\boldsymbol{k}-Tuple Total Domination in Supergeneralized Petersen Graphs

Adel P. Kazemi and Behnaz Pahlavsay

Abstract

Total domination number of a graph without isolated vertex is the minimum cardinality of a total dominating set, that is, a set of vertices such that every vertex of the graph is adjacent to at least one vertex of the set. Henning and Kazemi in [4] extended this definition as follows: for any positive integer k, and any graph G with minimum degree- k, a set D of vertices is a k-tuple total dominating set of G if each vertex of G is adjacent to at least k vertices in D. The k-tuple total domination number $\gamma_{\times k, t}(G)$ of G is the minimum cardinality of a k-tuple total dominating set of G. In this paper, we give some upper bounds for the k-tuple total domination number of the supergeneralized Petersen graphs. Also we calculate the exact amount of this number for some of them.

1. Introduction

Let $G=(V, E)$ be a graph with vertex set V of order n and edge set E. A cycle on n vertices is denoted by C_{n}. The minimum degree (resp., maximum degree) among the vertices of G is denoted by $\delta(G)$ (resp., $\Delta(G)$) or briefly by δ (resp., Δ).

The cartesian product $G \square H$ of two graphs G and H is a graph with the vertex set $V(G \square H)=\{(v, w) \mid v \in V(G), w \in V(H)\}$, and two vertices (v, w) and $\left(v^{\prime}, w^{\prime}\right)$ are adjacent together in $G \square H$ if either $w=w^{\prime}$ and $v v^{\prime} \in E(G)$ or $v=v^{\prime}$ and $w w^{\prime} \in E(H)$.

In [6], Saražin et al defined the supergeneralized Petersen graph that is an extending of generalized Petersen graph as follows: let $m \geq 2, n \geq 3$ be integers and $l_{0}, l_{1}, \ldots, l_{m-1} \in Z_{n}-\{0\}$, where $Z_{n}=\{0,1,2, \ldots, n-1\}$. The vertex set of the graph $P\left(m, n, l_{0}, l_{1}, \ldots, l_{m-1}\right)$ is $Z_{m} \times Z_{n}$ and the edges are defined by $(i, j)(i+1, j)$, $(i, j)\left(i, j+l_{i}\right)$, for all $i \in Z_{m}$ and $j \in Z_{n}$. The edges of type $(i, j)(i+1, j)$ will be called horizontal, while those of type $(i, j)\left(i, j+l_{i}\right)$ vertical. We will call such a graph supergeneralized Petersen graph (SGPG). Note that $\Delta\left(P\left(m, n, l_{0}, l_{1}, \ldots, l_{m-1}\right)\right) \leq 4$, and $P(m, n ; 1, \ldots, 1)$ is the Cartesian product $C_{m} \square C_{n}$ of two cycles; in particular, the skeleton of the 4-dimensional hypercube is $Q_{4}=C_{4} \square C_{4}=P(4,4 ; 1,1,1,1)$.

[^0]To avoid confusion we will pick $0 \leq l_{i} \leq \frac{n}{2}$ as a representative of $\left\{ \pm l_{i}\right\}$. If n is odd, then $P=P\left(m, n ; l_{0}, \ldots, l_{m-1}\right)$ is obviously 4-regular, with the exception $m=2$, when the graph is cubic. The same holds when n is even, if $l_{i}=n / 2$, for every $i \in Z_{m}$. On the contrary, if $l_{i}=n / 2$ for some i, then P is not regular, unless $l_{i}=n / 2$ for all $i \in Z_{n}$. In this last case the graph P is not connected: it is formed by $n / 2$ components each isomorphic to $C_{m} \square K_{2}$.

