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1. Introduction
The nonlinear problems which occur in mathematics and physics may be formed in the form of
operator equation

f (x,λ)= b, x ∈O, b ∈Y , λ ∈Rn . (1)

In which f is a smooth Fredholm map whose index is zero and X , Y are Banach’s spaces and
O ⊆ X is open. The method of reduction for these problems to the finite dimensional equation

Θ(ξ,λ)=β, ξ ∈ M, β ∈ N (2)

may be used, where M and N are smooth finite dimensional manifolds. Lyapunov-Schmidt
method can reduce equation (1) to equation (2), in which equation (2) has all the analytical and
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topological features of equation (1) (bifurcation diagram, multiplicity, etc.), as such information
can be found in [7], [8], [9], [13]. Singularities of smooth maps play an important part in the
investigation of bifurcation solutions of BVPs. One can find a good review of these studies in [6].
In initial years, the study of singularities of smooth maps and its applications to the BVPs took
an important character in the works of Sapronov and his group. For example, in [12] Shvyreva
studied the boundary singularities of the function

W̃(η,γ)= η4
1 + (cη1 +η2)2 −2ε1η

2
1 +2ε2η

2
1η2 +2ε3η1η2 +2ε4η1 +2ε5η2 ,

where η= (η1,η2), γ= (ε1,ε2,ε3,ε4,ε5), η1,η2 ≥ 0 and considered the functional,

V (u,λ)=
∫ π

0

(
(u′)2

2
+λ(cos(u(x))−1)

)
dx ,

with the extra condition and in [1] Abdul Hussain has studied the following problem,
d4u
dx4 +αd2u

dx2 +βu+u2 = 0, u(0)= u(1)= u′′(0)= u′′(1)= 0,

with the extra condition u(x1)≥ 0, u(x2)≥ 0, x1, x2 ∈ [0,1]. Our study differs from the previous
studies that we have taken a new boundary value problem with a key function defined on 3-space
domain. Lyapunov-Schmidt method supposes that f :Ω⊂ E → F is a smooth nonlinear Fredholm
map of index zero. The map f has variational property, when there is a functional V :Ω⊂ E →R

such that f = gradHV or equivalently, ∂V
∂x (x,λ)h = 〈 f (x,λ), h〉H , for all x ∈Ω, h ∈ E, where 〈·, ·〉H

is the scalar inner product in Hilbert space H. Also it assumes that E ⊂ F ⊂ H. The solutions
of equation f (x,λ)= 0 are the own critical points of functional V (x,λ). The finite dimensional
reduction method (Lyapunov-Schmidt method) can reduce the problem, V (x,λ) → extr x ∈ E,
λ ∈Rn into equivalent problem W(ξ,λ)→ extr, ξ ∈Rn, where W(ξ,λ) is called key function. If we
let N = span{e1, . . . , en} is a subspace of Banach space E, where e1, . . . , en is an orthonormal
set in H, then the key function W(ξ,λ) may be defined by the form of W(ξ,λ)= inf

x:〈x,e i〉=ξi
V (x,λ),

ξm = (ξ1, . . . ,ξn). The function W possesses every the topological and analytical properties of the
functional V (multiplicity, bifurcation diagram, etc.) [8]. The study of bifurcating solutions of
functional V is tantamount to the study of bifurcating solutions of key function. If f possesses a
variational property, then the equation Θ(ξ,λ)= gradW(ξ,λ)= 0 is called bifurcating equation.

Definition 1.1 ([4]). The set of every λ for which the function f (x,λ) possesses degenerate
critical points is called bifurcation set (Caustic) and denoted by Σ.

2. Angular Singularities of Fredholm Functional [11]
To investigate the behavior of a Fredholm functional in a vicinity of an angular singular point,
one uses the reduction to an analogous problem

W(x)→ extr

where

x ∈ C, C = {
x = (x1, . . . , xn)T ∈Rn : x2 ≥ 0, x3 ≥ 0

}
.

