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1. Introduction
Let X := {x1, x2, . . .} be a countably infinite set of symbols called variables. We refer to these
variables as letters, to X as an alphabet, and refer to the set Xn =: {x1, x2, . . . , xn} as an n-element
alphabet. Let ( f i)i∈I be an indexed set which is disjoint from X . Each f i is called an ni-ary
operation symbol, where ni ≥ 1 is a natural number. Let τ be a function which assigns to every
f i the number ni as its arity. The function τ, on the values of τ written as (ni)i∈I is called a type.

An n-ary term of type τ is defined inductively as follows:

(i) The variables x1, . . . , xn are n-ary terms.

(ii) If t1, . . . , tni are n-ary terms then f i(t1, . . . , tni ) is an n-ary term.
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We denote by Wτ(Xn) the smallest set which contains x1, . . . , xn and is closed under finite
number of applications of (ii). Then the set Wτ(X ) :=⋃∞

n=1 Wτ(Xn) is the set of all terms of type
τ. An equation of type τ is a pair (s, t) where s and t are from Wτ(X ); such pairs are commonly
written as s ≈ t. An equation s ≈ t is an identity of an algebra A, denoted by A |= s ≈ t if sA = tA

where sA and tA are the corresponding term functions on A. A generalized hypersubstitution of
type τ is a mapping σ : { f i | i ∈ I}→Wτ(X ) which does not necessarily preserve arities.

We denote the set of all generalized hypersubstitutions of type τ by HypG(τ). We define first
the concept of a generalized superposition of terms Sm : Wτ(X )m+1 → Wτ(X ) by the following
steps:

for any term t ∈Wτ(X ),

(i) if t = x j , 1≤ j ≤ m, then Sm(x j, t1, . . . , tm) := t j ,
(ii) if t = x j , m < j ∈N, then Sm(x j, t1, . . . , tm) := x j ,

(iii) if t = f i(s1, . . . , sni ), then Sm(t, t1, . . . , tm) := f i(Sm(s1, t1, . . . , tm), . . . ,Sm(sni , t1, . . . , tm)).

Then the generalized hypersubstitution σ can be extended to a mapping σ̂ : Wτ(X ) → Wτ(X )
defined by the following steps:

(i) σ̂[x] := x ∈ X ,
(ii) σ̂[ f i(t1, . . . , tni )] := Sni (σ( f i), σ̂[t1], . . . , σ̂[tni ]), for any ni-ary operation symbol f i where

σ̂[t j], 1≤ j ≤ ni are already defined.

In 2000, Leeratanavalee and Denecke [5] introduced a binary operation ◦G on HypG(τ) by
σ1 ◦Gσ2 := σ̂1 ◦σ2 where ◦ denotes the usual composition of mappings and σ1,σ2 ∈HypG(τ). Let
σid be the hypersubstitution mapping which maps each ni-ary operation symbol f i to the term
f i(x1, . . . , xni ). It turns out that (HypG(τ);◦G ,σid) is a monoid and the monoid (H yp(τ);◦h,σid)
of all arity preserving hypersubstitutions of type τ forms a submonoid of (HypG(τ);◦G ,σid).

If M is a submonoid of HypG(τ) and V is a variety, then an identity s ≈ t of V is called
an M-strong hyperidentity of V if σ̂[s] ≈ σ̂[t] is an identity of V for every σ ∈ M. A variety
V is called M-strongly solid if every identity satisfies an M-strong hyperidentity. In case of
M =HypG(τ) we will call strong hyperidentity and strongly solid, respectively.

Let A = (A; ( f A
i )i∈I) be an algebra of type τ and σ ∈ HypG(τ). We let σ[A] := (A; (σ( f i)A)i∈I)

which is called generalized derived algebra of type τ, where σ( f i)A is the term operation induced
by the term σ( f i) on the algebra A.

2. V -Proper Generalized Hypersubstitutions and Normal Forms
Let V be a variety of algebras of type τ then to test whether an identity s ≈ t of V is a strong
hyperidentity of V , our definition requires that we check, for each generalized hypersubstitution
σ ∈ HypG(τ) that σ̂[s] ≈ σ̂[t] is an identity of V . In practice we restrict our testing to certain
special generalized hypersubstitutions σ, those which correspond to V -normal form generalized
hypersubstitutions.

Definition 2.1 ([6]). Let V be a variety of algebras of type τ. A generalized hypersubstitution
σ of type τ is called a V -proper generalized hypersubstitution if for every s ≈ t ∈ IdV one gets
σ̂[s]≈ σ̂[t] ∈ IdV .
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Definition 2.2 ([7]). Let V be a variety of algebras of type τ. Two generalized hypersubstitutions
σ1 and σ2 of type τ are called V-generalized equivalent if σ1( f i)≈σ2( f i) are identities in V for
all i ∈ I . In this case we write σ1 ∼VG σ2.