Domination in graphs is now well studied in graph theory and the literature on this subject has been surveyed and detailed in the two books by Haynes, Hedetniemi, and Slater [2], [3]. A set $S \subseteq V$ is a dominating set if each vertex in $V \backslash S$ is adjacent to at least one vertex of S, and the minimum cardinality of a dominating set is the domination number of G and denoted by $\gamma(G)$. If in the definition of dominating set we replace V with $V \backslash S$, we obtain a total dominating set and similarly the minimum cardinality of a total dominating set is the total domination number of G and denoted by $\gamma_{t}(G)$.

In [4], Henning and Kazemi initiated a study of k-tuple total domination in graphs. A subset S of V is a k-tuple total dominating set of G, abbreviated kTDS, if every vertex $v \in V$ has at least k neighbors in S. The k-tuple total domination number $\gamma_{\times k, t}(G)$ is the minimum cardinality of a kTDS of G. We remark that $\gamma_{t}(G)=\gamma_{\times 1, t}(G)$ and $\gamma_{\times 2, t}(G)$ is the same double total domination number. Obviously $\gamma_{\times k, t}(G) \leq \gamma_{\times(k+1), t}(G)$ for all graphs G with $\delta(G) \geq k+1$.

In this paper, we give some upper bounds for the k-tuple total domination number of the supergeneralized Petersen graphs $P\left(m, n, l_{0}, l_{1}, \ldots, l_{m-1}\right)$, when $l_{0}=l_{1}=\ldots=l_{m-1}$, and $1 \leq k \leq 4$. Also we calculate the exact amount of this number for some of them.

2. Some Bounds

We begin with the following trivial observation about the k-tuple total domination number of a graph. The proof follow readily from the definitions and is omitted.

Observation 2.1. Let G be a graph of order n with $\delta(G) \geq k$, and let S be a k TDS in G. Then
(i) $k+1 \leq \gamma_{\times k, t}(G) \leq n$,
(ii) if G is a spanning subgraph of a graph H, then $\gamma_{\times k, t}(H) \leq \gamma_{\times k, t}(G)$,
(iii) if v is a degree- k vertex in G, then $N_{G}(v) \subseteq S$.

Observation 2.1 (iii) concludes that $\gamma_{\times k, t}(G)=n m$, when $G=P\left(m, n ; l_{0}, \ldots, l_{m-1}\right)$ is 4 -regular and $k=4$. Therefore in continuance, we consider $1 \leq k \leq 3$. Now we give a lower bound that we stated it in [5].

Lemma 2.2. If G is a graph of order n with $\delta(G) \geq k$, then

$$
\gamma_{\times k, t}(G) \geq\lceil k n / \Delta\rceil
$$

Proof. Let $G=(V, E)$. Let S be a $\gamma_{\times k, t}(G)$-set. Each vertex $v \in S$ is adjacent to at least k vertices in S and therefore to at most $d_{G}(v)-k$ vertices outside S. Hence,

$$
|[S, V \backslash S]| \leq \sum_{v \in S}\left(d_{G}(v)-k\right)=\sum_{v \in S} d_{G}(v)-k|S| \leq|S|(\Delta-k)
$$

Since each vertex in $V \backslash S$ is adjacent to at least k vertices in S, we note that

$$
|[S, V \backslash S]| \geq k|V \backslash S|=k(n-|S|)
$$

Thus, $|S|(\Delta-k) \geq k(n-|S|)$, whence $\gamma_{\times k, t}(G)=|S| \geq k n / \Delta$.
Remark 1. Let $P(m, n ; l, l, \ldots, l)$ be a SGPG. Let $n \equiv r(\bmod 4 l)$. If $n \equiv 0$ $(\bmod 4 l)$, then $P(m, n, l, l, \ldots, l)$ is formed by l components each isomorphic to $P\left(m, \frac{n}{l} ; 1,1, \ldots, 1\right)$ with the vertex set $\left\{(i, t l+j) \left\lvert\, 0 \leq t \leq \frac{n}{l}-1\right.,0 \leq i \leq m-1\right\}$, and so

$$
\gamma_{\times k, t}(P(m, n ; l, l, \ldots, l))=l \gamma_{\times k, t}\left(P\left(m, \frac{n}{l} ; 1,1, \ldots, 1\right)\right)
$$