We state that a point a ∈ C is conditionally critical for a smooth function W in Rn if gradW(a) is
perpendicular to the least face of C containing a.
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The multiplicity of the conditionally critical point a (and is denoted by µ) is the dimension
of the quotient algebra denotes the set

Q̂ =
∏

a(Rn)
I

,

where
∏

a(Rn) is smooth functions’ the germs ring on Rn at the point a and

I :=
(
∂W
∂x1

, x2
∂W
∂x2

, x3
∂W
∂x3

, . . . ,
∂W
∂xn

)
is the angular Jacobi ideal in

∏
a(Rn). The multiplicity µ of a conditionally critical point a is the

equal sum to multiplicities µ+µ0, where µ is the (usual) multiplicity of W on Rn, while µ0 is
the (usual) multiplicity of the restriction W |∂C (where ∂C is the boundary of the set C).

Then, we reduce the space of W(x), x ∈ Rn to the space C by letting {e1, . . . , en} to be an
orthonormal set in H. By Lyapunov-Schmidt method one can write any element z ∈ E as the
form, z = u+v where u =∑n

i=1 xi e i , v⊥e i , xi ∈R, i = 1,2, . . . ,n.
If we consider there is a condition on E (domain of functional V ) is as following, let z to be

in E where z fulfills the following condition:

〈z, e3〉 . (3)

Thus, we get x3 ≥ 0.
In addition, let R̂n be a space with coordinates y= (y1, y2, . . . , yn) defined by map

π : R̂n →Rn, π(y)= (y1, y2
2 , y3 . . . , yn).

At that point the function W(x), x ∈ Rn is defined on space R̂n by the relation Ŵ(π(y)) = Ŵ(y).
The function Ŵ is invariable with respect to the natural involution

J(y1, y2, . . . , yn)= (y1,−y2, . . . , yn).

From the definition of function π we obtain x2 = y2
2 , so we have x2 ≥ 0. From above we conclude

the domain of W(x), x ∈Rn may reduce to the space C.
If a critical point is “usual”, then spreadings of bifurcating extremes (bif-spreadings) are

represented by the row (c0, c1, . . . , cn), where ci is the number of critical points of the Morse
index i. If we are dealing with an angular critical point, then bif-spreadings are represented by
the following matrix of order 3× (n+1):c1

0 c1
1 · · · c1

n

c2
0 c2

1 · · · c2
n

c0 c1 · · · cn

 .

Here c j
i is the numeral of the angular critical points of index i (for j = 1,2), while ci is the

numeral of usual (situated inside C) critical points of index i.

3. The Nonlinear Wave Equation’s Bifurcation Solutions
This section investigates a fourth order nonlinear differential equation’s the bifurcation
solutions. This equation describes the oscillations and motion of wave of the elastic beams
on elastic foundations of periodic solutions that can be described by means of the coming ODE

az′′′′+bz′′+ cz+ z2 + z3 = 0 , (4)
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z(0)= z(1)= z′′(0)= z′′(1)= 0 ,

where a, b and c are the problem’s the parameters, z = z(x), x ∈ [0,1], ′ = d
dx . Assume that

f : E → M is a nonlinear Fredholm operator whose index equal zero from Banach space E to
Banach space M, where E = C4([0,1],R) is the space of every continuous functions that have
derivative of order at most four, M = C0([0,1],R) is the space of every continuous function and
f are defined by the operator equation

f (u,λ)= az′′′′+bz′′+ cz+ z2 + z3 = 0 , (5)

where λ= (a,b, c). Every solution of the equation (4) (1-periodic solution) is a solution of the
operator equation (5). Since, the operator f possesses variational property, then there exists
functionals V such that,

