© RGN Publications

Existence of Weak Solutions for A Class of Nonuniformly Nonlinear Elliptic Equations of p-Laplacian Type

G.A. Afrouzi, Z. Naghizadeh, F. Mirzadeh, and M. Amirian

Abstract

The goal of this paper is to study the existence of non-trivial weak solutions for the nonuniformly nonlinear elliptic equation in an unbounded domain. The solution will be obtained in a subspace of the Sobolev space and the proofs rely essentially on a variation of the mountain pass theorem.

1. Introduction

Let Ω be an unbounded domain in $R^{N}(N \geq 3)$ with smooth boundary $\partial \Omega$. We study the existence of non-trivial weak solutions of the following Dirichlet problem.

$$
\begin{cases}-\operatorname{div}\left(h(x)|\nabla u|^{p-2} \nabla u\right)+q(x)|u|^{p-2} u=f(x, u) & \text { in } \Omega \tag{1.1}\\ u=0 & \text { on } \partial \Omega \\ u(x) \rightarrow 0 & \text { as }|x| \rightarrow+\infty\end{cases}
$$

where the functions h and q satisfy the hypotheses $h(x) \in L_{l o c}^{1}(\Omega), h(x) \geq 1$, a.e. $x \in \Omega$ and $q(x) \in C(\Omega)$, there exists $q_{0}>0$ such that

$$
\begin{equation*}
q(x) \geq q_{0}>0, \quad \text { a.e. } x \in \Omega, q(x) \rightarrow+\infty \text { as }|x| \rightarrow \infty . \tag{1.2}
\end{equation*}
$$

We remark that in the case when $h(x)=1$ in Ω and $p=2$, problem (1.1) has been studied in the article [5] and if Ω is a bounded domain it has been studied in the article [6]. We reduce problem (1.1) to a uniform one by using an appropriate weighted Sobolev space. Then applying a variation of the mountain pass theorem in the article [3], [4] we prove that problem (1.1) admits a non-trivial weak solution in a subspace of the Sobolev space $W_{0}^{1, p}(\Omega)$.

In order to state our main theorem, let us introduce the following hypotheses:
$\left(F_{1}\right): f(x, z) \in C^{1}(\Omega \times R, R), f(x, 0)=0$, a.e. $x \in \Omega$.
$\left(F_{2}\right)$: There exists a function $\tau(x) \geq 0$, a.e. $x \in \Omega, \tau(x) \in L^{p_{0}}(\Omega) \cap L^{\infty}(\Omega)$, where $\alpha \in\left(1, \frac{N+p}{N-p}\right), p_{0}=\frac{p N}{p N-(p+1)(N-p)}$ such that

$$
\left|f_{z}^{\prime}(x, z)\right| \leq \tau(x)|z|^{\alpha-1} \text { a.e. } x \in \Omega, \forall z \in R .
$$

[^0]$\left(F_{3}\right)$: There exists a constant $\mu>p$ such that
$$
0<\mu F(x, w) \leq z \cdot f(x, z)
$$
$$
\text { for all } x \in \Omega, z \in R \backslash\{0\} \text {, where } F(x, z)=\int_{0}^{z} f(x, s) d s
$$

For example let $f(x, u)=u^{3}, \mu=4$, and $p=3$. It can be shown that the function f satisfy condition $\left(F_{3}\right)$. We define the norm of $u \in W_{0}^{1, p}(\Omega)$ by

$$
\|u\|_{W_{0}^{1, p}(\Omega)}=\left(\int_{\Omega}|\nabla u|^{p}+|u|^{p} d x\right)^{\frac{1}{p}}
$$

and consider the following subspace

$$
E=\left\{u \in W_{0}^{1, p}\left((\Omega): \int_{\Omega}\left(|\nabla u|^{p}+q(x)|u|^{p}\right) d x\right)^{\frac{1}{p}}<+\infty\right\}
$$

then E is a Banach space with the norm

$$
\|u\|_{E}^{p}=\int_{\Omega}\left(|\nabla u|^{p}+q(x)|u|^{p}\right) d x, \quad u \in W_{0}^{1, p}(\Omega) .
$$