Also if $n \not \equiv 0(\bmod 4 l)$, then G is formed by l^{\prime} components each isomorphic to $P\left(m, \frac{n}{l^{\prime}} ; 1,1, \ldots, 1\right)$ with the vertex set $\left\{\left(i, t l^{\prime}+j\right) \left\lvert\, 0 \leq t \leq \frac{n}{l^{\prime}}-1\right.,0 \leq i \leq m-1\right\}$, when l^{\prime} is the greatest common divisor between n and l, and so

$$
\gamma_{\times k, t}(P(m, n ; l, l, \ldots, l))=l^{\prime} \gamma_{\times k, t}\left(P\left(m, \frac{n}{l^{\prime}}, 1,1, \ldots, 1\right)\right)
$$

Therefore for calculating the k-tuple total domination number of $P(m, n ; l, l, \ldots, l)$ it suffices to calculate the k-tuple total domination number of $P(m, n ; 1,1, \ldots, 1)=$ $C_{m} \square C_{n}$, for every integers m and n. The next three propositions give upper bounds for the k-tuple total domination number of $C_{m} \square C_{n}$, where m and n are two arbitrary integers at least 4. Gravier in [1] gave the upper bound $\frac{(m+2)(n+2)}{4}$ for the total domination number of $C_{m} \square C_{n}$. Next proposition improves this upper bound.

Proposition 2.3. Let $G=C_{m} \square C_{n}$, where $m \geq n \geq 4$, and let s and r be non-negative integers such that $m \equiv s(\bmod 4)$ and $n \equiv r(\bmod 4)$. Then

$$
\gamma_{t}(G) \leq \begin{cases}\frac{m(n+1)}{4} & \text { if }(s, r)=(0,3), \\ \frac{m(n+r)}{4} & \text { if }(s, r) \in\{0\} \times\{0,1,2\}, \\ \frac{(m-s)(n+1)}{4}+\frac{n-1}{2}(s, r) \in\{1,2\} \times\{1\}, \\ \frac{(m-3)(n+1)}{4}+\frac{3(n-1)}{4}+1 & \text { if }(s, r)=(3,1), \\ \frac{(m-2)(n+1)}{4}+n-1 & \text { if }(s, r)=(2,2), \\ \frac{\text { if }(s, r) \in\{3\} \times\{2,3\}}{4}\end{cases}
$$

Proof. Let

$$
\begin{aligned}
& S_{0}=\{(4 i, 4 j),(4 i+3,4 j),(4 i+2,4 j+2),(4 i+1,4 j+2) \\
& \left.\left\lvert\, 0 \leq i \leq \frac{m-s}{4}-1\right.,0 \leq j \leq \frac{n-r}{4}-1\right\}, \\
& S_{1}=\left\{(4 i, n-1),(4 i+3, n-1) \left\lvert\, 0 \leq i \leq \frac{m-s}{4}-1\right.\right\} \text {, } \\
& S_{2}=\left\{(4 i, n-2),(4 i+3, n-2),(4 i+1, n-1),(4 i+2, n-1) \left\lvert\, 0 \leq i \leq \frac{m-s}{4}-1\right.\right\}, \\
& S_{3}=\left\{(4 i, n-3),(4 i+3, n-3),(4 i+1, n-1),(4 i+2, n-1) \left\lvert\, 0 \leq i \leq \frac{m-s}{4}-1\right.\right\}, \\
& S_{1,1}=\left\{(m-1,4 j+2),(m-1,4 j+3) \left\lvert\, 0 \leq j \leq \frac{n-1}{4}-1\right.\right\} \text {, } \\
& S_{2,1}=\left\{(m-1,4 j+2),(m-2,4 j+2) \left\lvert\, 0 \leq j \leq \frac{n-1}{4}-1\right.\right\} \text {, } \\
& S_{3,1}=\{(m-1,4 j),(m-2,4 j+2),(m-3,4 j+2) \mid \\
& \left.0 \leq j \leq \frac{n-1}{4}-1\right\} \cup\{(m-1, n-1)\}, \\
& S_{2,2}=\{(m-1,4 j),(m-1,4 j+3),(m-2,4 j), \\
& \left.(m-2,4 j+3) \left\lvert\, 0 \leq j \leq \frac{n-2}{4}-1\right.\right\} \cup\{(m-2, n-2)\}, \\
& S_{3,2}=\left\{(m-1,4 j),(m-1,4 j+2),(m-2,4 j+2),(m-3,4 j) \left\lvert\, 0 \leq j \leq \frac{n-2}{4}-1\right.\right\} \\
& \cup\{(m-1, n-1),(m-1, n-2),(m-3, n-2)\}, \\
& S_{3,3}=\left\{(m-1,4 j),(m-1,4 j+2),(m-2,4 j+2),(m-3,4 j) \left\lvert\, 0 \leq j \leq \frac{n-3}{4}-1\right.\right\} \\
& \cup\{(m-1, n-1),(m-1, n-3),(m-2, n-1),(m-3, n-3)\} .
\end{aligned}
$$

