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An Original Speech Around the Difficult Part of the Berge

Conjecture (Solved by Chudnovsky, Robertson, Seymour

and Thomas)

Ikorong Anouk Gilbert Nemron

Abstract. The Berge conjecture was proven by Chudnovsky, Robertson, Seymour

and Thomas in a paper of 146 pages long (see [1]); in this manuscript, via an

original speech and simple results, we rigorously simplify the understanding of

this solved conjecture. It will appear that what Chudnovsky, Robertson, Seymour

and Thomas were proved in their paper of 146 pages long, was an analytic

conjecture stated in a very small class of graphs.

We say that a graph B is berge (see [4]) if every graph B′ ∈ {B, B̄} does not

contain an induced cycle of odd length ≥ 5 (B̄ is the complementary graph of B).

A graph G is perfect if every induced subgraph G′ of G satisfies χ(G′) = ω(G′),

where χ(G′) is the chromatic number of G′ and ω(G′) is the clique number of

G′. The Berge conjecture states that a graph H is perfect if and only if H is

berge. Indeed, the difficult part of the Berge conjecture consists to show that

χ(B) = ω(B) for every berge graph B (Briefly, the difficult part of the Berge

conjecture will be called the Berge problem (see [4])). The Hadwiger conjecture

(see [4]), states that every graph G satisfies χ(G) ≤ η(G) (where η(G) is the

hadwiger number of G (i.e. the maximum of p such that G is contractible to the

complete graph Kp)). In [4], it is presented an original investigation around the

Hadwiger conjecture and the Berge problem. More precisely, in [4], via two simple

Theorems, it is shown that the Hadwiger conjecture and the Berge problem are

curiously resembling, so resembling that they seem identical (indeed, they can be

restated in ways that resemble each other). In this paper, via only original speech

and results, we rigorously simplify the understanding of the Berge problem.

Moreover, it will appear that what Chudnovsky, Robertson, Seymour and Thomas

were proved in their manuscript of 146 pages long, was an analytic conjecture

stated in a very small class of graphs.
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1. Preliminary and Definitions

Recall that in a graph G = [V (G), E(G),χ(G),ω(G),α(G), Ḡ], V (G) is the set of

vertices, E(G) is the set of edges, χ(G) is the chromatic number (i.e. the smallest

number of colors needed to color all vertices of G such that two adjacent vertices

do not receive the same color), ω(G) is the clique number of G (i.e. the size of a

largest clique of G. Recall (see [2] for instance), that a graph F is a subgraph of G,

if V (F) ⊆ V (G) and E(F)⊆ E(G). We say that a graph F is an induced subgraph of

G by Z , if F is a subgraph of G such that V (F) = Z , Z ⊆ V (G), and two vertices

of F are adjacent in F , if and only if they are adjacent in G. For X ⊆ V (G), G \ X

denotes the subgraph of G induced by V (G) \ X . A clique of G is a subgraph of G

that is complete; such a subgraph is necessarily an induced subgraph (recall that

a graph K is complete if every pair of vertices of K is an edge of K), α(G) is the

stability number of G (i.e. the size of a largest stable set of G. Recall that a stable

set of a graph G is a set of vertices of G that induces a subgraph with no edges),

and Ḡ is the complementary graph of G (recall Ḡ is the complementary graph of

G, if V (G) = V (Ḡ) and two vertices are adjacent in G if and only if they are not

adjacent in Ḡ). We say that a graph B is berge, if every B′ ∈ {B, B̄} does not contain

an induced cycle of odd length ≥ 5. A graph G is perfect if every induced subgraph

G′ of G satisfies χ(G′) = ω(G′). The Berge conjecture states that a graph H is

perfect if and only if H is berge. Indeed the difficult part of the Berge conjecture

consists to show that χ(B) = ω(B) for every berge graph B. Briefly, the difficult

part of the Berge conjecture will be called the Berge problem. It is easy to see:

Assertion 1.1. Let G be a graph and F be a subgraph of G. Then ω(G)≤ χ(G) and

χ(F)≤ χ(G).