Theorem 2.3 ([7]). Let V be a variety of algebras of type τ, and let σ1,σ2 ∈HypG(τ). Then the
following statements are equivalent:

(i) σ1 ∼VG σ2.

(ii) For all t ∈Wτ(X ), the equations σ̂1[t]≈ σ̂2[t] are identities in V .

(iii) For all A ∈V , σ1[A]=σ2[A] where σk[A]= (A; (σk( f i)A)i∈I), for k = 1,2.

Proposition 2.4 ([7]). Let V be a variety of algebras of type τ. Then the following statements
hold:

(i) For all σ1,σ2 ∈HypG(τ), if σ1 ∼VG σ2 then σ1 is a V-proper generalized hypersubstitution
iff σ2 is a V-proper generalized hypersubstitution.

(ii) For all s, t ∈ Wτ(X ) and for all σ1,σ2 ∈ HypG(τ), if σ1 ∼VG σ2 then σ̂1[s] ≈ σ̂1[t] is an
identity in V iff σ̂2[s]≈ σ̂2[t] is an identity in V .

The relation ∼VG is an equivalence relation on HypG(τ), but it is not necessarily a congruence
relation. Since ∼VG is not always a congruence, the structure obtained by factoring HypG(τ) by
this relation is not necessarily going to be a monoid. Recall that the quotient set gives a monoid
if and only if the equivalence relation used to factor it is a congruence. We factorize HypG(τ) by
∼VG and consider the submonoid PG(V ) of HypG(τ) is the union of equivalence classes of the
relation ∼VG . This may also be done for a submonoid M of HypG(τ) and the relation ∼VG |M .

Lemma 2.5 ([7]). Let M be a submonoid of HypG(τ) and let V be a variety of type τ. Then the
monoid PG(V )∩M is the union of all equivalence classes of the restricted relation ∼VG |M .

Definition 2.6 ([7]). Let M be a monoid of generalized hypersubstitutions of type τ, and let
V be a variety of type τ. Let φ be a choice function which chooses from M one generalized
hypersubstitution from each equivalence class of the relation ∼VG |M , and let NM

φ (V ) be the set
of generalized hypersubstitutions which are chosen. Thus NM

φ (V ) is a set of distinguished
generalized hypersubstitutions from M, which we might call V-normal form generalized
hypersubstitutions. We will say that the variety V is NM

φ (V )-strongly solid if for every identity
s ≈ t ∈ IdV and for every generalized hypersubstitution σ ∈ NM

φ (V ), σ̂[s]≈ σ̂[t] ∈ IdV .

Theorem 2.7 ([7]). Let M be a monoid of generalized hypersubstitutions of type τ and let V
be a variety of type τ. For any choice function φ,V is M-strongly solid if and only if V is
NM
φ (V )-strongly solid.

Definition 2.8 ([8]). A generalized hypersubstitution σ ∈ HypG(τ) is called a regular
generalized hypersubstitution if for every i ∈ I , each of the variables x1, x2, . . . , xni occur in
σ̂[ f i(x1, x2, . . . , xni )].
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Let RegG(τ) be the set of all regular generalized hypersubstitutions of type τ. Then we have
RegG(τ)⊆HypG(τ).

Proposition 2.9 ([8]). For any type τ, RegG(τ) is a submonoid of HypG(τ).

3. Tree Transformations defined by Regular Generalized
Hypersubstitution

In 2014, Busaman [3] studied concept of tree transformations defined by the regular
hypersubstitution σ and then we generalize this concept to tree transformations defined by the
regular generalized hypersubstitution. In this section we study some properties of VRG-tree
transformations as the following definition.

Definition 3.1. Let σ be a regular generalized hypersubstitution. Then TRG
σ := {(t, σ̂[t]) | t ∈

Wτ(X )} is called a tree transformation defined by the regular generalized hypersubstitution σ.

We denote by TRG
σ1

◦TRG
σ2

the composition of the tree transformation TRG
σ1

and TRG
σ2

. Let
TRegG (τ) = {TRG

σ |σ ∈RegG(τ)} and prove that

Theorem 3.2. (TRegG (τ);◦,TRG
σid

) is a monoid which is isomorphic to the monoid RegG(τ) of all
regular generalized hypersubstitutions of type τ.