f (z,λ)= gradHV (z,λ),

where

V (z,λ)=
∫ 1

0

(
a

(z′′)2

2
−b

(z′)2

2
+ c

z2

2
+ z3

3
+ z4

4

)
dx ,

where z fulfills the condition (3) (when n = 3).
In this case every solution of equation (5) is functional V ’s a critical point.
The purpose of the paper is to find the solution areas of equation (4) where each bifurcating

solution of equation (4) equals a critical point of functional V and each critical point of functional
V coincides a critical point of the key function of functional V . Therefor, in subsections below,
we shall investigate a function’s the extremes bifurcation in which is its extremes bifurcation’s
study tantamount investigating the key function’s the extremes bifurcation of functional V
(i.e. the study of functional V ’s bifurcating solutions is tantamount to the study of bifurcating
solutions of this function). Hence,the study of equation (4)’s bifurcating solutions is equivalent
to the study of bifurcating solutions of this function.

3.1 Singularities of the Function of Codimension Twenty Six
In this section, we consider the function that have codimension twenty six at the origin [2]
defined by

W(s1,ρ)= x4
1

4
+ x4

2

4
+ x4

3

4
− x3

1x3 + x2
1x2

2 + x2
1x2

3 + x1x2
2x3 + x2

2x2
3 + x3

1 − x2
1x3 + x1x2

2 + x1x2
3

+ x2
2x3 + x3

3 +λ1x2
1 +λ2x2

2 +λ3x2
3 (6)

where s1 = (x1, x2, x3), x3 ≥ 0 and ρ = (λ1,λ2,λ3).
Function (6) has multiplicity 27 and then it has codimension 26. The main purpose is to

find geometrical description (bifurcation diagram) of the caustic of function (6) and then to
determine the critical points’ the spreading of this function. To avoid some difficulties in the
study of function (6), we assume the following x1 = x, x2

2 = y and x3 = z. So the study of function
(6) is tantamount to the study of the following function

W(s2,ρ)= x4

4
+ y2

4
+ z4

4
− x3z+ x2 y+ x2z2 + xyz+ yz2 + x3 − x2z+ xy+ xz2 + yz+ z3

+λ1x2 +λ2 y+λ3z2 , (7)
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where s2 = (x, y, z), y≥ 0, z ≥ 0 and ρ = (λ1,λ2,λ3). Since, the germ of function (7) is

W0 = x4

4
+ y2

4
+ z4

4
.

So, from Section 2 we have I =
(
∂W0
∂x , y∂W0

∂y , z ∂W0
∂z

)
=

(
x3, y2

2 , z4
)
= (x3, y2, z4). Accordingly, the

multiplicity of function (7) is µ= 24 where µ= 6 and µ0 = 18. Since multiplicity is equal to the
number of critical points [3], so the number of critical points of function (7) is 24, twelve points
lie on the boundary y= 0, six points lie on the boundary z = 0 and the last six points lie in the
domain’s the interior of this function. So the caustic of function (7) is the union of six sets,

Σ=Σ0,0,0 ∪Σint
1,0,1 ∪Σext

1,0,1 ∪Σint
1,1,0 ∪Σext

1,1,0 ∪Σ1,1,1

where Σ0,0,0 is the subset (component) of the caustic corresponding to degeneration at the
vertex (0,0,0), Σint

1,0,1 and Σext
1,0,1 are the subsets (components) of the caustic corresponding to

the degeneration of angular singularities along the boundary y = 0 and along the normal,
respectively, Σint

1,1,0 and Σext
1,1,0 are the subsets (components) of the caustic corresponding to

the degeneration of angular singularities along the boundary z = 0 and along the normal,
respectively, while Σ1,1,1 is the component corresponding to the degeneration of interior
(nonboundary) critical points.

3.2 Degeneration at the Vertex (0,0,0)
To determine the set Σ0,0,0, we must find the following union{

λ :
∂W(0,0,0,λ)

∂x
= 0

}
∪

{
λ :

∂W(0,0,0,λ)
∂y

= 0
}
∪

{
λ :

∂W(0,0,0,λ)
∂z

= 0
}

where λ= (λ1,λ2,λ3). This union yields the coming equation λ2 = 0.