Since obviously $S_{0} \cup S_{r} \cup S_{s, r}$ when $0<r \leq s \leq 3$, and $S_{0} \cup S_{r}$ when $0 \leq r \leq 3$ and $s=0$, are total dominating sets of G with the wanted cardinality, then our proof will be completed.

Proposition 2.4. Let $G=C_{m} \square C_{n}$, where $m \geq n \geq 4$, and let s and r be non-negative integers such that $m \equiv s(\bmod 4)$ and $n \equiv r(\bmod 4)$. Then

$$
\gamma_{\times 2, t}(G) \leq \begin{cases}\frac{m n}{2} & \text { if }(s, r)=(0,0) \\ \frac{m(n+1)}{2} & \text { if }(s, r) \in\{0\} \times\{1,2,3\}, \\ \frac{(m-1)(n+1)}{2}+n-1 \\ \frac{(m-2)(n+1)}{2}+\frac{3(n-r)}{2} & \text { if }(s, r)=(1,1), \\ \frac{(m-3)(n+1)}{2}+2 n-2 & \text { if }(s, r)=(3,1), \\ \frac{(m-3)(n+1)}{2}+\frac{5 n-6}{2} & \text { if }(s, r)=(3,2), \\ \frac{(m-3)(n+1)}{2}+\frac{9 n-7}{4} & \text { if }(s, r)=(3,3) .\end{cases}
$$

Proof. Let

$$
\begin{aligned}
S_{0}= & \{(4 i, 4 j),(4 i, 4 j+3),(4 i+1,4 j+1),(4 i+1,4 j+2), \\
& (4 i+2,4 j+1),(4 i+2,4 j+2),(4 i+3,4 j), \\
& \left.(4 i+3,4 j+3) \left\lvert\, 0 \leq i \leq \frac{m-s}{4}-1\right.,0 \leq j \leq \frac{n-r}{4}-1\right\}, \\
S_{1}= & \{(i, n-1) \mid 0 \leq i \leq m-s-1\}, \\
S_{2}= & \left\{(4 i, n-2),(4 i+3, n-2) \left\lvert\, 0 \leq i \leq \frac{m-s}{4}-1\right.\right\} \\
& \cup\{(i, n-1) \mid 0 \leq i \leq m-s-1\}, \\
S_{3}= & \left\{(4 i, n-3),(4 i+3, n-3),(4 i+1, n-2),(4 i+2, n-2) \left\lvert\, 0 \leq i \leq \frac{m-s}{4}-1\right.\right\} \\
& \cup\{(i, n-1) \mid 0 \leq i \leq m-s-1\}, \\
S_{1,1}= & \{(m-1, j) \mid 0 \leq j \leq n-2\}, \\
S_{2,1}= & \{(m-1, j) \mid 0 \leq j \leq n-2\} \cup\left\{(m-2,4 j),(m-2,4 j+3) \left\lvert\, 0 \leq j \leq \frac{n-1}{4}-1\right.\right\}, \\
S_{3,1}= & \{(m-2, j) \mid 0 \leq j \leq n-2\} \\
& \cup\left\{(i, 4 j),(i, 4 j+3) \left\lvert\, 0 \leq j \leq \frac{n-1}{4}-1\right., i \in\{m-3, m-1\}\right\}, \\
S_{2,2}= & \{(m-1, j) \mid 0 \leq j \leq n-3\} \\
& \cup\left\{(m-2,4 j),(m-2,4 j+3) \left\lvert\, 0 \leq j \leq \frac{n-2}{4}-1\right.\right\},
\end{aligned}
$$

