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Abstract. An introduction and study of a composite generalized variational inequality problem
with a composite Wiener-Hopf equation in separable real Hilbert space is performed. Projection
operator technique has been employed, to establish the equivalence between the composite generalized
variational inequality problem with a composite Wiener-Hopf equation. Equivalent formulation discuss
the existence of solution of the problem. Under some specific conditions, the convergence analysis of
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1. Introduction
Variational inequality is an inequality that includes a functional, that has to be solved for all
possible values of a given variable pertaining to a convex set. Initial development of theory of
variational inequalities lies in dealing of equilibrium problems, especially the Signorini problem.
Subsequently, it was diversified in general sense to study a vast range of problems that appear
in mechanics, optimization and control, non-linear programming, economics, finance, game
theory and applied sciences etc, see e.g., [2–5,7–11,16,17] and references therein.
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Introduction of new and powerful methods in variational inequality theory made it to work
authoritatively in several directions, which include a study of a wide class of unrelated problems
in a unified and general framework as well. Development of an efficient and executable iterative
algorithm for solving variational inequalities is one of toughest tasks in this theory. There
exist a considerable number of iterative methods for solving variational inequalities. Among
the various efficacious methods, the projection technique and its variant forms is the most
successful one.

In this article we introduce and study a composite generalized variational inequality problem
with a composite Wiener-Hopf equation in separable real Hilbert space. By using projection
operator technique we establish the equivalence between the composite generalized variational
inequality problem with a composite Wiener-Hopf equation. Under some specific conditions, the
convergence analysis of the suggested iterative algorithm has been discussed.

2. Preliminaries
Let H be a separable real Hilbert space, with inner product 〈·, ·〉 and norm ‖ · ‖ and K be a
nonempty closed convex set in H and PK is the projection mapping of H into K .

Definition 2.1. An operator F : K →H is called

(i) monotone if,

〈F p−Fq, p− q〉 ≥ 0, ∀ p, q ∈ K ;

(ii) strongly monotone if, there exists a constant ξ> 0 such that

〈F p−Fq, p− q〉 ≥ ξ‖p− q‖2, ∀ p, q ∈ K ;

(iii) η-expansive if, there exists η> 0 such that

‖F p−Fq‖ ≥ η‖p− q‖, ∀ p, q ∈ K ;

(iv) µ-cocoercive if, there exists µ> 0 such that

〈F p−Fq, p− q〉 ≥µ‖F p−Fq‖2, ∀ p, q ∈ K ;

(v) relaxed γ-cocoercive if, there exists γ≥ 0 such that

〈F p−Fq, p− q〉 ≥ (−γ)‖F p−Fq‖2, ∀ p, q ∈ K ;

(vi) relaxed (γ, r)-cocoercive if, there exist γ, r > 0 such that

〈F p−Fq, p− q〉 ≥ (−γ)‖F p−Fq‖2 + r‖p− q‖2, ∀ p, q ∈ K .

Remark 2.1. (i) If η= 1, then A is called expansive;

(ii) Every µ-cocoercive mapping is 1
µ

-Lipschitz continuous.

Definition 2.2. The set valued mapping T :H→ 2H is called

(i) relaxed monotone operator if, there exists a constant ν> 0 such that

〈w1 −w2, p− q〉 ≥ (−ν)‖p− q‖2, ∀ w1 ∈ T(p) and w2 ∈ T(q).
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(ii) The set-valued mapping T :H→ 2H is λ-Lipschitz continuous if, there exists λ> 0 such
that

‖w1 −w2‖ ≤λ‖p− q‖, ∀ w1 ∈ T(p) and w2 ∈ T(q).

Definition 2.3. A single-valued mapping S : K → K is called

(i) nonexpansive if,

‖Sp−Sq‖ ≤ ‖p− q‖, ∀ p, q ∈ K .

