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Form Factor Analysis Derived from the Gluon Emission

Model Applied to the Ψ(2S) and the Υ(2S)

D. White

Abstract. In a recent article it has been shown that form factors may be

derived through the use of the Gluon Emission Model (GEM) theoretical structure

describing the widths of vector mesons; such form factors, f , are such that

(1 − f ) represents the fraction of the original quark (Q) — anti-quark (Q∗)
pair comprising a given vector meson that remains part of the decay scheme,

the remainder, f , making a transition to a QQ∗ state comprising quarks of the

next lightest mass compared to the original (remaining) ones. In conjunction

with representative Feynman Diagrams we employ said form factors in order

to calculate the various partial widths of the Ψ(2S) and the Υ(2S). Excellent

agreement with experiment is reached, and we are able to show that the matrix

elements involved in the Ψ(2S) → Ψ(1S) + Z decay, where Z represents any

other product, and in the Υ(2S) → Υ(1S) + Z decay are roughly four ninths

the magnitude of those associated with the Ψ(2S) → Z1 + Z2 decay and the

Υ(2S) → Z1 + Z2 decay, where Z1 and Z2 each represent any decay product

other than Ψ(1S) or Ψ(2S), respectively.

1. Background

In White (2010) it is shown that the Gluon Emission Model (GEM), first

developed by F. Close in 1979 (see F. Close (1979)), represents a theoretical

structure which is able to realize excellent agreement with experiment in terms

of the widths of all vector mesons (inclusive of the K∗(892)) in their ground states

and in terms of the evaluation of the strong coupling parameter, αs, at essentially

any energy. The basic premise of the GEM is that vector mesons arise via the spin-

flip of one of the quarks comprising a given vector meson at preferred energies, i.e.,

the energies associated with the masses of the vector mesons. The matrix element,

|V |, representing the formation of the spin one state which describes a given vector

meson is thus descriptive of a spin-spin interaction and is therefore proportional

to q2
i
, where qi represents the charge of a quark of flavor “i”. Hence, |V |2 is

proportional to q4
i
. Once the basic form for |V |2 is assumed, the width calculations
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proceed strictly upon the principles laid out in Quantum Electrodynamics (QED)

but involving certain appropriate alterations. At the present juncture it would be

best to exhibit the basic precepts of the GEM as seen, for example, in White (2010):

In all quantum systems in which natural decay occurs between an excited level

and the ground state, the integrated absorption cross-section goes as

σ(ω) = Kα|V |2(1/m)2(1/ω)L(ω), (1)

where K is a constant, ω represents photon frequency, |V |2 represents the square

of the matrix element descriptive of the photon emission process, the system has

mass m, L(ω) is a Lorentz Amplitude with a peak at ω = ω0 and with a width Γ,

and α = (1/137.036) represents the fine structure constant.

Assuming “asymptotic freedom”, i.e., that we may ignore the masses of the

decay products (light hadron pairs) in relation to the total energy involved in the

system under investigation, we may employ Eq. (1) to predict the width of vector

mesons by making the following substitutions to take us from a general quantum

electrodynamics (QED) to a specific quantum chromodynamics (QCD) process:

We substitute for the photon frequency ω the gluon energy Q0.

We evaluate the right hand side of Eq. (1) at a specific vector meson mass, mv ,

i.e., Q0 = m= mv . (Hence, the associated Lorentz Amplitude equals unity.)

We require |V |2 to be proportional to Σi(qi)
4, where qi = quark charge (in units

of electron charge magnitude) associated with the quarks comprising the relevant

vector meson.

(The above criterion is consistent with spin-spin interaction [see also R. Dalitz

(1977), p. 604] proportional to q2
i
, where i denotes quark flavor, giving rise to spin-

flip transitions, and the sum is required only in the case of the ρ, as it comprises

both the up quark (u) of charge qu = 2/3 and the down quark (d) of charge

qd =−1/3.)

We postulate |V |2 to be proportional to only Σi(qi)
4, i.e., the precise form of the

interaction is universal to all vector mesons in their ground states, except for quark

charge differences.

We replace α by αs, the strong coupling parameter, which has the well-known

form from QCD gauge invariance theories (see [2, S. Gasiorowicz and J. L. Rosher,

American Journal of Physics 49, 954 and ff (1981)]) of:

αs = B[ln(Q0/Λ)]
−1, (2)

where B is a constant and Λ is a parameter to be determined. Again, we emphasize

that commensurate with the above replacements is that we must assume that

the initial energy involved in the formation of a given vector meson is extremely

high, i.e., in the “asymptotically free” region of energy space, where the masses of

emerging hadron pairs as decay products can be neglected. Accordingly, then, we
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find in terms of the above ansatz (normalizing to the ρ)

Γv = A(mρ/mΨ(2S))
3(Σi(qi)

4)[ln(mv/Λ)]
−1, (3)

where Γv represents the width of a given vector meson, v, and A is a constant to

be determined.