Furthermore, we have

$$
\|u\|_{E} \geq m_{0}^{\frac{1}{2}}\|u\|_{W_{0}^{1, p}(\Omega)} \quad \forall u \in E
$$

where $m_{0}=\min \left(1, q_{0}\right)$ and the continuous embeddings

$$
E \hookrightarrow W_{0}^{1, p}(\Omega) \hookrightarrow L^{q}(\Omega), \quad p \leq q \leq p^{*}=\frac{p N}{N-p}
$$

hold true(see [1] or [5]).
Moreover, the embedding $E \hookrightarrow L^{p}(\Omega)$ is compact (see [2]).

1.1

We now introduce the space

$$
H=\left\{u \in E:\left(\int_{\Omega}\left(h(x)|\nabla u|^{p}+q(x)|u|^{p}\right) d x\right)^{\frac{1}{p}}<\infty\right\}
$$

endowed with the norm

$$
\|u\|_{H}^{p}=\int_{\Omega}\left(h(x)|\nabla u|^{p}+q(x)|u|^{p}\right) d x .
$$

As [4] it can be easily shown that H is a Banach space with the above norm.
Remark 1.1. (i) Since $h(x) \geq 1$, a.e. $x \in \Omega$ we have

$$
\|u\|_{H} \geq\|u\|_{E}, \quad \forall u \in H
$$

(ii) $\forall v \in C_{0}^{\infty}(\Omega), \int_{\Omega}\left(h(x)|\nabla v|^{2}+q(x)|v|^{2}\right) d x<+\infty$.

Hence $C_{0}^{\infty}(\Omega) \subset H$.
Definition 1.2. We say that a function $u \in H$ is a weak solution of (1.1) if

$$
\int_{\Omega}\left(h(x)|\nabla u|^{p-2} \nabla u \nabla v+q(x)|u|^{p-2} u v\right) d x-\int_{\Omega} f(x, u) v d x=0
$$

2. Main result

2.1

Our main result is stated as follows:
Theorem 2.1. Assuming (1.2) and $\left(F_{1}\right)-\left(F_{3}\right)$ are satisfied, then problem (1.1) has at least one nontrivial weak solution in H.

It is clear that equation (1.1) has a variational structure. Let $J: H \rightarrow R$ defined by

$$
\begin{align*}
J(u) & =\frac{1}{p} \int_{\Omega}\left(h(x)|\nabla u|^{p}+q(x)|u|^{p}\right) d x-\int_{\Omega} F(x, u) d x \\
& =T(u)-p(u) \quad \text { for } u \in H \tag{2.1}
\end{align*}
$$

where

$$
\begin{align*}
& T(u)=\frac{1}{p} \int_{\Omega}\left(h(x)|\nabla u|^{p}+q(x)|u|^{p}\right) d x \tag{2.2}\\
& P(u)=\int_{\Omega} F(x, u) d x \tag{2.3}
\end{align*}
$$

Definition 2.2. Let J be a functional from a Banach space Y into R. We say that J is weakly continuously differentiable on Y if and only if the following conditions are satisfied:
(i) J is continuous on Y.
(ii) For any $u \in Y$, there exists a linear map $J^{\prime}(u)$ from Y into R such that

$$
\lim _{t \rightarrow 0} \frac{J(u+t v)-J(u)}{t}=\left\langle J^{\prime}(u), v\right\rangle \quad \forall v \in Y
$$

(iii) For any $v \in Y$, the map $u \rightarrow\left\langle J^{\prime}(u), v\right\rangle$ is continuous on Y.