That being so, this paper is divided into two simple sections. In Section 2, we

introduce a graph parameter denoted by β (β is called the berge index), and, using

this graph parameter, we recall the original version of the Berge problem known in

[4]. After recalling the original version of the Berge problem, we introduce uniform

graphs and relative subgraphs (uniform graphs and relative subgraphs are crucial

for the proof of the result which rigorously simplify the understanding of the Berge

problem, and the resulting analytic conjecture), and we give some elementary

properties of these graphs. In Section 3, we define another graph parameter

denoted by b (the graph parameter b is called the berge caliber, and is related

to the berge index), and using the parameter b, we give the strong version of the

Berge problem. This strong version is determinant and crucial for the simplification

and the understanding of the Berge problem. Moreover, using this strong version

of the Berge problem, it will immediately follow that what Chudnovsky, Robertson,

Seymour and Thomas were proved in their manuscript of 146 pages long, was an

analytic conjecture stated in a very small class of graphs. In this paper, every graph

is finite, is simple and undirected.
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2. The Berge Index of A Graph, The Original Version of The Berge Problem,

Uniform Graphs and Relative Subgraphs

In this section, we introduce some important definitions that are not standard.

In particular, we present a graph parameter called the berge index (and denoted by

β), and we use it to recall the original version of the Berge problem known in [4].

Definition 2.1. We recall (see [4]) that a graph G is a true pal of a graph F , if F is

a subgraph of G and χ(F) = χ(G). trpl(F) denotes the set of all true pals of F , and

Ω denotes the set of all complete multipartite graphs ((i.e. the set of all graphs Q

which are complete ω(Q)-partite (Recall that a graph Q is a complete ω(Q)-partite

graph, if there exists a partition Ξ(Q) = {Y1, . . . , Yω(Q)} of V (Q) into ω(Q) stable

sets, such that x ∈ Yj ∈ Ξ(Q), y ∈ Yk ∈ Ξ(Q) and j 6= k,⇒ x and y are adjacent in

Q))). It is immediate that χ(Q) =ω(Q) for all Q ∈ Ω. It is also immediate that, for

every Q ∈ Ω, the partition Ξ(Q) = {Y1, . . . , Yω(Q)} of V (Q) into ω(Q) stable sets is

canonical, and every Y ∈ Ξ(Q) is a maximal stable set of Q.

So G ∈ trpl(F) means G is a true pal of F , and Q ∈ Ω means Q is a

completeω(Q)-partite graph (We recall (see above) that Ω is the set of all complete

multipartite graphs. For example, if G is a multipartite graph with ω(G) = 1, then

G ∈ Ω; if G is a multipartite graph withω(G) = 2, then G ∈ Ω; if G is a multipartite

graph with ω(G) = 3, then G ∈ Ω; . . . etc).

Now, using the previous definitions, then we have the following assertion.

Assertion 2.2. Let F be a graph. Then, there exists a graph P ∈ Ω such that P is a

true pal of F (i.e. there exists P ∈ Ω such that P ∈ trpl(F)).

Proof. Indeed, let F be a graph and let Ξ(F) = {Y1, . . . , Yχ(F)} be a partition of

V (F) into χ(F) stable sets (it is immediate that such a partition Ξ(F) exists). Now

let Q be a graph defined as follows: (i) V (Q) = V (F); (ii) Ξ(Q) = {Y1, . . . , Yχ(F)} is

a partition of V (Q) into χ(F) stable sets such that x ∈ Yj ∈ Ξ(Q), y ∈ Yk ∈ Ξ(Q)

and j 6= k, ⇒ x and y are adjacent in Q. Clearly Q ∈ Ω, χ(Q) = ω(Q) = χ(F),

and F is visibly a subgraph of Q; in particular Q is a true pal of F such that Q ∈ Ω

(because F is a subgraph of Q and χ(Q) = χ(F) and Q ∈ Ω). Now put Q = P;

Assertion 2.2 follows. �

Using Assertion 2.2, let us define

Definition 2.3. We say that a graph P is a parent of a graph F , if P ∈ Ω
⋂

trpl(F).