(ii) strictly pseudo-contractive if, there exists k ∈ [0,1) such that

‖Sp−Sq‖2 ≤ ‖p− q‖2 +k‖(I −S)p− (I −S)q‖2, ∀ p, q ∈ K .

3. Formulation of the Problem and Iterative Algorithm

Let H be a separable real Hilbert space and K be a nonempty closed convex set in H. Let
A,F : K → H and g : K → K be the single-valued continuous nonlinear mappings. Suppose
T :H→ 2H is a set valued mapping. We consider the following composite generalized variational
inequality problem (CGVIP) of finding p ∈H such that g(p) ∈ K and

〈Aog(p)+F(w), g(q)− g(p)〉 ≥ 0, ∀ g(q) ∈ K and w ∈ T(p). (3.1)

The solution set of CGVIP (3.1) is denoted by V I(K , A,F,T, g).

Special cases:
(i) If F, g = I (identity mapping), then CGVIP (3.1) is equivalent to finding p ∈ K such that

〈Ap+w, q− p〉 ≥ 0, ∀ q ∈ K and w ∈ T p. (3.2)

Problem (3.2) has been introduced and studied by Wu [15].

(ii) If A = 0, F = I and T is single-valued mapping, then CGVIP (3.1) is equivalent to finding
p ∈H such that g(p) ∈ K .

〈T p, g(p)− g(q)〉 ≥ 0, ∀ g(q) ∈ K . (3.3)

Problem (3.3) was studied by Noor [6].

(iii) If F,T = 0 and g = I (identity mapping), then CGVIP (3.1) is equivalent to finding p ∈ K
such that

〈Ap, q− p〉= 0, ∀ q ∈ K . (3.4)

Problem (3.4) has been introduced and studied by Stampachia [12] .

It is clear that for suitable choices of mappings involved in the formulation of CGVIP (3.1),
one can obtain many variational inclusion problems studied in recent past.

Lemma 3.1 ([1]). Given z ∈H p ∈ K satisfies the inequality,

〈p− z, q− p〉 ≥ 0, ∀ q ∈ K ,

if and only if p = PK z, where PK is the projection of H into K . Furthermore, the projection PK is
a nonexpansive mapping.
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Let PK be the projection of H into K , and let QK = I−SPK , where I is the identity mapping
and S is a non-expansive mapping. If g−1 exists, then we consider the problem to finding z ∈H
such that

ASPK z+F(w)+ρ−1QK z = 0, ∀ w ∈ TSPK z, (3.5)

where ρ > 0 is a constant.

Equation of the type (3.5) is called composite generalized Wiener-Hopf equation. The solution
set of the problem (3.5) is denoted by CC1WE(H, A,S,F, g).

Remark 3.1. (i) If g,F = I , the identity mappings, then problem (3.5) is equivalent to finding
z ∈H such that

ASPK z+w+ρ−1QK z = 0, ∀ w ∈ TSPK z. (3.6)

(ii) If F = 0, Aog(p)= T(p), and S = I , identity mapping, then problem (3.5) is equivalent to
finding z ∈H such that

T g−1PK z+ρ−1QK z = 0, where QK = I −PK . (3.7)

(iii) If g = I , identity mapping, then problem (3.7) is equivalent to finding z ∈H such that

TPK z+ρ−1QK z = 0. (3.8)

For the general treatment and applications of Wiener-Hopf equation (see [7,14,15]).

Lemma 3.2. The element of p ∈ K is a common element of V I(K , A,F,T, g)∩F(Sog) if and only
if the composite Wiener-Hopf equation (3.5) has a solution z ∈H, where

z = g(p)−ρ[Aog(p)+F(w)], (3.9)

g(p)= SPK (z), (3.10)

where PK is the projection of H into K and ρ > 0 is a constant.