Proposition 2.3. Under the assumptions of Theorem 2.1, the functional $J(u)$ is weakly continuously differentiable on H and

$$
\left\langle J^{\prime}(u), v\right\rangle=\int_{\Omega}\left(h(x)|\nabla u|^{p-2} \nabla u \nabla v+q(x)|u|^{p-2} u v\right) d x-\int_{\Omega} f(x, u) v d x
$$

for all $u, v \in H$.
Proof. Following exactly the same procedures as in the proof of Proposition 2.2 in article [4].

Proposition 2.4 ([4]). Suppose that $\left\{u_{m}\right\}$ is a sequence weakly converging to u in E. Then we have:
(i) $\lim _{m \rightarrow+\infty} P\left(u_{m}\right)=P(u)$
(ii) $T(u) \leq \liminf _{m \rightarrow+\infty} T\left(u_{m}\right)$

Proposition 2.5 ([4]). The functional $J(u), u \in H$ given by (2.1) satisfies the PalaisSmale condition.

Proof. Let $\left\{u_{m}\right\} \subset H$ be a Palais-Smale sequence, i.e.

$$
\lim _{m \rightarrow+\infty} J\left(u_{m}\right)=c, \quad \lim _{m \rightarrow+\infty}\left\|J^{\prime}\left(u_{m}\right)\right\|_{H^{*}}=0
$$

First we should prove that $\left\{u_{m}\right\}$ is bounded in H. We suppose by contradiction that $\left\{u_{m}\right\}$ is not bounded in H. Then there exists a subsequence $\left\{u_{m_{j}}\right\}$ of $\left\{u_{m}\right\}$ such that

$$
\left\|u_{m_{j}}\right\|_{H} \rightarrow \infty \quad \text { as } \quad j \rightarrow \infty
$$

Observe further that

$$
\begin{aligned}
J\left(u_{m_{j}}\right)-\frac{1}{\mu}\left\langle J^{\prime}\left(u_{m_{j}}\right), u_{m_{j}}\right\rangle & =T\left(u_{m_{j}}\right)-\frac{1}{\mu}\left\langle T^{\prime}\left(u_{m_{j}}\right), u_{m_{j}}\right\rangle+\frac{1}{\mu}\left\langle P^{\prime}\left(u_{m_{j}}\right), u_{m_{j}}\right\rangle-P\left(u_{m_{j}}\right) \\
& \geq\left(\frac{1}{p}-\frac{1}{\mu}\right)\left\|u_{m_{j}}\right\|_{H}^{p}
\end{aligned}
$$

yields

$$
\begin{align*}
J\left(u_{m_{j}}\right) & \geq\left(\frac{1}{p}-\frac{1}{\mu}\right)\left\|u_{m_{j}}\right\|_{H}^{p}+\frac{1}{\mu}\left\langle J^{\prime}\left(u_{m_{j}}\right), u_{m_{j}}\right\rangle \\
& \geq\left(\frac{1}{p}-\frac{1}{\mu}\right)\left\|u_{m_{j}}\right\|_{H}^{p}-\frac{1}{\mu}\left\|J^{\prime}\left(u_{m_{j}}\right)\right\|_{H^{*}}\left\|u_{m_{j}}\right\|_{H} \\
& \geq\left\|u_{m_{j}}\right\|_{H}\left(\gamma_{0}\left\|u_{m_{j}}\right\|_{H}^{p-1}-\frac{1}{\mu}\left\|J^{\prime}\left(u_{m_{j}}\right)\right\|_{H^{*}}\right), \tag{2.4}
\end{align*}
$$

where $\gamma_{0}=\left(\frac{1}{p}-\frac{1}{\mu}\right)>0$.
From (2.4) letting $j \rightarrow \infty$ since $\left\|u_{m_{j}}\right\|_{H} \rightarrow \infty$ and $\left\|J^{\prime}\left(u_{m_{j}}\right)\right\|_{H^{*}} \rightarrow 0$ we deduce $J\left(u_{m_{j}}\right) \rightarrow \infty$ which yields a contradiction. Hence, $\left\{\left\|u_{m}\right\|_{H}\right\}$ is bounded.

