, . . . ,uN n) = 0
...

∆uN n + uN n gN (u1n, . . . ,uN n) = 0.

By using the elliptic theory again, ũ1n→ ũ1 uniformly in Ω and













∆ũ1 + ũ1((1−λs)g1(0,u20, . . . ,uN0) + λs ḡ1(0,u20, . . . ,uN0)) = 0

∆u20 + u20 g2(0,u20, . . . ,uN0) = 0
...

∆uN0 + uN0 gN (0,u20, . . . ,uN0) = 0.



Perturbation of A Nonlinear Elliptic Biological Interacting Model with Multiple Species 73

It implies that λ1(−((1− λs)g1(0,u20, . . . ,uN0) + λs ḡ1(0,u20, . . . ,uN0))) = 0. Let

j = 2, . . . , N . If u j0 is identically zero, then u j0 ≡ 0≤ θg j(0,...,0,·,0,...,0). Suppose u j0 is

not identically zero. Then since

∆u j0 + u j0 g j(0, . . . , 0,u j0, 0, . . . , 0)

= ∆u j0 + u j0[g j(u10, . . . ,uN0)− g j(u10, . . . ,uN0) + g j(0, . . . , 0,u j0, 0, . . . , 0)]

= u j0[g j(0, . . . , 0,u j0, 0, . . . , 0)− g j(u10, . . . ,uN0)]

≥ 0,

u j0 is a lower solution of

∆Z + Z g j(0, . . . , 0, Z , 0, . . . , 0) = 0 in Ω, Z = 0 in ∂Ω.

Since any constant which is larger than c j is an upper solution of

∆Z + Z g j(0, . . . , 0, Z , 0, . . . , 0) = 0 in Ω, Z = 0 in ∂Ω,

by the uniqueness of positive solution,

u j0 ≤ θg j(0,...,0,·,0,...,0).

Consequently,

λ1(−((1−λs)g1(0,θg2(0,·,0,...,0), . . . ,θgN (0,...,0,·)) + λs ḡ1(0,θg2(0,·,0,...,0), . . . ,θgN (0,...,0,·))))

≥ λ1(−((1− λs)g1(0,u20, . . . ,uN0) +λs ḡ1(0,u20, . . . ,uN0)))

= 0,

which is a contradiction to our assumption since (1− λs)g1 + λs ḡ1 ∈ Γ.

Thus u10, . . . ,uN0 are not identically zero. We claim that (5.1) has a unique

coexistence state with (1 − λs)(g1, . . . , gN ) + λs( ḡ1, g2, . . . , gN ). In fact, if not,

assume that (ū10, . . . , ¯uN0) 6= (u10, . . . ,uN0) is another coexistence state. By the

Implicit Function Theorem, there exists 0 < ã < λs and very close to λs, (5.1)

with (1 − ã)(g1, . . . , gN ) + ã( ḡ1, g2, . . . , gN ) has a coexistence state very close to

(ū10, . . . , ¯uN0) which means that (5.1) with (1− ã)(g1, . . . , gN ) + ã( ḡ1, g2, . . . , gN )

has more than one coexistence state. This is a contradiction to the definition of

λs. But, since (5.1) with (1 − λs)(g1, . . . , gN ) + λs( ḡ1, g2, . . . , gN ) has a unique

coexistence state and the Frechet derivative is invertible, Theorem 4.1 concluded

that λs can not be as defined. Therefore, for each (g1, . . . , gN ) ∈ Γ, (5.1)

with (g1, . . . , gN ) has a unique coexistence state (u1, . . . ,uN ). Furthermore, by

the assumption, for each (g1, . . . , gN ) ∈ Γ, the Frechet derivative of (5.1) with

(g1, . . . , gN ) at the unique solution (u1, . . . ,uN ) is invertible. Hence, Theorem 4.1

concluded that there is an open neighborhood V(g1 ,...,gN )
of (g1, . . . , gN ) in (C1

B
)N

such that if ( ḡ1, . . . , ḡN ) ∈ V(g1 ,...,gN )
, then (5.1) with ( ḡ1, . . . , ḡN ) has a unique

coexistence state. Let W =
⋃

(g1,...,gN )∈Γ
V(g1 ,...,gN )

. Then W is an open set in (C1
B
)N

such that Γ ⊆ W and for each ( ḡ1, . . . , ḡN ) ∈ W , (5.1) with ( ḡ1, . . . , ḡN ) has a

unique coexistence state.