Proof. Let p ∈H be such that g(p) ∈ K is a solution of problem (3.1). Then by Lemma 3.1, it
follows that

g(p)= S(g(p))= SPK [g(p)−ρ(Aog(p)+F(w))]. (3.11)

Using QK = I −SPK and applying (3.8) repeatedly, we obtain

QK [g(p)−ρ(Aog(p))+F(w)]= g(p)−ρ[Aog(p)+F(w)]−SPK [g(p)−ρ(Aog(p)+F(w))]

=−ρ(Aog(p)+F(w)).

This implies that,

ρ−1QK [z]+F(w)=−Aog(p)

=−Aog[g−1(SPK (g(p)−ρ(Aog(p)+F(w))))].

From which it follows that

ASPK (z)+F(w)+ρ−1QK (z)= 0,

where z = g(p)−ρ(Aog(p)+F(w)) and g−1 is the inverse of the mapping g.
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Conversely, let z ∈H be a solution of the problem (3.5). Then, we have

ρ(ASPK (z)+F(w))=−QK (z)= SPK (z)− z. (3.12)

Now, from (3.12) and Lemma 3.1, for all g(q) ∈ K , we obtain

0≤ 〈SPK (z)− z, g(q)−SPK (z)〉 = 〈ρ(Aog(p)+F(w)), g(q)−SPK (z)〉,
it follows that

〈Aog(p)+F(w), g(q)−SPK (z)〉 ≥ 0 ∀ g(q) ∈ K .

Thus g(p)= SPK z is a solution of CGVIP (3.1) and from (3.12), we have

z = g(p)−ρ(Aog(p)+F(w)).

This completes the proof.

Lemma 3.3 ([14]). Let zn be a sequence of non-negative real numbers such that

zn+1 5 (1−λn)zn + yn, ∀ n ≤ n0,

where n0 is some non-negative integer, λn ∈ [0,1] with
∞∑

n=1
λn =∞, yn = o(λn), then lim

n→∞an = 0.

Remark 3.2. It is obvious that composite generalized variational inequalities and composite
generalized Wiener Hopf equations are equivalent.

4. Convergence Analysis

First we establish an iterative algorithm based on Lemma 3.2 for finding the solution of CGVIP
(3.1) and then we prove a convergence result.

Algorithm 4.1. For any s0 ∈H, compute the sequence {sn} by the iterative processes

g(pn)= (αI + (1−α)S)PK sn,

sn+1 = (1−αn)sn +αn[g(pn)−ρ(Aog(pn)+F(wn))], (4.1)

where {αn} is a sequence in [0,1] and S is a strictly contractive mapping.

(I) If F = g = I , the identity mapping in Algorithm 4.1, then we have the following algorithm:

Algorithm 4.2. For any s0 ∈H, compute the sequence {sn} by the iterative processes

pn = (αI + (1−α)S)PK sn, (4.2)

sn+1 = (1−αn)sn +αn[pn −ρ(Aog(pn)+wn)], (4.3)

where {αn} is a sequence in [0,1], for all n ≥ 0, which was studied by Wu [15].

(II) If g,F,S = I , the identity mapping in Algorithm 4.1, then we have the following algorithm:

Algorithm 4.3. For any s0 ∈H, compute the sequence {sn} by the iterative processes

pn = PK sn, (4.4)
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sn+1 = (1−αn)sn +αn[pn −ρ(A(pn)+wn)], (4.5)

where {αn} is a sequence in [0,1], for all n ≥ 0, which was studied by Noor [7].

(III) If g,F,S = I , the identity mapping and αn = 1, ∀ n in Algorithm 4.1, then we have the
following algorithm:

Algorithm 4.4. For any s0 ∈H, compute the sequence {sn} by the iterative processes

pn = PK sn, (4.6)

sn+1 = pn −ρ(A(pn)+wn), n ≥ 0, (4.7)

which was studied by Verma [13].