$$
\begin{aligned}
S_{3,2}=\{ & \left.(m-3,4 j),(m-3,4 j+3) \left\lvert\, 0 \leq j \leq \frac{n-2}{4}-1\right.\right\} \\
& \cup\{(i, j) \mid m-2 \leq i \leq m-1,0 \leq j \leq n-3\} \\
& \cup\{(m-2, n-2),(m-2, n-1)\}, \\
S_{3,3}= & \left\{(m-3,4 j),(m-3,4 j+3) \left\lvert\, 0 \leq j \leq \frac{n-3}{4}-1\right.\right\} \cup \\
& \{(m-3, n-3)\} \cup\{(m-2, j) \mid 0 \leq j \leq n-1\} \\
& \cup\{(m-1, j) \mid 0 \leq j \leq n-1\}-\{(m-1, n-2),(m-1, n-1)\} \\
& \cup\left\{(m-2,4 j+3) \left\lvert\, 0 \leq j \leq \frac{n-3}{4}-1\right.\right\} .
\end{aligned}
$$

Since obviously $S_{0} \cup S_{r} \cup S_{s, r}$ when $0<r \leq s \leq 3$, and $S_{0} \cup S_{r}$ when $0 \leq r \leq 3$ and $s=0$, are total dominating sets of G with the wanted cardinality, then our proof will be completed.

Proposition 2.5. Let $G=C_{m} \square C_{n}$, where $m \geq n \geq 4$, and let s and r be non-negative integers such that $m \equiv s(\bmod 4)$ and $n \equiv r(\bmod 4)$. Then
$\gamma_{\times 3, t}(G) \leq \begin{cases}\frac{m(3 n+1)}{4} & \text { if }(s, r)=(0,3), \\ \frac{m(3 n+r)}{4} & \text { if }(s, r) \in\{0\} \times\{0,1,2\}, \\ \frac{(m-1)(3 n+1)}{4}+\frac{5(n-1)}{4} & \text { if }(s, r)=(1,1), \\ \frac{(m-2)(3 n+1)}{4}+2 n & \text { if }(s, r) \in\{2,3\} \times\{1\}, \\ \frac{(m-3)(3 n+1)}{4}-\frac{n+6}{4}+3 n & \text { if }(s, r)=(3,2), \\ \frac{(m-3)(3 n+1)}{4}-\frac{n+6}{4}+3 n & \text { if }(s, r)=(3,3),\end{cases}$
Proof. Let

$$
\begin{aligned}
S_{0}=\{ & (4 i, 4 j),(4 i+3,4 j),(4 i+2,4 j+2),(4 i+1,4 j+2) \\
& \left.\left\lvert\, 0 \leq i \leq \frac{m-s}{4}-1\right.,0 \leq j \leq \frac{n-r}{4}-1\right\} \cup \\
& \left\{(i, 2 j+1) \left\lvert\, 0 \leq j \leq \frac{n-r}{2}-1\right.,0 \leq i \leq m-s-1\right\}
\end{aligned}
$$