Proof. Let σ ∈ RegG(τ). Then we define a mapping ϕ : RegG(τ) → TRegG (τ) by σ 7→ TRG
σ . It

clearly ϕ is well-define and surjective. Next, we will show that ϕ(σ1 ◦G σ2)=ϕ(σ1)◦ϕ(σ2), i.e.
TRG
σ1

◦TRG
σ2

= TRG
σ1◦Gσ2

, we have

(s, t) ∈ TRG
σ1

◦TRG
σ2

⇔∃ p((s, p) ∈ TRG
σ2

and (p, t) ∈ TRG
σ1

)

⇔ p = σ̂2[s] and t = σ̂1[p]

⇔ t = σ̂1[σ̂2[s]]

⇔ t = (σ1 ◦G σ2)̂[t]

⇔ (s, t) ∈ TRG
σ1◦Gσ2

.

This shows that TRegG (τ) is closed under composition and that ϕ preserves the operation. Next,
we will show ϕ is one-to-one. Assume that TRG

σ1
= TRG

σ2
. Then for all t ∈Wτ(X ) we get σ̂1[t]= σ̂2[t].

Thus for all operation f i we have σ̂1[ f i(x1, . . . , xni )]=σ1( f i)=σ2( f i)= σ̂2[ f i(x1, . . . , xni )] and then
σ1 =σ2. Finally, since TRG

σ1
◦TRG

σ2
= TRG

σ1◦Gσ2
, the tree transformation TRG

σid
is an identity element

with respect to the composition ◦.

Theorem 3.3. Let σ ∈HypG(τ) be a regular generalized hypersubstitution of type τ and let TRG
σ

be the corresponding tree transformation. Then
(i) TRG

σ is transitive iff σ is idempotent,

(ii) TRG
σ is reflexive iff σ=σid ,

(iii) TRG
σ is symmetric iff σ◦G σ=σid .
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Proof. (i): Assume that σ is idempotent. Then TRG
σ◦Gσ

= TRG
σ ◦TRG

σ = TRG
σ by Theorem 2.2 and

so TRG
σ is transitive. Conversely, assume that TRG

σ is transitive, we have TRG
σ ◦TRG

σ ⊆ TRG
σ so

that TRG
σ◦Gσ

⊆ TRG
σ . Then (t, (σ◦G σ)̂[t]) ∈ TRG

σ◦Gσ
⇒ (t, (σ◦G σ)̂[t]) ∈ TRG

σ ⇒ (σ◦G σ)̂[t]= σ̂[t], for all
t ∈Wτ(X ). So σ is idempotent.

(ii): Assume that TRG
σ is reflexive, so TRG

σid
=4Wτ(X ) ⊆ TRG

σ . Therefore (t, t) ∈ TRG
σ for all t ∈Wτ(X )

and then σ̂[t] = t for all t ∈ Wτ(X ) so we set σ = σid . Conversely, assume that σ = σid . Then
TRG
σid

= {(t, σ̂[t]) | t ∈Wτ(X )}= {(t, t) | t ∈Wτ(X )}=4Wτ(X ) and TRG
σ is reflexive.

(iii): Assume that TRG
σ is symmetric. Then for all t ∈Wτ(X ) we have (t, σ̂[t]) ∈ TRG

σ ⇒ (σ̂[t], t) ∈
TRG
σ . Therefore t = σ̂[σ̂[t]] and σ̂id[t] = (σ ◦G σ)̂[t] for all t ∈ Wτ(X ) and we have σ ◦G σ = σid .

Conversely, assume that σ ◦G σ = σid . Then we have TRG
σ◦Gσ

= Tσ ◦TRG
σ = TRG

σid
. This means

TRG
σ = (TRG

σ )−1, thus TRG
σ is symmetric.

A tree transformation is called injective if σ is injective, i.e., if σ̂[t] = σ̂[t́] then t = t́, and
TRG
σ is called surjective if σ is surjective. Then we consider σ̂[Wτ(X )]= {t́ | ∃ t ∈Wτ(X ), σ̂[t]= t́}

is a subset of Wτ(X ). Therefore, we consider TRG
σ as a relation between Wτ(X ) and σ̂[Wτ(X )],

so that TRG
σ ⊆Wτ(X )× σ̂[Wτ(X )]. We notice that TRG

σ ◦ (TRG
σ )−1 =4Wτ(X ) and (TRG

σ )−1 ◦TRG
σ =

{(t, t́) | σ̂[t]= σ̂[t́]}= kerσ. Then, we have

Proposition 3.4. Let σ ∈ HypG(τ) be a regular generalized hypersubstitution of type τ and
let TRG

σ = Wτ× σ̂[Wτ(X )] be the corresponding tree transformation. Then TRG
σ is bijective iff

kerσ=4Wτ(X ) = TRG
σid

.

Proof. TRG
σ is bijective iff TRG

σ ◦ (TRG
σ )−1 = (TRG

σ )−1 ◦TRG
σ = TRG

σid
=4Wτ(X ).