3.3 Degeneration Along the Boundary y= 0 (internal degeneration)
To determine the set Σint

1,0,1, we consider boundary critical points of function (7) such that the
determinate of Hessian matrix of this function vanishes at these points, i.e the coming relations
are valid:

∂W(x,0, z, )
∂x

= ∂W(x,0, z, )
∂z

= det(H(x,0, z, ))= 0, z > 0,

where H is Hessian matrix at (x,0, z, ), det is its determinate and λ= (λ1,λ2,λ3). These relations
yield the following relations,

x3 −3x2z+2xz2 +3x2 −2xz+2xλ1 + z2 =−x3 +2x2z+ z3 − x2 +2xz+3z2 +2zλ3

= 2λ1 −12x−14λ3xz−8λ1xz+11xz3 −5λ1z2

−5λ3x2 +2λ1λ3 −2λ3x−2λ1z−6zλ3 − z3

−8z4 − 49x4

2
−14xz−2xλ1 −22x3z+ 45x2z2

2
−49x2z−13xz2 −5z2 −51x3 −39x2 −2λ3 = 0.

Theoretically, it is difficult to solve the above relations, so we use MAPLE 2016 soft program to
eliminate variables x, z to yield the parametric equation which represents the set Σint

1,0,1, but we
wo not write it here because its length is very long (it may reach more than eight pages).
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3.4 Degeneration Along the Boundary y= 0 (external degeneration)
To determine the set Σext

1,0,1, we consider boundary critical points of function (7) such that its
first order partial derivative with regard to y vanishes at these points, i.e, the coming relations
are valid:

∂W(x,0, z,λ)
∂x

= ∂W(x,0, z,λ)
∂z

= ∂W(x,0, z,λ)
∂y

= 0, z > 0,

where λ= (λ1,λ2,λ3). These relations yield the following relations,

x3−3x2z+2xz2+3x2−2xz+2xλ1+z2 =−x3+2x2z+z3−x2+2xz+3z2+2zλ3 = x2+xz+z2+x+zλ2 = 0 .

Theoretically, it is difficult to solve the above relations,so we use MAPLE 2016 soft program to
eliminate variables x, z to yield the parametric equation which represents the set Σext

1,0,1, but we
won’t write it here because its length is long.

3.5 Degeneration Along the Boundary z = 0 (internal degeneration)
The coming theorem gives the equation which represents the set Σint

1,1,0.

Theorem 3.1. The parametric equation which represents the set Σint
1,1,0 is given by the form (8)

below.

Proof. To determine the set Σint
1,1,0, we consider boundary critical points of function (7) such that

the determinate of Hessian matrix of this function vanishes at these points, i.e, the coming
relations are valid:

∂W(x, y,0,λ)
∂x

= ∂W(x, y,0,λ)
∂y

= det(H(x, y,0,λ))= 0, y> 0,

where H is Hessian matrix at (x, y,0,λ), det is its determinate and λ = (λ1,λ2,λ3). These
relations yield the following relations,

x3 +3x2 +2xy+2λ1x+ y= y
2
+ x2 + x+λ2

=−2λ1 −12x−2y−5λ3x2 +2λ1λ3 −2λ3x+2λ3 y+2λ1 y+ 3
2

y2

− 49x4

2
−2λ1x+2x2 y+4xy−51x3 −39x2 −2λ3

= 0

For solving these relations simultaneously, we use MAPLE 2016 soft program for eliminating x,
y to get the following equation which represents the set Σint