$$
\begin{aligned}
S_{1}= & \{(i, n-1) \mid 0 \leq i \leq m-s-1\}, \\
S_{2}= & \{(i, n-1),(i, n-2) \mid 0 \leq i \leq m-s-1\}, \\
S_{3}= & \{(i, n-1),(i, n-2) \mid 0 \leq i \leq m-s-1\} \cup \\
& \left\{(4 i, n-3),(4 i+3, n-3) \left\lvert\, 0 \leq i \leq \frac{m-s}{4}-1\right.\right\}, \\
S_{1,1}= & \{(m-1, j) \mid 0 \leq j \leq n-2\} \cup\left\{(m-2,4 j+2) \left\lvert\, 0 \leq j \leq \frac{n-1}{4}-1\right.\right\}, \\
S_{2,1}= & \{(m-1, j),(m-2, j) \mid 0 \leq j \leq n-2\}, \\
S_{3,1}= & \{(m-1, j),(m-2, j),(m-3, j) \mid 0 \leq j \leq n-2\}, \\
S_{2,2}= & \{(m-1, j),(m-2, j) \mid 0 \leq j \leq n-1\}, \\
S_{3,2}= & \{(m-1, j),(m-2, j),(m-3, j) \mid 0 \leq j \leq n-1\}- \\
& \left\{(m-2,4 j+1) \left\lvert\, 0 \leq j \leq \frac{n-2}{4}-1\right.\right\} \cup\{(m-3, n-2),(m-2, n-2)\}, \\
S_{3,3}= & \{(m-1, j),(m-2, j),(m-3, j) \mid 0 \leq j \leq n-1\}- \\
& \left\{(m-2,4 j+1) \left\lvert\, 0 \leq j \leq \frac{n-3}{4}-1\right.\right\} \cup\{(m-3, n-3),(m-2, n-3)\} .
\end{aligned}
$$

Since obviously $S_{0} \cup S_{r} \cup S_{s, r}$ when $0<r \leq s \leq 3$, and $S_{0} \cup S_{r}$ when $0 \leq r \leq 3$ and $s=0$, are total dominating sets of G with the wanted cardinality, then our proof will be completed.

By the last three propositions and the previous Remark, we can conclude the next three results.

Theorem 2.6. Let $G=P(m, n ; l, l, \ldots l)$ be a $S G P G$, where $m \geq n \geq 4$, and let s and r be non-negative integers such that $m \equiv s(\bmod 4)$ and $n \equiv 0(\bmod 4 l)$. Then

$$
\gamma_{t}(G) \leq \begin{cases}\frac{m(n+l)}{4} & \text { if }(s, r)=(0,3), \\ \frac{m(n+r l)}{4} & \text { if }(s, r) \in\{0\} \times\{0,1,2\}, \\ \frac{(m-s)(n+l)}{4}+\frac{n-l}{2} & \text { if }(s, r) \in\{1,2\} \times\{1\}, \\ \frac{(m-3)(n+l)}{4}+l & \text { if }(s, r)=(3,1), \\ \frac{(m-2)(n+l)}{4}+n-l & \text { if }(s, r)=(2,2), \\ \frac{(m+1)(n+l)}{4} & \text { if }(s, r) \in\{3\} \times\{2,3\} .\end{cases}
$$

and if $n \not \equiv 0(\bmod 4 l)$, such that l^{\prime} is the greatest common divisor between n and l, then

$$
\gamma_{t}(G) \leq \begin{cases}\frac{m\left(n+l^{\prime}\right)}{4} & \text { if }(s, r)=(0,3), \\ \frac{m\left(n+r l^{\prime}\right)}{4} & \text { if }(s, r) \in\{0\} \times\{0,1,2\}, \\ \frac{(m-s)\left(n+l^{\prime}\right)}{4}+\frac{n-l^{\prime}}{2} & \text { if }(s, r) \in\{1,2\} \times\{1\}, \\ \frac{(m-3)\left(n+l^{\prime}\right)}{4}+l^{\prime} & \text { if }(s, r)=(3,1), \\ \frac{(m-2)\left(n+l^{\prime}\right)}{4}+n-l^{\prime} & \text { if }(s, r)=(2,2), \\ \frac{(m+1)\left(n+l^{\prime}\right)}{4} & \text { if }(s, r) \in\{3\} \times\{2,3\} .\end{cases}
$$