Theorem 4.1. Let K be a closed convex subset of a separable real Hilbert space H. Let
A,F : K →H and S, g : K → K be the single-valued continuous nonlinear mappings such that A
is relaxed (γ, r)-cocoerceive mapping and µ-Lipschitz continuous, F is ν-Lipschitz continuous and
S is C-strictly psuedocontractive mapping such that F(Sog)∩V I(K , A,F,T, g) 6=φ, respectively.
Let T : H → 2H be a set-valued Lipschitz continuous operator and relaxed monotone with
corresponding constants m > 0 and k > 0, respectively. Let {sn} and {pn} be sequences generated
by Algorithm 4.1 and let αn be a sequence in [0,1] satisfying the following conditions:

(i)
∞∑

n=0
αn =∞,

(ii) α ∈ [k,1),

(iii) 0< ρ < 2(r−γµ−k)
(µ+νm)2 , r > γµ+k,

then the sequences {pn} and {sn} converge strongly to p∗ ∈ F(Sog) ∩ V I(K , A,F,T, g) and
s∗ ∈ CC1WE(H, A,S,F, g), respectively.

Proof. Let R = αI + (I −α)S. In view of the restriction (ii), we find that R is nonexpansive
with F(R) = F(S). Let g(p) ∈ K be the common elements of F(S)∩V I(K , A,F,T, g), we have
g(p∗)= RPK s∗,

s∗ = (1−αn)s∗+αn[g(p∗)−ρ(Aog(p∗)+F(w∗))],

where w∗ ∈ T g(p∗) and s∗ ∈ CC1WE(H, A,S,F, g). Observing Algorithm 4.1, we have

‖sn+1 − s∗‖ = ‖(1−αn)sn +αn[g(pn)−ρ(Aog(pn)+F(wn))]− s∗‖
= ‖[(1−αn)sn +αn[g(pn)−ρ(Aog(pn)+F(wn))]

]
− [

(1−αn)s∗+αn[g(p∗)−ρ(Aog(p∗)+F(w∗))]
]‖

≤ (1−αn)‖sn − s∗‖+αn‖g(pn)− g(p∗)−ρ[(Aog(pn)+F(wn))

− (Aog(p∗)+F(w∗))]‖. (4.8)

On considering the second term of right side of (4.8). Assume T is relaxed monotone, A is µ-
Lipschitz continuous, relaxed (γ, r)-cocoercive and m-Lipschitz continuous and F is ν-Lipschitz
continuous, we have

‖g(pn)− g(p∗)−ρ[(Aog(pn)+F(wn))− (Aog(p∗)+F(w∗))]‖2

Communications in Mathematics and Applications, Vol. 11, No. 1, pp. 85–93, 2020



Composite Generalized Variational Inequalities With Wiener-Hopf Equations: Z. Khan et al. 91

= ‖g(pn)− g(p∗)‖2 −2ρ〈(Aog(pn)+F(wn))− (Aog(p∗)+F(w∗), (g(pn)− g(p∗))〉
+ρ2‖((Aog(pn)+F(wn))− (Aog(p∗)+F(w∗))‖2

= ‖g(pn)− g(p∗)‖2 −2ρ〈Aog(pn)− Aog(p∗)), g(pn)− g(p∗)〉
−2ρ〈F(wn)−F(w∗), g(pn)− g(p∗)〉+ρ2‖(Aog(pn)+F(wn))− (Aog(p∗)+F(w∗))‖2

≤ ‖g(pn)− g(p∗)‖2 −2ρ(−γ‖Aog(pn)− Aog(p∗)‖+ r‖g(pn)− g(p∗)‖)

+2ρk‖g(pn)− g(p∗)‖+ρ2‖(Aog(pn)+F(wn))− (Aog(p∗)+F(w∗))‖2

≤ ‖g(pn)− g(p∗)‖2 +2ρ(γµ− r+k)‖g(pn)− g(p∗)‖
+ρ2‖(Aog(pn)+F(wn))− (Aog(p∗)+F(w∗))‖2 . (4.9)