In other words, a graph P is a parent of F , if P is a complete ω(P)-partite graph

and P is also a true pal of F (note that such a P clearly exists, via Assertion 2.2).

parent(F) denotes the set of all parents of F .

So P ∈ parent(F) means P is a parent of F . Using the definition of a parent,

the definition of a true pal (see Definition 2.1), the definition of a berge graph (see
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Preliminary and Definitions) and the definition of Ω (see Definition 2.1), then the

following two Assertions are immediate.

Assertion 2.4. Let F be a graph and let P ∈ parent(F); then χ(F) = χ(P) =ω(P).

Assertion 2.5. Let G ∈ Ω. Then, G is berge.

Assertion 2.6. Assertion 2.5 says that the set Ω is an obvious example of berge

graphs. Curiously the set Ω is fundamental for the rigorous simplification of the Berge

problem.

Now, we redefine the berge index known in [4].

Definition 2.7. Let G be a graph; put B(G) = {F ; G ∈ parent(F) and F is ber ge}

(i.e., B(G) is the set of graphs F such that G is a parent of F and F is berge), and

let parent(G) be the set of all parents of G. Then the berge index of G (see [4]) is

denoted by β(G), where β(G) is defined as follows. β(G) = min
F∈B(G)

ω(F) if G ∈ Ω;

and β(G) = min
P∈parent(G)

β(P) if G 6∈ Ω.

Using Assertion 2.3 and Assertion 2.5, then it becomes easy to see.

Assertion 2.8 ([4]). Let G be a graph; then the berge index β(G) exists and is well

defined.

Using the definition of the graph parameter β , then the following two assertions

are immediate.

Assertion 2.9. Let B be berge and let P be a parent of B; then β(P)≤ω(B).

Assertion 2.10. Let K be a complete graph; then β(K) =ω(K) = χ(K).

Now the following Theorem is the original version of the Berge problem.

Theorem 2.11 ([4], THE ORIGINAL VERSION OF THE BERGE PROBLEM). The following

are equivalent

(i) The Berge problem holds (i.e., for every berge graph B, we have χ(B) =ω(B)).

(ii) For every graph F, we have χ(F) = β(F).

(iii) For every G ∈ Ω, we have ω(G) = β(G).

In section 3, the strong version of the Berge problem which is crucial for the

rigorous simplification of the Berge problem, will be implicitly based on the

original version of the Berge problem given by Theorem 2.11. Now we are going

to define a new class of graphs in Ω (called uniform graphs); we will also define

relative subgraphs, and we will present some properties related to these graphs.

These properties are elementary and curiously, are also crucial for the result which

rigorously simplifies the Berge problem and the resulting analytic conjecture.

Before, let us define.
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Definition 2.12. An optimal coloration of a graph G is a partition Ξ(G) =

{Y1, . . . , Yχ(G)} of V (G) into χ(G) stable sets; ⊖(G) denotes the set of all optimal

colorations of G.

So, Ξ(G) ∈ ⊖(G) means Ξ(G) is an optimal coloration of G.

Definition 2.13. Let G be a graph and let Ξ(G) ∈ ⊖(G). We say that Ξ(G) is

the canonical coloration of G, if and only if ⊖(G) = {Ξ(G)} (observe that such a

canonical coloration does not always exists).

Using the definition of ⊖(G) (see Definition 2.12), then the following Assertion

is immediate.

Assertion 2.14. Let G ∈ Ω and let Ξ(G) ∈ ⊖(G). Then ⊖(G) = {Ξ(G)} (i.e., Ξ(G)

is the canonical coloration of G, via Definition 2.13).

So, let G ∈ Ω and let Ξ(G) ∈ ⊖(G); then Assertion 2.14 clearly says that Ξ(G) is

the canonical coloration of G (indeed, we have no choice, since ⊖(G) = {Ξ(G)}).