Since $\left\|u_{m}\right\|_{E} \leq\left\|u_{m}\right\|_{H},\left\{u_{m}\right\}$ is also bounded in E. Therefore, there exists a subsequence $\left\{u_{m_{k}}\right\}$ of $\left\{u_{m}\right\}$ converging weakly to u in E. By Proposition 2.4 we have

$$
T(u) \leq \liminf _{k \rightarrow \infty} T\left(u_{m_{k}}\right)=\lim _{k \rightarrow \infty}\left[P\left(u_{m_{k}}\right)+J\left(u_{m_{k}}\right)\right]=P(u)+c<\infty
$$

Therefore $u \in H$.
Furthermore, since the embedding $E \hookrightarrow L^{p^{*}}(\Omega)$ is continuous, $\left\{u_{m_{k}}\right\}$ is weakly convergent to u in $L^{p^{*}}(\Omega)$. Then it is clear that the sequence $\left\{\left|u_{m_{k}}\right|^{p-1} u_{m_{k}}\right\}$ converges weakly to $|u|^{p-1} u$ in $L^{\frac{p^{*}}{p}}(\Omega)$ by

$$
\langle k(u), w\rangle=\int \tau(x) u w d x, \quad w \in L^{\frac{p^{*}}{P}}(\Omega)
$$

We remark $k(u)$ is linear and continuous provided that $\tau(x) \in L^{p_{0}}(\Omega), u \in L^{p^{*}}(\Omega)$, $w \in L^{\frac{p^{*}}{p}}(\Omega)$ and $\frac{1}{p_{0}}+\frac{1}{p^{*}}+\frac{p}{p^{*}}=1$.

By $\left(F_{1}\right)$ and $\left(F_{2}\right)$ we obtain

$$
\lim _{k \rightarrow \infty} \int_{\Omega} f\left(x, u_{m_{k}}\right)\left(u_{m_{k}}-u\right) d x=0
$$

i.e.

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left\langle P^{\prime}\left(u_{m_{k}}\right), u_{m_{k}}-u\right\rangle=0 \tag{2.5}
\end{equation*}
$$

It follows from (2.5) that

$$
\lim _{k \rightarrow \infty}\left\langle T^{\prime}\left(u_{m_{k}}\right), u_{m_{k}}-u\right\rangle=\lim _{k \rightarrow \infty}\left\langle J^{\prime}\left(u_{m_{k}}\right), u_{m_{k}}-u\right\rangle+\lim _{k \rightarrow \infty}\left\langle P^{\prime}\left(u_{m_{k}}\right), u_{m_{k}}-u\right\rangle=0
$$

Moreover, since T is convex the following inequality holds true

$$
T(u)-T\left(u_{m_{k}}\right) \geq\left\langle T^{\prime}\left(u_{m_{k}}\right), u-u_{m_{k}}\right\rangle
$$

Letting $k \rightarrow \infty$ we obtain that

$$
T(u)-\lim _{k \rightarrow \infty} T\left(u_{m_{k}}\right)=\lim _{k \rightarrow \infty}\left[T(u)-T\left(u_{m_{k}}\right)\right] \geq \lim _{k \rightarrow \infty}\left\langle T^{\prime}\left(u_{m_{k}}\right), u-u_{m_{k}}\right\rangle=0
$$

Thus

$$
\begin{equation*}
T(u) \geq \lim _{k \rightarrow \infty} T\left(u_{m_{k}}\right) \tag{2.6}
\end{equation*}
$$

On the other hand, by (ii) of Proposition 2.4 we have

$$
\begin{equation*}
T(u) \leq \liminf _{k \rightarrow \infty} T\left(u_{m_{k}}\right) \tag{2.7}
\end{equation*}
$$

Combining (2.6) and (2.7) we get $\lim _{k \rightarrow \infty} T\left(u_{m_{k}}\right)=T(u)$. Now, we shall prove that $u_{m_{k}} \rightarrow u$ strongly in H. i.e.