1,1,0,

2888λ5
1λ2 −1444λ5

1λ3 −25612λ4
1λ

2
2 +15352λ4

1λ2λ3 −912λ4
1λ

2
3 +91488λ3

1λ
3
2

−64168λ3
1λ

2
2λ3 +7296λ3

1λ2λ
2
3 −144λ3

1λ
3
3 −164392λ2

1λ
4
2 +132512λ2

1λ
3
2λ3

−21888λ2
1λ

2
2λ

2
3 +864λ2

1λ2λ
3
3 +148472λ1λ

5
2 −135668λ1λ

4
2λ3 +29184λ1λ

3
2λ

2
3

−1728λ1λ
2
2λ

3
3 −53868λ6

2 +55208λ5
2λ3 −14592λ4

2λ
2
3 +1152λ3

2λ
3
3 +1444λ5

1

−17836λ4
1λ2 +6676λ4

1λ3 +80992λ3
1λ

2
2 −42632λ3

1λ2λ3 +2706λ3
1λ

2
3 −187976λ2

1λ
3
2

+111984λ2
1λ

2
2λ3 −10080λ2

1λ2λ
2
3 +378λ2

1λ
3
3 +228332λ1λ

4
2 −152648λ1λ

3
2λ3

+17082λ1λ
2
2λ

2
3 −540λ1λ2λ

3
3 −114428λ5

2 +90412λ4
2λ3 −15492λ3

2λ
2
3 +1026λ2

2λ
3
3

−4320λ4
1 +35652λ3

1λ2 −10846λ3
1λ3 −92764λ2

1λ
2
2 +44442λ2

1λ2λ3 −2871λ2
1λ

2
3
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+122860λ1λ
3
2 −62682λ1λ

2
2λ3 +5274λ1λ2λ

2
3 −324λ1λ

3
3 −81028λ4

2 +43886λ3
2λ3

−2223λ2
2λ

2
3 +4876λ3

1 −33236λ2
1λ2 +8320λ2

1λ3 +45196λ1λ
2
2 −20476λ1λ2λ3

+1272λ1λ
2
3 −25700λ3

2 +11140λ2
2λ3 −1140λ2λ

2
3 +90λ3

3 −2457λ2
1 +15202λ1λ2

−3118λ1λ3 −7653λ2
2 +3494λ2λ3 −195λ2

3 +466λ1 −2796λ2 +466λ3 = 0 (8)

3.6 Degeneration Along the Boundary z = 0 (external degeneration)
The coming theorem gives the equation which represents the set Σext

1,1,0.

Theorem 3.2. The parametric equation which represents the set Σext
1,1,0 is given by the form (16)

below.

Proof. To determine the set Σext
1,1,0, we consider boundary critical points of function (7) such that

function (7)’s partial derivative of first order with regard to z vanishes at these points, i.e, the
coming relations are valid:

∂W(x, y,0,λ)
∂x

= ∂W(x, y,0,λ)
∂y

= ∂W(x, y,0,λ)
∂z

= 0, y> 0,

where λ= (λ1,λ2,λ3). These relations yield the coming relations,

x3 +3x2 +2xy+2xλ1 + y= y
2
+ x2 + x+λ2 =−x3 − x2 + xy+ y= 0 .

We may represent the above relations as equations system,

x3 +3x2 +2xy+2xλ1 + y= 0, (9)
y
2
+ x2 + x+λ2 = 0, (10)

− x3 − x2 + xy+ y= 0., (11)

From equation (10), we get, y = −2x2 − 2x − 2λ2 and substituting y in equations (9), (11)
respectively we obtain,

−3x3 −3x2 +2xλ1 −4xλ2 −2x−2λ2 = 0, (12)

3x3 +5x2 +2xλ2 +2x+2λ2 = 0. (13)

By adding equation (12) into (13), one get: 2x(x−λ2 +λ1)= 0, which implies x = 0 or x =λ2 −λ1.
By substituting x = 0 and x =λ2 −λ1 in equation (12) respectively, we get

λ2 = 0, (14)

3λ3
1 −9λ2

1λ2 +9λ1λ
2
2 −3λ3

2 −5λ2
1 +12λ1λ2 −7λ2

2 +2λ1 −4λ2 = 0. (15)