Theorem 2.7. Let $G=P(m, n ; l, l, \ldots l)$ be a $S G P G$, where $m \geq n \geq 4$, and let s and r be non-negative integers such that $m \equiv s(\bmod 4)$ and $n \equiv 0(\bmod 4 l)$. Then

$$
\gamma_{\times 2, t}(G) \leq \begin{cases}\frac{m n}{2} & \text { if }(s, r)=(0,0), \\ \frac{m(n+l)}{2} & \text { if }(s, r) \in\{0\} \times\{1,2,3\}, \\ \frac{(m-1)(n+l)}{2}+n-l \\ \frac{(m-2)(n+l)}{2}+\frac{3(n-r l)}{2} & \text { if }(s, r) \in\{2\} \times\{1,2\}, \\ \frac{(m-3)(n+l)}{2}+2 n-2 l & \text { if }(s, r)=(3,1), \\ \frac{(m-3)(n+l)}{2}+\frac{5 n-6 l}{2} & \text { if }(s, r)=(3,2), \\ \frac{(m-3)(n+l)}{2}+\frac{9 n-7 l}{4} & \text { if }(s, r)=(3,3)\end{cases}
$$

and if $n \not \equiv 0(\bmod 4 l)$, such that l^{\prime} is the greatest common divisor between n and l, then

$$
\gamma_{\times 2, t}(G) \leq \begin{cases}\frac{m n}{2} & \text { if }(s, r)=(0,0), \\ \frac{m\left(n+l^{\prime}\right)}{2} & \text { if }(s, r) \in\{0\} \times\{1,2,3\}, \\ \frac{(m-1)\left(n+l^{\prime}\right)}{2}+n-l^{\prime} & \text { if }(s, r)=(1,1), \\ \frac{(m-3)\left(n+l^{\prime}\right)}{2}+\frac{3\left(n-r l^{\prime}\right)}{2} & \text { if }(s, r) \in\{2\} \times\{1,2\}, \\ \frac{(m-3)\left(n+l^{\prime}\right)}{2}+2 n-2 l^{\prime} & \text { if }(s, r)=(3,1), \\ \frac{(m-3)\left(n+l^{\prime}\right)}{2}+\frac{9 n-7 l^{\prime}}{2} & \text { if }(s, r)=(3,2), \\ \text { if }(s, r)=(3,3) .\end{cases}
$$

Theorem 2.8. Let $G=P(m, n ; l, l, \ldots l)$ be a $S G P G$, where $m \geq n \geq 4$, and let s and r be non-negative integers such that $m \equiv s(\bmod 4)$ and $n \equiv 0(\bmod 4 l)$. Then

$$
\gamma_{\times 3, t}(G) \leq \begin{cases}\frac{m(3 n+l)}{4} & \text { if }(s, r)=(0,3) \\ \frac{m(3 n+r l)}{4} & \text { if }(s, r) \in\{0\} \times\{0,1,2\} \\ \frac{(m-1)(3 n+l)}{4}+\frac{5 n-5 l}{4} & \text { if }(s, r) \in\{2,3\} \times\{1\} \\ \frac{(m-s)(3 n+l)}{4}+s n-s l \\ \frac{(m-2)(3 n+l)}{4}+2 n & \text { if }(s, r)=(3,2) \\ \frac{(m-3)(3 n+l)}{4}-\frac{n+6 l}{4}+3 n \\ \frac{(m-3)(3 n+l)}{4}-\frac{n+6 l}{4}+3 n & \text { if }(s, r)=(3,3)\end{cases}
$$