$$
\lim _{k \rightarrow \infty}\left\|u_{m_{k}}-u\right\|_{H}=0
$$

Indeed, we suppose by contradiction that $\left\{u_{m_{k}}\right\}$ does not converge strongly to $u \in H$. Then there exist a constant $\epsilon_{0}>0$ and a subsequence $\left\{u_{m_{k_{j}}}\right\}$ of $\left\{u_{m_{k}}\right\}$ such that

$$
\left\|u_{m_{k_{j}}}-u\right\|_{H} \geq \epsilon_{0}, \quad \forall j=1,2, \ldots
$$

Recalling the equality

$$
\left|\frac{\alpha+\beta}{2}\right|^{2}+\left|\frac{\alpha-\beta}{2}\right|^{2}=\frac{1}{2}\left(\alpha^{2}+\beta^{2}\right), \quad \forall \alpha, \beta \in R
$$

we deduce that for any $j=1,2, \ldots$

$$
\begin{equation*}
\frac{1}{2} T\left(u_{m_{k_{j}}}\right)+\frac{1}{2} T(u)-T\left(\frac{u_{m_{k_{j}}}+u}{2}\right)=k_{1}\left\|u_{m_{k_{j}}}-u\right\|_{H}^{p} \geq k_{1} \epsilon_{0}^{p} \quad k_{1}>0 \tag{2.8}
\end{equation*}
$$

Again instead of the remark that since $\left\{\frac{u_{m_{k_{j}}}+u}{2}\right\}$ converges weakly to u in E, by (ii) of Proposition 2.4 we have

$$
T(u) \leq \liminf _{j \rightarrow \infty} T\left(\frac{u_{m_{k_{j}}}+u}{2}\right)
$$

Then from (2.8), letting $j \rightarrow \infty$ we obtain

$$
T(u)-\liminf _{j \rightarrow \infty} T\left(\frac{u_{m_{k_{j}}}+u}{2}\right) \geq k_{1} \epsilon_{0}^{p}
$$

hence $0 \geq k_{1} \epsilon_{0}^{p}$, which is a contradiction. There fore $\left\{u_{m_{k}}\right\}$ converges strongly to u in H. Thus, the functional J satisfiesthe Palais-Smale condition on H. The proof of Proposition 2.5 is complete.

We remark that the critical points of the functional J correspond to the weak solutions of problem (1.1). To apply the Mountain pass theorem we shall prove the following proposition which shows that the functional J has the Mountain pass geometry.

Proposition 2.6. (i) There exist $\alpha>0$ and $r>0$ such that $J(u) \geq \alpha>0$, for all $u \in H$ and $\|u\|_{H}=r$.
(ii) There exists $u_{0} \in H$ such that $\left\|u_{0}\right\|_{H}>r$ and $J\left(u_{0}\right)<0$.

Proof. From $\left(F_{2}\right),\left(F_{3}\right)$ there exist a constant $c_{1}>0$ such that

$$
\begin{equation*}
F(x, z)<c_{1}|z|^{\alpha+1} \quad \forall z \in R \text { a.e. } x \in \Omega . \tag{2.9}
\end{equation*}
$$

Remark that $p<\alpha+1<p^{*}$, we have

$$
\begin{align*}
& \lim _{|z| \rightarrow 0} \frac{F(x, z)}{|z|^{p}}=0 \tag{2.10}\\
& \lim _{|z| \rightarrow \infty} \frac{F(x, z)}{|z|^{p^{*}}}=0 \tag{2.11}
\end{align*}
$$

Then for a constant $\epsilon>0$ there exist two positive constants δ_{1} and $\delta_{2}\left(\delta_{1}<\delta_{2}\right)$ such that

$$
\begin{aligned}
& F(x, z)<\epsilon|z|^{p} \text { for all } z \text { with }|z|<\delta_{1} \\
& F(x, z)<\epsilon|z|^{p^{*}} \text { for all } z \text { with }|z|>\delta_{2}
\end{aligned}
$$