Hence, the product of multiplying two left sides of equations (14) and (15) with equal it to zero
represents the set Σext

1,1,0 such that it may be expressed as follows,

λ2(3λ3
1 −9λ2

1λ2 +9λ1λ
2
2 −3λ3

2 −5λ2
1 +12λ1λ2 −7λ2

2 +2λ1 −4λ2)= 0

or

λ2(λ1 −λ2 −1)(3λ2
1 −6λ1λ2 +3λ2

2 −2λ1 +4λ2)= 0. (16)
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3.7 Degeneration of Interior (Nonboundary)
To determine the set Σ1,1,1, we consider function (7)’s the critical points defined by the system,

∂W(x, y, z,λ)
∂x

= ∂W(x, y, z,λ)
∂y

= ∂W(x, y, z,λ)
∂z

= 0, y> 0, z > 0,

where λ= (λ1,λ2,λ3), or

x3 −3x2z+2xz2 +3x2 +2xy−2xz+2xλ1 + yz+ z2 + y= 0,
y
2
+ x2 + xz+ z2 + x+ z+λ2 = 0, (17)

− x3 +2x2z+ z3 − x2 + xy+2xz+2yz+3z2 +2zλ3 + y= 0.

Then, make the Hessian matrix’s the determinate of function (7)equal to zero to get the equation,

−16xyz−2λ3x−5λ1z2 −5λ3x2 +2λ1λ3 +2λ3 y+2λ1 y−2λ1z+11xz3 −2λ1 −2λ3

+ 45x2z2

2
− yz2 −22x3z+2x2 y−4yz− 49x4

2
−13xz2 +4xy−14xz−49x2z−14λ3xz

−2xλ1 + 3
2

y2 −8λ1xz−8z4 −5z2 −39x2 −51x3 −2y−12x− z3 −6zλ3 = 0. (18)

Theoretically, it is difficult to solve the system (17) with equation (18). So, we use MAPLE 2016
soft program in eliminating the variables x, y and z to get the the parametric equation of the
set Σ1,1,1, but we won’t write it here because its length is very long (it may reach more than
fifteen pages).

Theorem 3.3. The matrices of bif-spreadings of the critical points of function (7) are as follows:

1. If λ1 = 1, then we have0 1 0
1 0 0
0 0 0

 ,

0 1 0
0 0 0
0 0 0

 ,

0 3 0
1 0 0
0 0 0

 ,

0 3 0
0 1 0
0 1 0

 ,

0 3 0
0 0 0
0 0 0

 .

2. If λ1 6= 1 then we have0 0 0
1 0 0
0 0 0

 ,

0 2 0
0 0 0
0 0 0

 ,

0 2 0
0 1 0
0 1 0

 .

Proof. Firstly, if we write every equation of the caustic components’ the equations by making
its left hand side=its right hand side= 0, then the parametric equation of caustic of function (7)
will consist of the product of multiplying of the left hand sides of all the equations of caustic
components with making it equaling to zero.

To find the caustic of the function (7) it is convenient to fix the value of λ1 and then find all
sections of caustic in λ2λ3-plane as λ1 changes.

The caustic of function (7) as in Figure 1 decomposes the plane of parameters into seven
regions Wi , i = 1,2,3,4,5,6,7; every region contains a fixed number of critical points such that
the critical points’ the spreading is as follows: if the parameters λ2, λ3 belong to

1. W1 or W2, then have two critical points (one saddle point on boundary y = 0 and one
minimum point on boundary z = 0), or
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Figure 1. Portrays the caustic of function (7) in λ2λ3-plane when λ1 = 1
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Figure 2. Portrays the caustic of function (7) in λ2λ3-plane when λ1 6= 1

2. W3, then have one saddle critical point on boundary y= 0, or

3. W4 or W5, then have four critical points (three saddle points on boundary y= 0 and one
minimum point on boundary z = 0), or