Definition 2.15. For a set X , card(X ) is the cardinality of X . Now let G ∈ Ω, and let

Ξ(G) ∈ ⊖(G) (note Ξ(G) is the canonical coloration of G, via Assertion 2.14); then

we define T (G), t(G), N2(G) and n(G) as follows: T (G) = {x ∈ V (G);∃Y ∈ Ξ(G),

and Y = {x}}, t(G) = card(T (G)), N2(G) = {Y ∈ Ξ(G); card(Y ) ≥ 2}, and

n(G) = card(N2(G)).

It is immediate that these definitions make sense, since G ∈ Ω, and so Ξ(G) is

the canonical coloration of G, via Assertion 2.14. Using Definition 2.15, we clearly

have:

Assertion 2.16. Let G ∈ Ω and let T (G). Now put G′ = G \ T (G) (note G′ is the

induced subgraph of G by V (G) \ T (G)). Then we have the following three properties

(2.16.1) G′ ∈ Ω.

(2.16.2) ω(G′) = n(G).

(2.16.3) ω(G) = n(G) + t(G) =ω(G′) + t(G).

Now we define uniform graphs and relative subgraphs.

Definition 2.17 (Fundamental 1). Let G be a graph and let Ξ(G) ∈ ⊖(G) (see

Definition 2.12); we say that G is uniform, if G ∈ Ω and for all Y ∈ Ξ(G), we have

card(Y ) = α(G).

The previous definition makes sense, since G ∈ Ω and so Ξ(G) is canonical (by

using Assertion 2.14). Using the definition of a uniform graph, then the following

three assertions are immediate.

Assertion 2.18. If G is a complete graph or if V (G) = ; or if ω(G) ≤ 1, then G is

uniform.
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Assertion 2.19. Let G be uniform. We have the following three properties

(2.19.1) If G is a complete graph or if α(G)≤ 1 or if n(G) = 0, then ω(G) = t(G).

(2.19.2) If G is not a complete graph or if α(G) > 1 or if n(G) 6= 0, then

ω(G) = n(G).

(2.19.3) If t(G) 6= 0, then G is a complete graph.

Assertion 2.20. Let F be a graph (F is not necessarily in Ω); then there exist a

uniform graph P such that P is a parent of F (see Definition 2.3 for the meaning of

parent).

Proof. If ω(F) ≤ 1, clearly F is uniform (use Assertion 2.18); now put P = F ,

clearly P is a uniform graph which is a parent of F . Now, if ω(F) ≥ 2, let

Ξ(F) = {Y1, . . . , Yχ(F)} be a partition of V (F) into χ(F) stable sets (it is immediate

that such a partition Ξ(F) exists). Now let Q be a graph defined as follows:

(i) Ξ(Q) = {Z1, . . . , Zχ(F)} is a partition of V (Q) into χ(F) stable sets such that,

x ∈ Yj ∈ Ξ(Q), y ∈ Yk ∈ Ξ(Q) and j 6= k, ⇒ x and y are adjacent in Q; (ii) For

every j = 1,2, . . . ,χ(F) and for every Z j ∈ Ξ(Q) = {Z1, . . . , Zχ(F)}, card(Z j) = α(F).

Clearly Q ∈ Ω, card(V (Q)) = χ(F)α(F), Q is uniform, χ(Q) = ω(Q) = χ(F), and

F is visibly “isomorphic" to a subgraph of Q; in particular Q is a true pal of F such

that Q ∈ Ω (because F is “isomorphic" to a subgraph of Q and χ(Q) = χ(F) and

Q ∈ Ω) and Q is uniform. Using the previous and the definition of a parent, then

we immediately deduce that Q is a uniform graph which is a parent of F . Now put

Q = P; Assertion 2.20 follows. �

Definition 2.21 (Fundamental 1). Let G and F be uniform. Let ⊖(G) = {Ξ(G)}

and let ⊖(F) = {Ξ(F)}. We say that F is a relative subgraph of G, if Ξ(F)⊆ Ξ(G).

It is immediate that this definition makes sense, since in particular (G, F) ∈

Ω × Ω [because G and F are uniform], and so Ξ(G) and Ξ(F) are canonical

(i.e.⊖(G) = {Ξ(G)} and ⊖(F) = {Ξ(F)}, via Definition 2.13 and Assertion 2.14).