Now consider the third term of right-side of (4.9), we have

‖(Aog(pn)+F(wn))− (Aog(p∗)+F(w∗))‖ = ‖(Aog(pn)− Aog(p∗))+ (wn −w∗)‖
≤ ‖Aog(pn)− Aog(p∗)‖+‖F(wn)−F(w∗)‖
≤ (µ+νm)‖g(pn)− g(p∗)‖ (4.10)

Put (4.9) into (4.8), we have

‖g(pn)− g(p∗)−ρ[(Aog(pn)+F(wn))− (Aog(p∗)+F(w∗))]‖2

≤ ‖g(pn)− g(p∗)‖2 +2ρ(γµ− r+k)‖g(pn)− g(p∗)‖+ρ2(µ+νm)2‖g(pn)− g(p∗)‖2

= [1+2ρ(γµ− r+k)+ρ2(µ+νm)2]‖g(pn)− g(p∗)‖2

= θ2‖g(pn)− g(p∗)‖2 . (4.11)

where χ=
√

1+2ρ(γµ− r+k)+ρ2(µ+νm)2. From (ii) condition, we get χ< 1. Putting equation
(4.11) into (4.8), we get

‖sn+1 − s∗‖ ≤ (1−αn)‖sn − s∗‖+αnθ‖g(pn)− g(p∗)‖. (4.12)

Since R is non-expansive, we find that

‖g(pn)− g(p∗)‖ = ‖RPK sn −RPK s∗‖ ≤ ‖sn − s∗‖. (4.13)

Put (4.13) into (4.12), we get

‖sn+1 − s∗‖ ≤ (1−αn)‖sn − s∗‖+αnθ‖sn − s∗‖
≤ [1−αn(1−θ)]‖sn − s∗‖. (4.14)

From condition (i) and using Lemma 3.1 into equation (4.14), we get

lim
n→∞‖sn − s∗‖ = 0.

On the other hand, observing (4.13), we get

lim
n→∞‖pn − p∗‖ = 0.

Therefore, the sequences {pn} and {sn} converges strongly to p∗ ∈ F(Sog)∩V I(K , A,F,T, g) and
s∗ ∈ CC1WE(H, A,S,F, g), respectively.

From Theorem 4.1, the following results are easy to derive.
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Corollary 4.1. Let K be a closed convex subset of a separable real Hilbert space H. Let
A,F : K →H and S, g : K → K be the single-valued continuous nonlinear mappings such that A
is µ-Lipschitz continuous and relaxed (γ, r)-cocoerceive mapping, F is ν-Lipschitz continuous
and S is S is a nonexpansive mapping such that F(Sog)∩V I(K , A,F,T, g) 6= φ, respectively.
Let T : H → 2H be a multi-valued Lipschitz continuous and relaxed monotone operator with
corresponding constants m > 0 and k > 0, respectively. Let {sn} and {pn} be sequences generated
by Algorithm 4.1 and let αn be a sequence in [0,1] satisfying the following conditions:

(i)
∞∑

n=0
αn =∞,

(ii) 0< ρ < 2(r−γµ−k)
(µ+νm)2 , r > γµ+k,

then the sequences {pn} and {sn} converge strongly to p∗ ∈ F(Sog) ∩ V I(K , A,F,T, g) and
s∗ ∈ CC1WE(H, A,S,F, g), respectively.

5. Conclusion
In this article, we introduced and studied a composite generalized variational inequality problem
with a composite Wiener-Hopf equation in separable real Hilbert space. Some preliminary
results proved to obtain the main result. By using the projection operator technique we
established the equivalence between the composite generalized variational inequality problem
with a composite Wiener-Hopf equation. The existence and convergence analysis of the suggested
iterative algorithm has been discussed under some specific conditions. Our obtained results
extend and generalize most of the results for different systems existing in the literature. We
remark that our results may be further considered in higher dimensional spaces.
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