4. W6, then have five critical points (three saddle points on boundary y= 0, one saddle point
on boundary z = 0 and one saddle point in the interior), or

5. W7, then have three saddle critical points on boundary y= 0.

Hence, the matrices of bif-spreadings are as follows:0 1 0
1 0 0
0 0 0

 ,

0 1 0
0 0 0
0 0 0

 ,

0 3 0
1 0 0
0 0 0

 ,

0 3 0
0 1 0
0 1 0

 ,

0 3 0
0 0 0
0 0 0

 .
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The caustic of function (7) as in Figure 2 decomposes the plane of parameters into four regions
Wi , i = 1,2,3,4; every region contains a fixed number of critical points such that the critical
points’ the spreading is as follows: if the parameters λ2, λ3 belong to

1. W1, then we have one minimum critical point on boundary z = 0, or

2. W3, then we have two saddle critical points on boundary y= 0, or

3. W4, then we have four critical points (two saddle points on boundary y = 0, one saddle
point on boundary z = 0 and one saddle point in the interior), or

4. W2, then we have not any real critical point in the domain {(x, y, z) : y≥ 0, z ≥ 0}

Therefor, the matrices of bif-spreadings are as follows:0 0 0
1 0 0
0 0 0

 ,

0 2 0
0 0 0
0 0 0

 ,

0 2 0
0 1 0
0 1 0

 .

In addition, the values of the Morse index at a given vertex corresponds to one of the
previous seven regions in figure 1 are defined as follows: index = 0 ⇔ λ2, λ3 ∈ W3 ∪W7; and
index = 1⇔λ2, λ3 ∈W1∪W2∪W4∪W5∪W6. And the values of the Morse index at a given vertex
belongs to one of the previous four regions in Figure 2 are defined as follows: index = 0⇔λ2,
λ3 ∈W2 ∪W3; and index = 1⇔λ2, λ3 ∈W1 ∪W4.

In the following theorem, we prove that investigating of functional V ’s extremes bifurcation
is reduced to investigating of function (4)’s extremes bifurcation.

Theorem 3.4. The normal form of the key function W1 corresponding to the functional V is

given by, W1(y,ρ)= x4
1

4 + x4
2

4 + x4
3

4 −x3
1x3+x2

1x2
2+x2

1x2
3+x1x2

2x3+x2
2x2

3+x3
1−x2

1x3+x1x2
2+x1x2

3+x2
2x3+

x3
3 +λ1x2

1 +λ2x2
2 +λ3x2

3 where y= (x1, x2, x3), x3 ≥ 0 and ρ = (λ1,λ2,λ3).

Proof. By using the system of Lyapunov-Schmidt, the linearized equation which corresponds
equation (5) at the point (0,λ) possesses the form,

Ah = 0, h ∈ E

h(0)= h(1)= h′′(0)= h′′(1)= 0

where A = a d4

dx4 +b d2

dx2 + c.
The solution of the linearized equation which satisfies the initial conditions is given by

eq(x)= cq sin(qπx), q = 1,2, . . . and the characteristic equation which corresponds this solution
is

a(qπ)4 −b(qπ)2 + c = 0.

This equation gives in 3-space characteristic planes Pq. The characteristic planes Pq consist
of the points (a,b, c) for which the linearized equation has non-zero solutions [5]. The point of
intersection of the characteristic planes in 3-space is bifurcation point, so the bifurcation point
for the equation (5) is (a,b, c)= (0,0,0). Localized parameters a, b and c as following: a = 0+δ1,
b = 0+δ2, c = 0+δ3, δ1, δ2 and δ3 are small parameters, lead to bifurcation along the modes,
e1(x) = c1 sin(πx), e2(x) = c2 sin(2πx) and e3(x) = c3 sin(3πx). Since, ‖e1‖ = ‖e2‖ = ‖e3‖ = 1 then
we have c1 = c2 = c3 =

p
2.