It is also immediate that relative subgraphs are defined for uniform graphs, and only

for uniform graphs. Using the definition of a relative subgraph, then the following

three assertions are immediate.

Assertion 2.22. Let R and P be uniform such that ω(P)≥ 1 and ω(R)≥ 1. If R is a

relative subgraph of P, then α(R) = α(P) and ω(R)≤ω(P).

Assertion 2.23. Let P be uniform and let R be a relative subgraph of P. We have the

following three properties

(2.23.1) α(R) = 0 or α(R) = α(P) (the law of all or nothing).

(2.23.2) if α(R)≥ 1 or if ω(R)≥ 1, then α(R) = α(P) and ω(R)≤ω(P).

(2.23.3) R is uniform.

Assertion 2.24. Let G be uniform and let R be a relative subgraph of G. Now let

Ξ(G) be the canonical coloration of G, and let Ξ(R) be the canonical coloration of R.

Then we have the following two properties
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(2.24.1) ω(R) =ω(G)⇔ R= G⇔ Ξ(R) = Ξ(G)⇔ V (R) = V (G).

(2.24.2) ω(R) < ω(G)⇔ there exists Y ∈ Ξ(G) such that R is a relative subgraph

of G \ Y .

We will see in Section 3 that uniform graphs play a major role in the proof

of Theorem which rigorously simplifies the Berge problem and the resulting

analytic conjecture. That being so, uniform graphs have also nice properties

related to isomorphisms (recall that two graphs are isomorphic if there exists a

one to one correspondence between their vertex set that preserves adjacency).

Using the definition of a uniform graph, the definition of a relative subgraph and

the definition of isomorphism of graphs, then the following two assertions are

immediate.

Assertion 2.25 (Natural Isomorphism 1). Let P and Q be uniform; then the

following are equivalent

(i) P is isomorphic to Q.

(ii) ω(P) =ω(Q) and α(P) = α(Q).

Assertion 2.26 (Natural Isomorphism 2). Let R and P be uniform such that

ω(P)≥ 1 and ω(R)≥ 1. Then the following are equivalent

(i) ω(P)≥ω(R) and α(P) = α(R).

(ii) R is isomorphic to a relative subgraph of P.

Some of the previous elementary assertions will help us to give the strong

version of the Berge problem, and to deduce the analytic conjecture that was solved

implicitly by Chudnovsky, Robertson, Seymour and Thomas.

3. The Strong Version of The Berge Problem and The Statement of

The Analytic Conjecture that Was Solved Implicitly by Chudnovsky,

Robertson, Seymour and Thomas

Here, we use again definitions that are not standard; in particular, we introduce

a graph parameter denoted by b and called the berge caliber (the berge caliber b is

related to the berge index β introduced in Section 2), and using the parameter b,

we give the strong version of the Berge problem. This strong version, immediately

implies that, what was solved Chudnovsky, Robertson, Seymour and Thomas,

was an analytic conjecture stated on uniform graphs (see Definition 2.17 for the

meaning of uniform graphs). Before, let us define

Definition 3.1 (Fundamental 3). We say that a graph G is bergerian, if G is

uniform and if ω(G) = β(G).

Using Assertion 2.10, then it becomes immediate to see that every complete

graph is bergerian. So the set of all complete graphs is an obvious example of

bergerian graphs.



202 Ikorong Anouk Gilbert Nemron

Definition 3.2 (Fundamental 4). Let G be uniform. We say that a graph F is a

bergerian subgraph of G, if F is bergerian and is a relative subgraph of G. We say

that F is a maximal bergerian subgraph of G (we recall that G is uniform), if F is

a bergerian subgraph of G and ω(F) is maximum for this property (it is immediate

that such a F exists and is well defined).

Now we define the berge caliber.

Definition 3.3 (Fundamental 5). Let G be uniform, and let F be a maximal

bergerian subgraph of G (see Definition 2.3), then the berge caliber of G is denoted

by b(G), where b(G) =ω(F).