As an example now we consider the variety Rec := Mod{x1 (x2x3) ≈ (x1x2) x3 ≈ x1x3} is the
nontrivial strongly solid variety of semigroup. By using Theorem 2.7 together with the identities
of Rec, we can restrict our checking to the following regular generalized hypersubstitutions σt

where t ∈ {x1x2}∪ {x2x1}∪{
x1x2x j | j > 2

}∪{
x2x1x j | j > 2

}∪ {x1x2x1}∪ {x2x1x2}∪{
x jx1x2 | j > 2

}∪{
x jx2x1 | j > 2

}∪{
x jx1x2xk | j,k > 2

}∪{
x jx2x1xk | j,k > 2

}
. Here σt for a term t ∈W(2)(X ) denotes

the hypersubstitution which maps the binary operation symbol to the term t. The multiplication
of ◦G is described by the following tables.

◦G σx1x2 σx2x1 σx1x2x j σx2x1x j σx1x2x1 σx2x1x2

σx1x2 σx1x2 σx2x1 σx1x2x j σx2x1x j σx1x2x1 σx2x1x2

σx2x1 σx2x1 σx1x2 σx j x2x1 σx j x1x2 σx1x2x1 σx2x1x2

σx1x2x j σx1x2x j σx2x1x j σx1x2x j σx2x1x j σx1x2x j σx2x1x j

σx2x1x j σx2x1x j σx1x2x j σx j x2x1x j σx j x1x2x j σx1x2x j σx2x1x j

σx1x2x1 σx1x2x1 σx2x1x2 σx1x2x1 σx2x1x2 σx1x2x1 σx2x1x2

σx2x1x2 σx2x1x2 σx1x2x1 σx j x1x2x j σx j x1x2x j σx1x2x1 σx2x1x2

σx j x1x2 σx j x1x2 σx j x2x1 σx j x1x2x j σx j x2x1x j σx j x2x1 σx j x1x2

σx j x2x1 σx j x2x1 σx j x1x2 σx j x2x1 σx j x1x2 σx j x2x1 σx j x1x2

σx j x1x2xk σx j x1x2xk σx j x2x1xk σx j x1x2xk σx j x2x1xk σx j x1x2xk σx j x2x1xk

σx j x2x1xk σx j x2x1xk σx j x1x2xk σx j x2x1xk σx j x1x2xk σx j x2x1xk σx j x1x2xk
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◦G σx j x1x2 σx j x2x1 σx j x1x2xk σx j x2x1xk

σx1x2 σx j x1x2 σx j x2x1 σx j x1x2xk σx j x2x1xk

σx2x1 σx2x1x j σx1x2x j σx j x2x1xk σx j x1x2xk

σx1x2x j σx j x1x2xk σx j x2x1xk σx j x1x2xk σx j x2x1xk

σx2x1x j σx2x1x j σx1x2x j σxkx2x1x j σxkx1x2x j

σx1x2x1 σx j x1x2x j σx j x2x1x j σx j x1x2x j σx j x2x1x j

σx2x1x2 σx2x1x2 σx1x2x1 σxkx2x1xk σxkx1x2xk

σx j x1x2 σx j x1x2 σx j x2x1 σx j x1x2xk σx j x2x1xk

σx j x2x1 σx j x2x1x j σx j x1x2x j σx j x2x1x j σx j x1x2x j

σx j x1x2xk σx j x1x2xk σx j x2x1xk σx j x1x2xk σx j x2x1xk

σx j x2x1xk σx j x2x1xk σx j x1x2xk σx j x2x1xk σx j x1x2xk

Now, we want to describe the tree transformations corresponding to these regular generalized
hypersubstitutions. By leftmost(t) and by rightmost(t) we denote the first and the last variable,
respectively, of the term t.

TRec
σx1x2

= {
(t, t) | t ∈W(2)(X )

}=∆W(2)(X ),

TRec
σx2x1

= {
(t, t) | t ∈W(2)(X )

}=∆W(2)(X ),

TRec
σx1x2x j

= {
(t, t′) | t′ ∈W(2)(X ) and rightmost(t′)= x j

}
∪{

(t, t′) | t′ ∈W(2)(X ) and rightmost(t′)= leftmost(t′)= x j
}
,

TRec
σx2x1x j

= {
(t, t′) | t′ ∈W(2)(X ) and rightmost(t′)= x j

}
∪{

(t, t′) | t′ ∈W(2)(X ) and rightmost(t′)= leftmost(t′)= x j
}

∪{
(t, t′) | t′ ∈W(2)(X ) and rightmost(t′)= x j and leftmost(t′)= xk where j 6= k