On the other hand, from (2.9) there exists a constant $c_{2}>0$ such that

$$
F(x, z)<c_{2} \text { for all } z \text { with }|z| \in\left[\delta_{1}, \delta_{2}\right] .
$$

Then we obtain that for all $\epsilon>0$ there exists a constant $c_{\epsilon}>0$ such that

$$
F(x, z) \leq \epsilon|z|^{p}+c_{\epsilon}|z|^{p^{*}}
$$

for all $z \in R$ and a.e. $x \in \Omega$.
We deduce from (2.12), condition (1.2) and the embedding $E \hookrightarrow L^{p^{*}}(\Omega)$ that

$$
J(u)=\frac{1}{p} \int_{\Omega}\left(h(x)|\nabla u|^{p}+q(x)|u|^{p}\right) d x-\int_{\Omega} F(x, u) d x
$$

$$
\begin{aligned}
& \geq \frac{1}{p}\|u\|_{H}^{p}-\epsilon \int_{\Omega}|u|^{p} d x-c_{\epsilon} \int_{\Omega}|u|^{p^{*}} d x \\
& \geq \frac{1}{P}\|u\|_{H}^{p}-\frac{\epsilon}{q_{0}} \int_{\Omega} q(x)|u|^{p} d x-c_{\epsilon} \int_{\Omega}|u|^{p^{*}} d x \\
& \geq\left(\frac{1}{p}-\frac{\epsilon}{q_{0}}\right)\|u\|_{H}^{p}-\bar{c}_{\epsilon}\|u\|_{H}^{p^{*}}
\end{aligned}
$$

where \bar{c}_{ϵ} is a positive constant.
Thus, for all $\epsilon>0$ there exists a constant $\bar{c}_{\epsilon}>0$ such that

$$
J(u) \geq\left(\frac{1}{p}-\frac{\epsilon}{q_{0}}-\bar{c}_{\epsilon}\|u\|_{H}^{p^{*}-p}\right)\|u\|_{H}^{p} \quad \forall u \in H
$$

Therefore, letting $\epsilon \in\left(0, \frac{q_{0}}{2}\right)$ and for $r>0$ small enough such that

$$
\left(\frac{1}{p}-\frac{\epsilon}{q_{0}}-\bar{c}_{\epsilon} r^{p^{*}-p}\right)>0
$$

We obtain that for all $u \in H$ with $\|u\|_{H}=r$.

$$
J(u) \geq\left(\frac{1}{p}-\frac{\epsilon}{q_{0}}-\bar{c}_{\epsilon} r^{p^{*}-p}\right) r^{p}=\alpha>0
$$

(ii) By condition $\left(F_{3}\right)$ we have

$$
F(x, z)>\lambda|z|^{\mu} \quad \text { for all }|z| \geq \eta \text { and a.e. } x \in \Omega
$$

where λ and η are two positive constants.
Now let $\varphi_{0}(x) \in C_{0}^{\infty}(\Omega)$ be such that

$$
\operatorname{meas}\left\{x \in \Omega:\left|\varphi_{0}(x)\right| \geq \eta\right\}>0
$$

Then for $t>0$ we have

$$
\begin{align*}
J\left(t \varphi_{0}\right) & =\frac{t^{p}}{p} \int_{\Omega}\left(h(x)\left|\nabla \varphi_{0}\right|^{p}+q(x)\left|\varphi_{0}\right|^{p}\right) d x-\int_{\Omega} F\left(x, t \varphi_{0}\right) d x \\
& =\frac{t^{p}}{p}\left\|\varphi_{0}\right\|_{H}^{p}-\int_{x \in \Omega:\left|\varphi_{0}(x)\right| \geq \eta} F\left(x, t \varphi_{0}\right) d x-\int_{x \in \Omega:\left|\varphi_{0}(x)\right| \leq \eta} F\left(x, t \varphi_{0}\right) d x \\
& \leq \frac{t^{p}}{p}\left\|\varphi_{0}\right\|_{H}^{p}-t^{\mu} \lambda \int_{x \in \Omega:\left|\varphi_{0}(x)\right| \geq \eta}\left|\varphi_{0}\right|^{\mu} d x . \tag{2.12}
\end{align*}
$$