It is immediate that b(G) exists and is well defined. It is also immediate that the

berge caliber (i.e. the graph parameter b) is defined for uniform graphs and only for

uniform graphs. Now, using the definition of a uniform graph, the definition of a

relative subgraph and the definition of the berge caliber, then the following two

assertions are immediate.

Assertion 3.4. Let G be uniform and let b(G) be the berge caliber of G. Consider

β(G) (β(G) is berge index of G). We have the following five properties

(3.4.1) ω(G)≥ b(G).

(3.4.2) G is bergerian⇔ β(G) =ω(G) = b(G).

(3.4.3) G is not bergerian⇔ ω(G)> b(G)⇔ ω(G) 6= β(G)⇔ ω(G) 6= b(G).

(3.4.4) If ω(G) ≤ 1 or if α(G) ≤ 1 or if G is a complete graph or if b(G) = 0, then

G is bergerian.

(3.4.5) If ω(G)≥ 1, then b(G) ≥ 1.

Property (3.4.4) of Assertion 3.4 gives classical example of bergerian graphs.

Assertion 3.5. Let G be uniform and let R be a relative subgraph of G. Now let b(G)

be the berge caliber of G, and let b(R) be the berge caliber of R. Then we have the

following two simple properties

(3.5.1) b(R)≤ b(G).

(3.5.2) If G is bergerian, then R is also bergerian (in other words, if ω(G) = b(G),

then ω(R) = b(R) (see property (3.4.2) of Assertion 3.4).

Definition 3.6 (Fundamental 6). Let G be uniform, and let b(G) be the berge

caliber of G (see Definition 3.3); then we define fG as follows:

fG = 48b(G)b(G) + 1000 .

It is immediate that fG exists and is well defined. Now the following Theorem

is the strong version of the Berge problem, this strong version is implicitly based

on the original version of the Berge problem given by Theorem 2.11.

Theorem 3.7 (The strong version of the Berge problem). The following are

equivalent
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(i) For every uniform graph U, we have ω(U) = b(U).

(ii) Every uniform graph Q is bergerian.

(iii) For every uniform graph G, we have f 4
G
≥ω(G).

Using Assertion 2.25 or Assertion 2.26, then the following proposition becomes

easy to prove

Proposition 3.8. Let Q be uniform and let R be a relative subgraph of Q. Now let

b(Q) be the berge caliber of Q, and let b(R) be the berge caliber of R. if ω(R)> b(R)

(i.e. if R is not bergerian), then b(Q) = b(R).

Proof. Otherwise (we reason by reduction to absurd), observing that Q ∈ Ω, and

since R is a relative subgraph of Q, then property (3.5.1) of Assertion 3.5 implies

that b(Q) > b(R). Now, let R′ be a relative subgraph of R such thatω(R′) = b(R)+1

(It is immediate that such a R′ exists, since ω(R) > b(R)); clearly R′ is a relative

subgraph of the uniform graph Q (because R′ is a relative subgraph of R and R

is a relative subgraph of the uniform graph Q) and ω(R′) ≥ 1. So R′ is a relative

subgraph of the uniform graph Q and ω(R′) ≥ 1; properties (2.23.2) and (2.23.3)

of Assertion 2.23 imply that α(R′) = α(Q) and R′ is uniform. Now, let F be a

maximal bergerian subgraph of Q; observing that ω(F) = b(Q) (because F is a

maximal bergerian subgraph of Q), clearly ω(F) ≥ ω(R′) (since we have seen

above that b(Q) > b(R) and ω(R′) = b(R) + 1). In particular F is a relative

subgraph of Q (because F is a maximal bergerian subgraph of Q), now, observing

that ω(F) ≥ 1 (since we have seen above that ω(F) ≥ ω(R′) and ω(R′) ≥ 1),

clearly F is a relative subgraph of the uniform graph Q and ω(F) ≥ 1; properties

(2.23.2) and (2.23.3) of Assertion 2.23 imply that α(F) = α(Q) and F is uniform.

