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1. Introduction
As PDEs of fractional order is an important research topic in modelling for the numerous
processes and systems in various scientific research areas such as mathematical biology,
engineering, physics chemistry etc., the interest of this topic is increasing enormously. Since the
fractional derivative is non-local, the model with fractional derivative for physical problems
turns out to be the best choice to analyze the behaviour of the complex non linear processes.
That is why attracts increasing number of researchers. The derivatives in the sense of Caputo
is one of the most common one since modelling of physical processes with fractional differential
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equations including Caputo derivative is much more better than other models. In literature
increasing number of studies can be found supporting this conclusion [1], [2], [5], [6], [4], [3],[7],
[8], [10],[11], [12], [13], [14]. Moreover, the Caputo derivative of constant is zero which is not
hold by many fractional derivatives. The solutions of fractional PDEs and ODEs are determined
in terms of Mittag-Leffler function.

2. Preliminary Results

In this part, we recall fundamental definition and well known results about fractional derivative
in Caputo sense.

Definition 1. The qth order fractional derivative of u(t) in Caputo sense is defined as

Dqu(t)= 1
Γ(n− q)

∫ t

t0

(t− s)n−q−1u(n)(s)ds, t ∈ [t0, t0 +T], (1)

where u(n)(t) = dnu
dtn , n−1 < q < n. Note that Caputo fractional derivative is equal to integer

order derivative when the order of the derivative is integer.

Definition 2. If 0< q < 1, the qth order Caputo fractional derivative is defined as

Dqu(t)= 1
Γ(1− q)

∫ t

t0

(t− s)−qu′(s)ds, t ∈ [t0, t0 +T]. (2)

The Mittag-Leffler function with two-parameters is defined as

Eα,β(λ(t− t0)α)=
∞∑

k=0

(λ(t− t0)α)k

Γ(αk+β)
, α,β> 0 (3)

including constant λ. Especially, for t0 = 0, α=β= q we have

Eα,β(λtq)=
∞∑

k=0

(λtq)k

Γ(qk+ q)
, q > 0 . (4)

Mittag-Leffler function coincides with exponential function, i.e., E1,1(λt)= eλt for q = 1 (for
details see [9], [15]).

We determined the solution of following time fractional differential equation with periodic
boundary conditions and initial condition in this study:

Dα
t u(x, t)= γ2uxx(x, t), 0<α< 1, −l ≤ x ≤ l, 0≤ t ≤ T, γ ∈ R , (5){
u(−l, t)= u(l, t), t > 0
ux(−l, t)= ux(l, t), t > 0

0≤ t ≤ T, (6)

u(x,0)= f (x), −l ≤ x ≤ l . (7)

3. Main Results
By means of separation of variables method, the solution of problem (5)-(7) is constructed in
analytical form. Thus a solution of problem (5)-(7) have the following form:

u(x, t;α)= X (x)T(t;α), (8)
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where 0≤ x ≤ l, 0≤ t ≤ T .

Plugging (8) into (5) and arranging it, we have
Dα

t (T(t;α))
T(t;α)

= γ2 X ′′(x)
X (x)

=−λ2 . (9)

Equation (9) produces a fractional differential equation with respect to time and a ordinary
differential equation with respect to space. The first ordinary differential equation is obtained
by taking the equation on the right hand side of eq. (9). Hence with boundary conditions (6), we
have the following problem:

X ′′(x)+λ2X (x)= 0 , (10){
X (−l)= X (l)
X ′(−l)= X ′(l)

(11)

The solution of eigenvalue problem (10)-(11) is accomplished by making use of the
exponential function of the following form:

X (x)= erx . (12)

Hence the characteristic equation is computed in the following form:

r2 +λ2 = 0 (13)

Case 1. If λ= 0, the eq. (13) have two coincident roots r1 = r2, leading to the general solution of
the eigenvalue problem (10)-(11) having the following form:

X (x)= k1x+k2 , (14)

X ′(x)= k1 . (15)

The first boundary condition yields

X (−l)=−k1l+k2 = k1l+k2 = X (l)⇒ k1 = 0 . (16)

This result leads to

X (x)= k2 . (17)

Similarly, second boundary condition leads to

X ′(−l)= 0= X ′(l) . (18)

Hence we obtain the solution as follows:

X0(x)= k2 . (19)

Case 2. If λ> 0, the eq. (13) have two distinct real roots r1, r2leading to the general solution of
the eigenvalue problem (13)-(14) having the following form:

X (x)= k1er1x +k2er2x . (20)

The first boundary condition yields

X (−l)= k1e−r1l +k2e−r2l = k1er1l +k2er2l = X (l) , (21)

k1(e−r1l − er1l)+k2(e−r2l − er2l)= 0 . (22)
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Since e−r1l − er1l and e−r2l − er2l are linearly independent the equation (22) is satisfied if
and only if k1 = 0= k2 which implies that X (x)= 0 which means that we don’t have any solution
for λ> 0.