Since $\mu>p$ the right-hand side of (2.13) converges to $-\infty$ when $t \rightarrow+\infty$. Then there exists $t_{0}>0$ such that $\left\|t_{0} \varphi_{0}\right\|_{H}>r$ and $J\left(t_{0} \varphi_{0}\right)<0$. Set $u_{0}=t_{0} \varphi_{0}$ we have $J\left(u_{0}\right)<0$ and $\left\|u_{0}\right\|_{H}>r$. The proof of Proposition 2.6 is complete.

Proposition 2.7.

(i) $J(0)=0$
(ii) The acceptable set

$$
G=\left\{\gamma \in C([0,1], H): \gamma(0)=0, \gamma(1)=u_{0}\right\} \text { is not empty. }
$$

Proof. (i) It follows from the definition of functional J that $J(0)=0$.
(ii) Let $\gamma(t)=t u_{0}$ where u_{0} is given in Proposition 2.6. It is clear that $\gamma(t) \in$ $C([0,1], H)$ and $\gamma(0)=0, \gamma(1)=u_{0}$. Hence $\gamma \in G$ and G is not empty.

Proof of Theorem 2.1. By Propositions 2.3-2.7, all assumptions of the variation of the mountain pass theorem introduced in [3] are satisfied. Therefore, there exists $\hat{u} \in H$ such that

$$
0<\alpha \leq J(\hat{u})=\inf \{\max J(\gamma([0,1])): \gamma \in G\}
$$

and

$$
\left\langle J^{\prime}(\hat{u}), v\right\rangle=0 \quad \text { for all } \quad v \in H
$$

i.e. \hat{u} is a weak solution of problem (1.1). The solution \hat{u} is not trivial since $J(\hat{u})>0=J(0)$.Theorem 2.1 is completely proved.

Acknowledgment. The authors would like to thank the referee, for his valuable suggestions and helpful comments on this work.

References

[1] A. Abakhti-Mchachti and J. Fleckinger-Pellé, Existence of positive solutions for noncooperative semilinear elliptic systems defined on an unbounded domain, Pitman Research Notes in Maths. 266 (1992), 92-106.
[2] D.G. Costa, On a class of elliptic systems in Rn, Electron. J. Differential Equations 7 (1994), 1-14.
[3] D.M. Duc, Nonlinear singular elliptic equations, in Mathematical Analysis and Applications, J. London. Math. Soc. 40 (2) (1989), 420-440.
[4] H.Q. Toan and N.T. Chung, Existence of weak solutions for a class of nonuniformly nonlinear elliptic equations in unbounded domains, Nonlinear Anal. 70 (2009), 39873996.
[5] M. Mihilescu, Existence and multiplicity of weak solutions for a class of degenerate nonlinear elliptic equations, Boud. Value Probl. Art.ID, 41295 (2006), 1-17.
[6] N.T. Vu and D.M. Duc, Nonuniformly elliptic equations of p-Laplacian type, Nonlinear Anal. 61 (2005), 1483-1495.
G.A. Afrouzi, University of Mazandaran, Babolsar, Iran.

E-mail: afrouzi@umz.ac.ir
Z. Naghizadeh, University of Mazandaran, Babolsar, Iran.

E-mail: z.naghizadeh@umz.ac.ir
F. Mirzadeh, Islamic Azad University, Ghaemshahr Branch, P.O.Box 163, Ghaemshahr, Iran.
M. Amirian, Islamic Azad University, Ghaemshahr Branch, P.O.Box 163, Ghaemshahr, Iran.

Received March 1, 2010
Accepted June 22, 2011

[^0]: 2010 Mathematics Subject Classification. 35J60, 35B30, 35B40.
 Key words and phrases. Elliptic equations; Mountain pass theorem; Weak solution.