Now, consider R′ and F , by using the previous, we easily deduce that R′ and F

are uniform such that α(F) = α(R′) = α(Q) and ω(F) ≥ ω(R′) ≥ 1; clearly R′

and F are uniform, and α(F) = α(R′) and ω(F) ≥ ω(R′) ≥ 1, then, by using

Assertion 2.26 (Natural Isomorphism 2), it follows that R′ is isomorphic to a

relative subgraph of F . Since in particular F is bergerian (because F is a maximal

bergerian subgraph of Q), clearly R′ is isomorphic to a relatif subgraph of F and F

is bergerian; then by applying property (3.5.2) of Assertion 3.5, it follows that R′

is also bergerian. Therefore b(R′) =ω(R′), and clearly b(R′) = b(R) + 1 (since we

he seen above that ω(R′) = b(R)+ 1). Now, recalling that R′ is a relative subgraph

of R, then property (3.5.1) of Assertion 3.5 implies that b(R′) ≤ b(R). This last

inequality is impossible, since b(R′) = b(R) + 1. Proposition 3.8 follows. �

Proof of Theorem 3.7. It is immediate that (i)⇒(ii) and it also immediate that

(ii)⇒(iii).

(iii)⇒(i). Assume otherwise (we reason by reduction to absurd). Let U be uniform

such that, ω(U) 6= b(U), clearly (by using property (3.4.1) of Assertion 3.4), we
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have

ω(U)> b(U) (3.1)

fix once and for all U (U is fixed once and for all; so U does not move anymore);

then we have these simple remarks. �

Remark 3.9. U is uniform such that ω(U)> 1 and α(U)> 1 and b(U)≥ 1.

Otherwise, clearly U is uniform such that ω(U) ≤ 1 or α(U) ≤ 1 or b(U) = 0,

and using property (3.4.4) of Assertion 3.4, we easily deduce that U is bergerian;

therefore ω(U) = b(U) and this contradicts (3.1).

Remark 3.10. Look at the uniform graph U and consider f 4
U

(see Definition 3.6

for the meaning of fU ). Then there exists a uniform graph U ′ such that ω(U ′) =

3000[ω(U) + 1000 f 4
U
] and α(U ′) = α(U).

Indeed, observing (by using Remark 3.9) that U is uniform such that α(U) > 1,

then it becomes immediate to deduce that there exists a uniform graph U ′ such

that ω(U ′) = 3000[ω(U) + 1000 f 4
U
] and α(U ′) = α(U).

Remark 3.11. Look at the uniform graph U and let the uniform graph U ′ defined

in Remark 3.10. Then U is isomorphic to a relative subgraph of U ′.

Indeed, noticing (by using Remark 3.9) that ω(U)> 1, then, using the previous

inequality and the definition of U ′, we immediately deduce thatω(U ′) >ω(U)> 1

and α(U ′) = α(U); clearly U and U ′ are uniform such that α(U) = α(U ′) and

ω(U ′) > ω(U) > 1; now using the previous and Assertion 2.26, we easily deduce

that U is isomorphic to a relative subgraph of U ′. Remark 3.11 follows

Remark 3.12. Look at the uniform graph U and let the uniform graph U ′ defined

in Remark 3.10. Then b(U ′) = b(U).

Indeed, observing (by (3.1)) thatω(U)> b(U) and remarking (by Remark 3.11)

that U is isomorphic to a relative subgraph of U ′, then, using Proposition 3.8, we

immediately deduce that b(U ′) = b(U). Remark 3.12 follows

Remark 3.13. Let the uniform graph U ′ defined in Remark 3.10. Then ω(U ′) ≤

f 4
U ′

.

Indeed, observing that U ′ is uniform, then U ′ satisfies property (iii) of

Theorem 3.7 and therefore ω(U ′)≤ f 4
U ′

. Remark 3.13 follows

Remark 3.14. Look at the uniform graph U and let the uniform graph U ′ defined

in Remark 3.10. Then ω(U ′) ≤ f 4
U

.