}
,

TRec
σx1x2x1

= {
(t, t′) | t′ ∈W(2)(X ) and t′ = x1x2x1 or t′ = x2x1x2

}
∪{

(t, t′) | t′ ∈W(2)(X ) and rightmost(t′)= leftmost(t′)= x j
}

TRec
σx2x1x2

= {
(t, t′) | t′ ∈W(2)(X ) and t′ = x1x2x1 or t′ = x2x1x2

}
∪{

(t, t′) | t′ ∈W(2)(X ) and rightmost(t′)= leftmost(t′)= x j
}
,

TRec
σx j x1x2

= {
(t, t′) | t′ ∈W(2)(X ) and leftmost(t′)= x j

}
∪{

(t, t′) | t′ ∈W(2)(X ) and rightmost(t′)= leftmost(t′)= x j
}

∪{
(t, t′) | t′ ∈W(2)(X ) and rightmost(t′)= x j and leftmost(t′)= xk where j 6= k

}
,

TRec
σx j x2x1

= {
(t, t′) | t′ ∈W(2)(X ) and leftmost(t′)= x j

}
∪{

(t, t′) | t′ ∈W(2)(X ) and rightmost(t′)= leftmost(t′)= x j
}
,

TRec
σx j x1x2 xk

= {
(t, t′) | t′ ∈W(2)(X ) and rightmost(t′)= x j and leftmost(t′)= xk where j 6= k

}
TRec
σx j x2x1 xk

= {
(t, t′) | t′ ∈W(2)(X ) and rightmost(t′)= x j and leftmost(t′)= xk where j 6= k

}
.
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4. Properties of VRG-tree Transformations
Definition 4.1. Let V be a variety of algebras of type τ and σ ∈ RegG(τ). The set TV RG

σ :=
{(t, t́)|t, t́ ∈ Wτ(X ) and σ̂[t] ≈ t́ ∈ IdV } is called the VRG-tree transformation defined by the
regular generalized hypersubstitution σ.

Definition 4.2 ([9]). Let V be a variety of algebras of type τ. Two regular generalized
hypersubstitutions σ1,σ2 of type τ are called V-regular generalized equivalent if and only
if σ1( f i)≈σ2( f i) ∈ IdV for all i ∈ I . In this case we write σ1 ∼V RG σ2.

Theorem 4.3 ([9]). Let V be a variety of algebras of type τ, and let σ1,σ2 ∈ RegG(τ). Then the
following are equivalent:

(i) σ1 ∼V RG σ2.

(ii) For every t ∈Wτ(X ), the equation σ̂1[t]≈ σ̂2[t] ∈ IdV .

(iii) For every A ∈V , σ1[A]=σ2[A] where σk[A]= (A; (σk( f i)A)i∈I);k = 1,2.

Proposition 4.4 ([9]). Let V be a variety of algebras of type τ. Then the following hold:
(i) For all σ1,σ2 ∈ RegG(τ), if σ1 ∼V RG σ2 then σ1 is a V -proper regular generalized

hypersubstitution iff σ2 is a V -proper regular generalized hypersubstitution.

(ii) For all s, t ∈Wτ(X ) and for all σ1,σ2 ∈RegG(τ), if σ1 ∼V RG σ2 then σ̂1[s]≈ σ̂1[t] ∈ IdV iff
σ̂2[s]≈ σ̂2[t] ∈ IdV .

Proposition 4.5. Let σ1,σ2 ∈ RegG(τ) and let V be a variety of type τ. Then σ1 ∼V RG σ2 iff
TV RG
σ1

= TV RG
σ2

.

Proof. (⇒) We have to show that TV RG
σ1

= TV RG
σ2

. Let σ1 ∼V RG σ2 and (t, t́) ∈ TV RG
σ1

. Then by
Theorem 4.3(ii) we have σ̂1[t] ≈ σ̂2[t] ∈ IdV , for all t ∈ Wτ(X ) and σ̂1[t] ≈ t́ ∈ IdV . Therefore
(t, t́) ∈ TV RG

σ2
and thus TV RG

σ1
⊆ TV RG

σ2
. Let σ1 ∼V RG σ2 and (t, t́) ∈ TV RG

σ2
. Then by Theorem 4.3(ii)

we have σ̂1[t] ≈ σ̂2[t] ∈ IdV , for all t ∈ Wτ(X ) and σ̂2[t] ≈ t́ ∈ IdV . Therefore (t, t́) ∈ TV RG
σ1

and
thus TV RG

σ2
⊆ TV RG

σ1
. Thus we conclude that TV RG

σ2
= TV RG

σ1
.

(⇐) Assume that TV RG
σ1

= TV RG
σ2

. Let t, t́ ∈Wτ(X ) and (t, t́) ∈ TV RG
σ1

= TV RG
σ2

. Then σ1[t] ≈ t́ and
σ2[t]≈ t́ and so we get σ1[t]≈σ2[t] for all t ∈Wτ(X ). Then σ1( f i)≈σ2( f i) ∈ IdV for all i ∈ I and
thus σ1 ∼V RG σ2.