Communications in Mathematics and Applications, Vol. 10, No. 4, pp. 733–744, 2019



The Analysis of Bifurcation Solutions by Angular Singularities: H. K. Kadhim and M. A. A. Hussain 743

Let N = K er(A) = span{e1, e2, e3} , then the space E is decomposed as direct sum of two
subspaces, N and the orthogonal complement to N ,

E = N ⊕N⊥, N⊥ =
{

v ∈ E :
∫ 1

0
vekdx = 0, k = 1,2,3

}
.

Similarly, the space M may be decomposed in direct sum of two subspaces, N and the orthogonal
complement to N ,

M = N ⊕ Ñ⊥, Ñ⊥ =
{
ω ∈ M :

∫ 1

0
ωekdx = 0, k = 1,2,3

}
.

There exists two projections P : E → N and I −P : E → N⊥ such that Pz =ω and (I −P)z = v, (I
is the identity operator). Hence every vector z ∈ E can be formulated in the form,

z =ω+v, ω= x1e1 + x2e2 + x3e3 ∈ N, v ∈ N⊥, xi = 〈z, e i〉.
Thus, by the implicit function’s theorem , there exists a smooth map Θ : N → N⊥, such that

W̃(u,γ)=V (Θ(u,γ),γ),

u = (x1, x2, x3), γ= (δ1,δ2,δ3)

and then the key function W̃ can be formulated in the the form,

W̃(u,γ)=V (x1e1 + x2e2 + x3e3 +Θ(x1e1 + x2e2 + x3e3,γ),γ)

=W2(u,γ)+ o(|u|4)+O(|u|4)O(γ),

where

W2(u,γ)= 3
8

x1
4 + 3

8
x2

4 + 3
8

x3
4 − 1

2
x1

3x3 + 3
2

x1
2x2

2 + 3
2

x1
2x3

2 + 3
2

x2
2x3x1 + 3

2
x2

2x3
2

+ 8
p

2x1
3

9π
− 8

p
2x1

2x3

15π
+ 32

p
2x2

2x1

15π
+ 72

p
2x1x3

2

35π
+ 32

p
2x2

2x3

21π
+ 8

p
2x3

3

27π

+
(
1
2
π4a− 1

2
π2b+ c

2

)
x1

2 +
(
8π4a−2π2b+ c

2

)
x2

2 +
(
81π4a

2
− 9

2
π2b+ c

2

)
x3

2.

Because z fulfills the condition (3) (when n = 3), we can get x3 ≥ 0.
The geometrical form of critical points’ bifurcations and the first asymptotic of branches

of bifurcating for the function W̃ are completely determined by its principal part W2. If, we
replace x1, x2 and x3 by 4

√
2
3 x1, 4

√
2
3 x2 and 4

√
2
3 x3 in function W2 respectively, then W1 and W2

are contact equivalence,since in this case they have the same germ,

W0(x1, x2, x3)= 3
8

x1
4 + 3

8
x2

4 + 3
8

x3
4

and deformation. Therefore the caustic of the function W2 coincides with the caustic of the
function W1.

Thus,the function W1 has all the topological and analytical properties of functional V , so the
study of bifurcation analysis of the equation (5) is equivalent to the study of bifurcation analysis
of the function W1. This shows that the study of bifurcation of extremes of the functional V is
reduced to the study of bifurcation of extremes of the function (7).
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4. Conclusion
In this paper the solution areas for the equation (4) are found in two cases, in the first case,
seven regions are found, and in the second case, four regions are found. Each region contains a
fixed number and quality of solutions. Each solution represents a critical point of functional,
which in turn corresponds to a critical point of the key function of functional. Furthermore,
the geometrical description of the branching diagram (caustic) was found with spreading of
the branching of the critical points for both cases. Studying the branching solutions for the
equation (4) is an application for studying singularities of the function (6).
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