and if $n \not \equiv 0(\bmod 4 l)$, such that l^{\prime} is the greatest common divisor between n and l, then

$$
\gamma_{\times 3, t}(G) \leq \begin{cases}\frac{m\left(3 n+l^{\prime}\right)}{4} & \text { if }(s, r)=(0,3) \\ \frac{m\left(3 n+r l^{\prime}\right)}{4} & \text { if }(s, r) \in\{0\} \times\{0,1,2\}, \\ \frac{(m-1)\left(3 n+l^{\prime}\right)}{4}+\frac{5 n-5 l^{\prime}}{4} & \text { if }(s, r)=(1,1), r) \in\{2,3\} \times\{1\} \\ \frac{(m-s)\left(3 n+l^{\prime}\right)}{4}+s n-s l^{\prime} & \text { if }(s, r)=(2,2) \\ \frac{(m-2)\left(3 n+l^{\prime}\right)}{4}+2 n & \text { if }(s, r)=(3,2) \\ \frac{(m-3)\left(3 n+l^{\prime}\right)}{4}-\frac{n+6 l^{\prime}}{4}+3 n & \text { if }(s, r)=(3,3)\end{cases}
$$

3. Sharp Bounds

By Lemma 2.2 and the last three theorems and the previous Remark, we can conclude the next two results.

Theorem 3.1. Let $1 \leq k \leq 4$. Let $G=P(m, n ; l, l, \ldots l)$ be a SGPG, where $m \geq n \geq 4$, and let s and r be non-negative integers such that $m \equiv 0(\bmod 4)$ and $n \equiv 0$ $(\bmod 4 l)$. Then

$$
\gamma_{\times k, t}(G)=\frac{k m n}{4}
$$

Since in every cases of the following theorem $P\left(m, n, l_{0}, l_{1}, \ldots, l_{m-1}\right)$ is 3-regular, then Observation 1(iii) follows the next result.

Theorem 3.2. Let $G=P\left(m, n ; l_{0}, l_{1}, \ldots, l_{m-1}\right)$ be a $S G P G$. If either n is odd and $m=2$ or n is even and $l_{i}=\frac{n}{2}$, for at least $m-2$ indices i, then
$\gamma_{\times 3, t}(G)=m n$.

References

[1] S. Gravier, Total domination number of grid graphs, Discrete App. Math. 121 (2002), 119-128.
[2] T.W. Haynes, S.T. Hedetniemi and P.J. Slater (editors), Domination in Graphs: Advanced Topics, Marcel Dekker, Inc., New York, 1998.
[3] T.W. Haynes, S.T. Hedetniemi and P.J. Slater (editors), Fundamentals of Domination in Graphs, Marcel Dekker, Inc., New York, 1998.
[4] M.A. Henning and A.P. Kazemi, k-Tuple total domination in graphs, Discrete App. Math. 158 (2010), 1006-1011.
[5] M.A. Henning and A.P. Kazemi, k-Tuple total domination in cross product graphs, Manuscript.
[6] M.L. Saražin, W. Pacco and A. Previtali, Generalizing the generalized Petersen graphs, Discrete Math., 307 (2007), 534-543.

Adel P. Kazemi, Department of Mathematics, Faculty of Science, University of Mohaghegh Ardabili, Iran.
E-mail: adelpkazemi@yahoo.com
Behnaz Pahlavsay, master student, Department of Mathematics, Faculty of Science, University of Mohaghegh Ardabili, Iran.
E-mail: pahlavsayb@yahoo.com

Received November 11, 2010
Accepted December 30, 2010

[^0]: 2010 Mathematics Subject Classification. 05C69.
 Key words and phrases. k-tuple total domination number; Supergeneralized Petersen graph; Cartesian product graph.