Definition 4.6 ([9]). Let V be a variety of algebras of type τ. A regular generalized
hypersubstitution σ ∈ RegG(τ) is called a V-proper regular generalized hypersubstitution if
for every s ≈ t ∈ IdV one gets σ̂[s]≈ σ̂[t] ∈ IdV .

We denote PRG(V ) for the set of all V -proper regular generalized hypersubstitutions of
type τ.

Proposition 4.7 ([9]). The algebra (PRG(V );◦G ,σid) is a submonoid of (RegG(τ);◦G ,σid).

Lemma 4.8. If V is a variety of algebras of type τ, σ1 ∈ PRG(V ), and σ2 ∈ RegG(τ) then
TV RG
σ1

◦TV RG
σ2

= TV RG
σ1◦Gσ2

.
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Proof. Let (t, t′) ∈ TV RG
σ1

◦ TV RG
σ2

. Then there is a term t′′ such that (t, t′′) ∈ TV RG
σ2

and
(t′′, t′) ∈ TV RG

σ1
. Then σ̂2[t] ≈ t′′ ∈ IdV and σ̂1[t′′] ≈ t′ ∈ IdV . Since σ1 ∈ PRG(V ), so σ̂1[σ̂2[t]] ≈

σ̂1[t′′] ≈ t′ ∈ IdV . Thus (σ1 ◦G σ2)̂[t] ≈ t′ ∈ IdV and then (t, t′) ∈ TV RG
σ1◦Gσ2

. This shows that
TV RG
σ1

◦TV RG
σ2

⊆ TV RG
σ1◦Gσ2

.

Let (t, t′) ∈ TV RG
σ1◦Gσ2

. Thus (σ1 ◦G σ2)̂[t]≈ t′ ∈ IdV and so σ̂1[σ̂2[t]]≈ t′ ∈ IdV with t′′ ≈ σ̂2[t] ∈
IdV we have σ̂1[t′′] ≈ t′ ∈ IdV because σ1 ∈ PRG(V ). Then (t, t′′) ∈ TV RG

σ2
, (t′′, t′) ∈ TV RG

σ2
and

therefore (t, t′) ∈ TV RG
σ1

◦TV RG
σ2

. This shows that TV RG
σ1◦Gσ2

⊆ TV RG
σ1

◦TV RG
σ2

.

We consider the set TPRG (V ) := {TV RG
σ |σ ∈ PRG(V )} and we may take the relation product as

a binary relation with TV RG
σid

:= {(t, t́) | t ≈ t́ ∈ IdV }= IdV as identity element. Then we get

Proposition 4.9. The monoid (TPRG (V );◦,TV RG
σid

) is a homomorphic image of (PRG(V );◦G ,σid).

Proof. Let ϕ : PRG(V )→TPRG (V ) be defined by ϕ(σ) := TV RG
σ . It is clear that σ is well defined.

Then by Lemma 4.8, we have ϕ(σ1 ◦G σ2)= TV RG
σ1◦Gσ2

= TV RG
σ1

◦TV RG
σ2

=ϕ(σ1)◦ϕ(σ2). So we get ϕ
is a homomorphism and ϕ(σid)= TV RG

σid
.

Definition 4.10 ([9]). Let V be a variety of algebras of type τ. A regular generalized
hypersubstitution σ ∈ RegG(τ) is called an inner regular generalized hypersubstitution of a
variety V if for every i ∈ I ,

σ̂[ f i(x1, . . . , xni )]≈ f i(x1, . . . , xni ) ∈ IdV .

Let P0
RG(V ) be the set of all inner regular generalized hypersubstitutions of V .

By Definition 4.10, P0
RG(V ) is the equivalence class [σid]∼V RG .

Proposition 4.11 ([9]). The algebra (P0
RG(V );◦G ,σid) is a submonoid of (PRG(V );◦G ,σid).

Proposition 4.12. Let V be a variety of algebras of type τ and let σ ∈ RegG(τ). Then TV RG
σ is

reflexive iff σ ∈ P0
RG(V ).

Proof. Assume that TV RG
σ is reflexive. Then σ̂[t]≈ t ∈ IdV for all t ∈Wτ(X ). This is valid also

for t = f i(x1, . . . , xni ), i ∈ I and then σ̂[ f i(x1, . . . , xni )]≈ f i(x1, . . . , xni ) ∈ IdV , i.e. σ̂[ f i(x1, . . . , xni )]≈
σ̂id[ f i(x1, . . . , xni )] ∈ IdV and σ ∼V RG σid . Therefore, σ ∈ P0

RG(V ). Conversely, assume that
σ ∈ P0

RG(V ). Then σ∼V RG σid and by Theorem 4.3 we have σ̂[t]≈ t ∈ IdV for all t ∈Wτ(X ). But
this means (t, t) ∈ TV RG

σ and TV RG
σ is reflexive.