Apparently, Theorem 5.1 generalizes Theorem 4.1 and consequently, we have

the following result which is actually the main conclusion in this section.
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Corollary 5.2. Suppose

(A) Γ is a closed, bounded, convex region in [C1
B
]N ,

(B) there exist ci > 0 such that for all (g1, . . . , gN ) ∈ Γ, gi(c1, . . . , ci−1, 0, ci+1, . . . , cN )

> λ1, gi(0, . . . , 0,ui , 0, . . . , 0) ≤ 0 for ui ≥ ci , i = 1, . . . , N,

(C) for all (g1, . . . , gN ) ∈ Γ,

2 inf

�

−
∂ gi

∂ x i

�

>

N
∑

j=1, j 6=i

�

sup

�

−
∂ gi

∂ x j

�

+ K sup

�

−
∂ g j

∂ x i

��

for i = 1, . . . , N, where K = sup
i, j,i 6= j

θg j(0,...,0,·,0,...,0)

θgi(c1 ,...,ci−1 ,·,ci+1,...,cN )

.

Then there is an open set W in [C1
B
]N such that Γ ⊆ W and for every (g1, . . . , gN ) ∈

W, (5.1) with (g1, . . . , gN ) has a unique positive solution.

Proof. From θgi(0,...,0,·,0,...,0) ≤ ci for i = 1, . . . , N and the monotonicity, we have

λ1(−gi(θg1(·,0,...,0), . . . ,θgi−1(0,...,0,·,0,...,0), 0,θgi+1 (0,...,0,·,0,...,0), . . . ,θgN (0,...,0,·)))

< λ1(−gi(c1, . . . , ci−1, 0, ci+1, . . . , cN ))

= λ1 − gi(c1, . . . , ci−1, 0, ci+1, . . . , cN )

< 0

for all (g1, . . . , gN ) ∈ Γ, i = 1, . . . , N . By the condition (C) and the Theorem 2.3,

(5.1) has a unique positive solution for all (g1, . . . , gN ) ∈ ∂LΓ. Furthermore, by the

estimate of the solution in the proof of Theorem 2.3, if (u1, . . . ,uN ) is a positive

solution of (5.1) with (g1, . . . , gN ) ∈ Γ, then

2 inf

�

−
∂ gi

∂ x i

�

ui >

N
∑

j=1, j 6=i

�

sup

�

−
∂ gi

∂ x j

�

ui + sup

�

−
∂ g j

∂ x i

�

u j

�

for i = 1, . . . , N . Hence, by the Lemma 4.2, if (u1, . . . ,uN ) is a positive solution of

(5.1) for (g1, . . . , gN ) ∈ Γ, then the Frechet derivative of (5.1) at (u1, . . . ,uN ) is

invertible. Therefore, the theorem follows from the Theorem 5.1.

6. Conclusions

In this paper, our investigation of the effects of perturbations on the general

competition model resulted in the development and proof of Theorem 4.1,

Lemma 4.2, and Corollary 4.3, as detailed above. The three together assert

that given the existence of a unique solution (u1, . . . ,uN ) to the system (4.1),

perturbations of the functions g1, . . . , gN , within a specified neighborhood, will

maintain the existence and uniqueness of the positive steady state. Indeed, our

results specifically outline conditions sufficient to maintain the positive, steady

state solution when the general competition model is perturbed within some

region.

Applying this mathematical result to real world situations, our results establish

that the species residing in the same environment can vary their interactions,
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within certain bounds, and continue to survive together indefinitely at unique

densities. The conditions necessary for coexistence, as described in the theorem,

simply require that members of each species interact strongly with themselves and

weakly with members of the other species.

The research presented in this paper has a number of strengths, which confirm

both the validity and the applicability of the project. First, the mathematical

conditions required in Corollary 4.3 are identical to those required in Theorem 2.3

developed by Kang, Oh, and Lee. However, they used these conditions to prove

the existence and uniqueness of the positive steady state solution for the general

competition model. In contrast, our theorem employs the same conditions to

establish that the existence and uniqueness of this solution is maintained when

the model is perturbed within some neighborhood. Thus, our findings extend and

improve established mathematical theory.

Secondly, perturbations of the general model render its implications more

applicable both mathematically and biologically. Because our theorem extends the

steady state to any function ( ḡ1, . . . , ḡN )within some neighborhood of (g1, . . . , gN ),

results for the general model pertain to a far wider variety of functions. Biologically,

perturbations extend the model’s description to species affected by factors that

vary slightly yet erratically. Thus, the description of competitive interactions given

by the model becomes a closer approximation of real-world population dynamics.

While our research therefore represents a progression in the field, the results

obtained have an important limitation. Theorem 4.1, Lemma 4.2, and Corollary 4.3

establish that a region of perturbation exists within which the coexistence state is

maintained for the general competition model. However, the exact extent of that

region remains unknown.

Therefore, the results presented in this paper may serve as a platform for

research of the question given above. Mathematicians should now attempt to

establish the exact extent of the perturbation region in which coexistence is

maintained for the general model. Such information would prove very useful not

only mathematically but also biologically. Specifically, knowledge of the extent of

the region would imply exactly how far the species can relax and yet continue to

coexist. Thus, the results achieved through our research will enable the field to

continue the development of theory on competitive interaction of populations.
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