Indeed observing (by Remark 3.12) that b(U) = b(U ′), then the previous

equality immediately implies that fU = fU ′ and therefore

f 4
U
= f 4

U ′
. (3.2)
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Now using equality (3.2) and Remark 3.13, we easily deduce that ω(U ′) ≤ f 4
U

.

Remark 3.14 follows

These simple remarks made, let U ′ be the uniform graph introduced in

Remark 3.10, then (by Remark 3.14) ω(U ′) ≤ f 4
U

; observing (by the definition of

U ′) thatω(U ′) = 3000[ω(U)+1000 f 4
U
], then the previous inequality immediately

becomes 3000[ω(U) + 1000 f 4
U
] ≤ f 4

U
; and this is clearly impossible, since

ω(U)> 1 (by using Remark 3.9) and f 4
U
> 1 (by using the definition of fU ). So,

assuming that property (iii) of Theorem 3.7 is true and property (i) of Theorem 3.7

is false gives rise to a serious contradiction. So (iii)⇒(i)). Theorem 3.7 clearly

follows

Corollary 3.9. If for every uniform graph U, we have f 4
U
≥ ω(U), then for every

berge graph B, we have χ(B) =ω(B).

Proof. Indeed, let B be berge and let Q be a uniform graph such that Q is a

parent of B (it is immediate that such a Q exists, by Assertion 2.20); then using

Assertion 2.9, we immediately deduce that

β(Q)≤ω(B) . (3.3)

Now, observing (by the hypotheses) that for every uniform graph U , we have

f 4
U
≥ω(U), then, using Theorem 3.7, we immediately deduce that

every uniform graph U is bergerian. (3.4)

Using property (3.4.2) of Assertion 3.4, then we immediately deduce that (3.4)

implies that

for every uniform graph U , we have ω(U) = b(U) = β(U). (3.5)

Recalling that Q is uniform, then, using (3.5), we immediately deduce that

inequality (3.3) is of the form

ω(Q)≤ω(B). (3.6)

Now, observing that ω(Q) = χ(B) (note that Q is a parent of B and use

Assertion 2.4), then, inequality (3.6) immediately becomes χ(B) ≤ ω(B), and

the last inequality implies that χ(B) =ω(B). �

Corollary 3.10. If for every uniform graph U, we have f 4
U
≥ ω(U), then the Berge

problem holds.

Proof. Use Corollary 3.9 and definition of Berge problem. �

Corollary 3.10 immediately gives the statement of an analytic conjecture on

uniform graphs. Indeed, Corollary 3.10 clearly says that, if for every uniform U,

we have f 4
U
≥ ω(U), then, the Berge problem follows. Using Corollary 3.10 and

Theorem 3.7, then the following corollary becomes immediate.



206 Ikorong Anouk Gilbert Nemron

Corollary 3.11. The following are equivalent

(i) For every uniform graph U, we have ω(U) = b(U).

(ii) Every uniform graph Q is bergerian.

(iii) For every uniform graph G, we have f 4
G
≥ω(G)

(iv) For every uniform graph U, we have f 4
U
≥ω(U)

(v) The Berge problem holds.

From Corollary 3.11, it immediately follows that Chudnovsky, Robertson,

Seymour and Thomas were implicitly proved in their paper of 146 pages long

(see [1]) the following analytic conjecture stated on uniform graphs.

Conjecture 3.12. For every uniform graph U, we have f 4
U
≥ ω(U), where fU =

48b(U)b(U) + 1000, and where b(U) is the berge caliber of U.

It is easy to show that Conjecture 3.12 is equivalent to the following:

Conjecture 3.13. There exists a fixed positive integer t such that for every uniform

graph U, we have ω(U)≤ b(U) + t, where b(U) is the berge caliber of U.

So, to give an elementary proof of the Berge problem (and at the same time

an elementary proof of the Berge conjecture), it suffices to show that: for every

uniform graph U, we have f 4
U
≥ ω(U) or there exists a fixed positive integer t such

that for every uniform graph U, we have ω(U)≤ b(U) + t.
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