Definition 4.13. Let σ ∈RegG(τ) and V be a variety of algebras of type τ. The set

kerG
Vσ := {(t, t′)|t, t′ ∈Wτ(X ) and σ̂[t]≈ σ̂[t′] ∈ IdV }

will be called the kernel of σ with respect to V or semantical kernel of σ.

Proposition 4.14. If σ1 ∼V RG σ2, then kerG
Vσ1 = kerG

Vσ2.

Proof. By Proposition 4.4.
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Proposition 4.15. Let V be a variety of algebras of type τ and let σ ∈ RegG(τ). Then
kerG

Vσ⊆ kerG
V (ρ ◦G σ) for all ρ ∈ PRG(V ).

Proof. For any (t, t′) ∈ kerG
Vσ we have σ̂[t]≈ σ̂[t′] ∈ IdV . Since ρ is a V-proper regular generalized

hypersubstitution this implies that ρ̂[σ̂[t]]≈ ρ̂[σ̂[t′]] ∈ IdV and so (t, t′) ∈ kerG
V (ρ ◦G σ).

Proposition 4.16. Let V be a variety of algebras of type τ and let σ ∈ RegG(τ). Then
(TV RG

σ )−1 ◦TV RG
σ = kerG

Vσ.

Proof. We have

(t, t′′) ∈ (TV RG
σ )−1 ◦TV RG

σ ⇔∃ t′((t, t′) ∈ TV RG
σ and (t′, t′′) ∈ (TV RG

σ )−1)

⇔∃ t′((t, t′) ∈ TV RG
σ and (t′′, t′) ∈ TV RG

σ )

⇔∃ t′(σ̂[t]≈ t′ ∈ IdV and σ̂[t′′]≈ t′ ∈ IdV )

⇔ σ̂[t]≈ σ̂[t′′] ∈ IdV

⇔ (t, t′′) ∈ kerG
Vσ.

Theorem 4.17. For any V-proper generalized hypersubstitution σ, the following are equivalent:
(i) TV RG

σ is transitive.

(ii) σ◦G σ∼V RG σ.

(iii) TV RG
σ ⊆ kerG

Vσ.

Proof. (i)⇒(ii): Assume that TV RG
σ is transitive. Then TV RG

σ ◦TV RG
σ ⊆ TV RG

σ and therefore
TV RG
σ ◦ TV RG

σ = TV RG
σ◦Gσ

⊆ TV RG
σ . This means, if (t, t′) ∈ TV RG

σ◦Gσ
, i.e. (σ ◦G σ)̂[t] ≈ t′ ∈ IdV then

(t, t′) ∈ TV RG
σ i.e. σ̂[t] ≈ t′ ∈ IdV . But (σ ◦G σ)̂[t] ≈ σ̂[t] ∈ IdV for all t ∈ Wτ(X ) and so

σ◦G σ∼V RG σ by Theorem 4.3.

(ii)⇒(i): Assume that σ◦G σ∼V RG σ. By Lemma 4.8, we get TV RG
σ◦Gσ

= TV RG
σ and TV RG

σ ◦TV RG
σ =

TV RG
σ◦Gσ

= TV RG
σ and so TV RG

σ is transitive.

(ii)⇒(iii): Assume that σ ◦G σ ∼V RG σ and let (t, t′) ∈ TV RG
σ , i.e. σ̂[t] ≈ t′ ∈ IdV . Then

σ̂[σ̂[t]] ≈ σ̂[t′] ∈ IdV since σ is V-proper regular generalized hypersubstitution and we have
(σ◦Gσ)̂[t]≈ σ̂[t′] ∈ IdV . From (σ◦Gσ)̂[t]≈ σ̂[t′] ∈ IdV we obtain that σ̂[t]≈ σ̂[t′] ∈ IdV and then
(t, t′) ∈ kerG

Vσ. This shows that TV RG
σ ⊆ kerG

Vσ.

(iii)⇒(ii): Assume that TV RG
σ ⊆ kerG

Vσ. Then (t, t′) ∈ TV RG
σ , i.e. σ̂[t] ≈ t′ ∈ IdV and since σ is

V-proper regular generalized hypersubstitution we get σ̂[σ̂[t]]≈ σ̂[t′] ∈ IdV . Since (t, t′) ∈ kerG
Vσ

we have σ̂[t]≈ σ̂[t′] ∈ IdV and then σ̂[σ̂[t]]≈ σ̂[t] ∈ IdV , i.e. σ◦G σ∼V RG σ.

Theorem 4.18. Let V be a variety of algebras of type τ. Then:
(i) TV RG

σ is surjective iff TV RG
σ ◦ (TV RG

σ )−1 = IdV .