Case 3. If λ< 0, the characteristic equation have two complex conjugate roots leading to the
general solution of the eigenvalue problem (10)-(11) having the following form:

X (x)= c1 cos(λx)+ c2 sin(λx) . (23)

The first boundary condition yields

X (−l)= c1 cos(λl)− c2 sin(λl)= c1 cos(λl)+ c2 sin(λl)= X (l) (24)

which implies that

⇒ 2c2 sin(λl)= 0⇒ c2 = 0 . (25)

Hence the solution becomes

X (x)= c1 cos(λx) , (26)

X ′(x)=−c1λsin(λx) . (27)

Similarly, last boundary condition leads to

X ′(−l)= c1λsin(λl)+ c2λcos(λl)=−c1λsin(λl)+ c2λcos(λl)= X ′(l) (28)

⇒ 2c1λsin(λl)= 0 (29)

which implies that

sin(λl)= 0 . (30)

Let λnl = nπ. Hence the eigenvalues can be represented as follows:

λn = nπ
l

, λ1 <λ2 <λ3 < . . . . (31)

The representation of the solution is obtained as follows:

Xn(x)= cos
(nπx

l

)
, n = 1,2,3, . . . . (32)

The second equation in (9) for every eigenvalue λn is determined as follows:
Dα

t (T(t;α))
T(t;α)

=−γ2λ2
n (33)

which yields the following solution

Tn(t;α)= Eα,1

(
−γ2

(nπ
l

)2
tα

)
, n = 0,1,2,3, . . . . (34)

The solution for every eigenvalue λn is constructed as follows:

un(x, t;α)= Xn(x)Tn(t;α)= cos
(nπx

l

)
Eα,1

(
−γ2

(nπ
l

)2
tα

)
, n = 0,1,2,3, . . . . (35)

Hence the general solution becomes

u(x, t;α)= A0 +
∞∑

n=1
An cos

(nπx
l

)
Eα,1

(
−γ2 w2

n

l2 tα
)
. (36)

Note that boundary conditions and fractional differential equation are satisfied by this solution.
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The coefficients in (36) are obtained by making use of initial condition (7):

u(x,0)= f (x)= A0 +
∞∑

n=1
An cos

(nπx
l

)
. (37)

Through the inner product in L2[−l, l], we obtain the coefficients An, for n = 0,1,2,3, . . . as
follows:

A0 = 1
2l

∫ l

−l
f (x)dx , (38)

An = 1
l

∫ l

−l
f (x)cos

(nπx
l

)
. (39)

4. Illustrative Example

In this part, we first take the following periodic initial boundary value problem:

ut(x, t)= uxx(x, t), −1≤ x ≤ 1, 0≤ t ≤ T{
u(−1, t)= u(1, t), t > 0
ux(−1t, t)= ux(1, t), t > 0

u(x,0)= cos(πx), −1≤ x ≤ 1 (40)

which has the solution in the following form:

u(x, t)= cos(πx) e−π
2t (41)

Now, we take the problem below named as heat-like problem into consideration

Dα
t u(x, t)= uxx(x, t), 0<α< 1, −1≤ x ≤ 1, 0≤ t ≤ T (42){
u(−1, t)= u(1, t), t > 0
ux(−1, t)= ux(1, t), t > 0

(43)

u(x,0)= cos(πx), −1≤ x ≤ 1 (44)

Applying separation of the variables to (42) leads to the equation
Dα

t (T(t;α))
T(t;α)

= X ′′(x)
X (x)

=−λ2 . (45)

Equation (45) produces a fractional differential equation with respect to time and a ordinary
differential equation with respect to space. The first fractional differential equation is obtained
by taking the equation on the right hand side of eq. (45). Hence with boundary conditions (43),
we have the following problem:

X ′(x)+λ2X (x)= 0 , (46){
X (−1)= X (1)
X ′(−1)= X ′(1)

(47)

Hence the eigenvalue problem (46)-(47) yields the following solution:

Xn(x)= cos(nπx), n = 0,1,2,3, . . . . (48)
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The second equation (45) for every λn = nπ leads to the following fractional differential equation:
Dα

t (T(t;α))
T(t;α)

=−λ2
n (49)

which yields the following solution

Tn(t;α)= Eα,1(−(nπ)2tα), n = 0,1,2,3, . . . . (50)

The solution is established for every λn as follows:

un(x, t;α)= Eα,1(−(nπ)2tα)cos(nπx), n = 0,1,2,3, . . . (51)

and hence we have the following sum:

u(x, t;α)= A0 +
∞∑

n=1
AnEα,1(−(nπ)2tα)cos(nπx) . (52)

Plugging t = 0 in to the general solution (52), we have

u(x,0)= A0 +
∞∑

n=1
An cos(nπx) . (53)

We obtain the coefficients An for n = 0,1,2,3, . . . as follows:

A0 = 1
2

∫ 1

−1
cos(πx)dx =

(
1

2π
sin(πx)

)x=1

x=−1
= 0 , (54)

An =
∫ 1

−1
cos(πx)cos(nπx)dx . (55)

For n 6= 1, An = 0 and for n = 1, we get

A1 =
∫ 1

−1
cos2(πx)dx =

∫ 1

−1

(
1
2
+ cos(2πx)

2

)
dx =

(
x
2
+ sin(2πx)

4π

)∣∣∣∣x=1

x=−1
= 1 . (56)

Thus

u(x, t;α)= cos(πx)Eα,1(−π2tα) . (57)

It is important to note that plugging α= 1 in to the solution (57) gives the solution (41) which
confirm the accuracy of the method we apply.

5. Conclusion
In this research, the analytic solution of initial periodic boundary value problem with periodic
boundary conditions, arising in varies applications, is constructed. By making use of separation
of variables the solution is formed in the form of a Fourier series in terms of Mittag-Leffler
function and exponential function.
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