(ii) TV RG
σ is injective iff (TV RG

σ )−1 ◦TV RG
σ = kerG

Vσ=4Wτ(X ).

(iii) TV RG
σ is bijective iff TV RG

σ ◦ (TV RG
σ )−1 = (TV RG

σ )−1 ◦TV RG
σ =4Wτ(X ).

Proof. (i): Assume that TV RG
σ is surjective. We will show that TV RG

σ ◦ (TV RG
σ )−1 = IdV . Let
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(t, t′) ∈ IdV . Assume that t ≈ t́ ∈ IdV . Since TV RG
σ is surjective, for any t′ there is a term

t′′ such that (t′′, t′) ∈ TV RG
σ , i.e. σ̂[t′′] ≈ t′ ∈ IdV . Then we have also σ̂[t′′] ≈ t ∈ IdV and

(t′′, t) ∈ TV RG
σ , i.e. (t, t′′) ∈ (TV RG

σ )−1. Let (t, t′) ∈ TV RG
σ ◦ (TV RG

σ )−1. Thus IdV ⊆ TV
σ ◦ (TV RG

σ )−1.
Since (t, t′) ∈ TV RG

σ ◦ (TV RG
σ )−1, there exists t′′ such that (t, t′′) ∈ (TV RG

σ )−1 and (t′′, t′) ∈ TV RG
σ .

Then we have (t′′, t) ∈ TV RG
σ and (t′′, t′) ∈ TV RG

σ , i.e. σ̂[t′′] ≈ t ∈ IdV and σ̂[t′′] ≈ t′ ∈ IdV . So
t ≈ t′ ∈ IdV . Conversely, we assume that TV RG

σ ◦ (TV RG
σ )−1 = IdV . Let t ∈Wτ(X ). We will show

that there is a term t′ ∈ Wτ(X ) with σ̂[t′] ≈ t ∈ IdV . From t ≈ t ∈ IdV = TV RG
σ ◦ (TV RG

σ )−1 we
obtain existence of t′ ∈ Wτ(X ) such that (t′, t) ∈ TV RG

σ , but this means σ̂[t] ≈ t ∈ IdV and this
shows that TV RG

σ surjective.

(ii): TV RG
σ ◦ (TV RG

σ )−1 = kerG
Vσ is clear. Assume that TV RG

σ is injective and let (t, t′) ∈ (TV RG
σ )−1 ◦

TV RG
σ . Then we have (t, t′′) ∈ TV RG

σ and (t′, t′′) ∈ TV RG
σ so t = t′. We get (t, t′) ∈4Wτ(X ) and thus

(TV RG
σ )−1 ◦TV RG

σ ⊆4Wτ(X ). Assume that (t, t′) ∈4Wτ(X ). Then t = t′ and σ̂[t] = σ̂[t′] := t′′. Thus
σ̂[t]≈ t′′ ∈ IdV and σ̂[t′]≈ t′′ ∈ IdV and (t, t′) ∈ TV

σ , (t′, t′′) ∈ TV RG
σ . Then (t, t′) ∈ (TV RG

σ )−1◦TV RG
σ ,

i.e. 4Wτ(X ) ⊆ (TV RG
σ )−1 ◦TV RG

σ . This gives 4Wτ(X ) = (TV RG
σ )−1 ◦TV RG

σ . Conversely, assume that
4Wτ(X ) = (TV RG

σ )−1◦TV RG
σ and that (t, t′′), (t′, t′′) ∈ TV RG

σ . Then (t, t′) ∈ (TV RG
σ )−1◦TV RG

σ =4Wτ(X ),
i.e. t = t′ and therefore TV RG

σ is injective.

(iii): Assume that TV RG
σ is bijective. Since σ is V-proper regular generalized hypersubstitution,

then by (i) and (ii): TV RG
σ ◦ (TV RG

σ )−1 = IdV ⊆ kerG
Vσ= (TV RG

σ )−1 ◦TV RG
σ =4Wτ(X ) and therefore

IdV =4Wτ(X ) and TV RG
σ ◦(TV RG

σ )−1 = (TV RG
σ )−1◦TV RG

σ =4Wτ(X ). Conversely, TV RG
σ ◦(TV RG

σ )−1 =
(TV RG

σ )−1 ◦TV RG
σ = 4Wτ(X ), then by (ii) TV RG

σ is injective. Therefore, TV RG
σ = {(t, t′) | σ̂ ≈ t′ ∈

IdV }= IdV =4Wτ(X ).

5. Conclusion
We use the extension of regular generalized hypersubstitutions to define tree transformations
which is useful for abstract data type specifications in Theoretical Computer Science and this
work we study some algebraic properties of tree transformations.
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