Equation (1) in the above quotation comes straight from Merzbacher’s Quantum

Mechanics (E. Merzbacher (1970), p. 486). With the appropriate substitutions it

represents the absorption cross-section of a gluon propagating from the collision

vertex to the quark (Q) — anti-quark (Q∗) pair comprising the vector meson and,

as well, the emission of a gluon signifying the decay of the resonance state. In

Close’s scheme no distinction is made between a gluon and a virtual photon,

except in terms of the couplings to given vertices in a representative Feynman

Diagram (FD). Indeed, in Close (1979) one finds many such FDs in which the

author depicts a gluon transmuting directly to a virtual photon and vice-versa, all

such transmutations described by a coupling magnitude of “1”. In the present work

we shall therefore represent either a gluon or a virtual photon as “ζ”, our symbolic

representation of a four-momentum propagator. Since the gluon and the virtual

photon are considered within the GEM as two aspects of the same entity, i.e., the

four-momentum propagator, in the realm of asymptotic freedom, i.e., the energy,

E, associated with a given colliding beams experiment is such that E > 3000 Mev,

the ratio of lepton production to hadron production associated with a given QQ∗

decay must be in the ratio of α/αs, where α represents the fine structure constant

= (1/137.036). The constants, “A” and “Λ”, in Eq. (3) of the above quotation may

be determined by fitting simultaneously the width of the ρ(776) and the width of

the φ(1019) in accord with Eq. (3) above, and “B” may be determined by setting

the ratio of the experimental electron/positron partial width of the Υ(1S) to the

GEM’s theoretical hadronic width (with “A” and “Λ” determined) of the Υ(1S)

equal to α/αs, as the Υ(1S) exists well into the realm of asymptotic freedom. The

representation of the hadronic (H)width of any vector meson, then, takes the form

of (see White (2010)):

Γv−H ≈ (αs/2π)(10,042)(2me)(mρ/mv)
3(Σi(qi)

4), (1)

where me represents the electron mass of 0.511 Mev, so that 2me = 1.022 Mev.,

αs represents the strong coupling parameter, given by αs = 1.2[ln(mv/50Mev)]−1,

mρ = 776 Mev represents the mass of the ρ meson, mv represents the mass of the

vector meson with designate “v”, and qi represents the charge of the relevant quark

type(s) “i” to undergo the spin flip to form the vector meson under consideration.

The qi involved in ρ formation, for example, are the qu = 2/3 and qd = −1/3,

where “u” designates an “up quark” and “d” designates a “down quark”. Only

qs = −1/3, where “s” designates a “strange quark”, is involved in the formation of

the kaon branch of the φ, whereas qu, qd , and qs are all involved in the formation

of the K∗(892) (see White (2008-R and 2008-K)). In addition, as we will see below,
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the qi mainly associated with the J(3097) is actually qs, and that associated with

the Υ(1S) is actually qc = 2/3, where “c” is the designate for the “charm quark”

(see also White (2008-R)).

From the above it is apparent that the general form for the electron/positron

partial width as per the GEM is given by:

Γv−ee ≈ (α/2π)(10,042)(2me)(mρ/mv)
3(Σi(qi)

4). (2)

Representative FDs may be constructed as associated with Eq. (1) and Eq. (2). In

their simplest forms, they appear as follows:

Figure 1. Basic Feynman Diagram for Conventional Vector Meson

Formation and Decay into Hadrons (h and h∗) via the GEM.

Figure 2. Basic Feynman Diagram for Conventional Vector Meson

Formation and Decay into an electron/positron pair via the GEM.

In Figures 1 and 2 above “x x∗” represents the QQ∗ associated with vector

meson “X ”, ζ1 represents the four-momentum propagator which starts out as a

virtual photon at the collision vertex and ends up as a gluon absorbed by x x∗.

The symbol, ζ2, represents the gluon emitted in the decay of X . In Figure 1, said

gluon couples to hadronic products with coupling strength αs, whereas in Figure 2

it transmutes to a virtual photon which couples to the electron/positron pair with

coupling strength α. In the case of Figure 1 the details of the absorption of ζ1

are contained in the integrated absorption cross-section, and |V |2, proportional to

q4
x
, describes the formation of the spin one resonance. From there ζ2 (a gluon) is

emitted, resulting in coupling to hadrons (h;h∗), the coupling at the latter vertex

of magnitude αs. The calculation of the width of the x x∗ state, given the stated

mechanism of a spin-flip of one of the “x quarks” due to a spin – spin interaction

proportional to q2
x
, proceeds straight along the dictates of standard QED, therefore,

except for the replacement of α by αs at the hh∗ vertex. The calculation of leptonic
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partial widths follows even more directly along the straight-forward lines of QED.

In short, to obtain the leptonic and/or hadronic width associated with a given

vector meson, one need only construct the relevant FD associated with the decay

and then proceed to “calculate the FD” in accord with Eq. (1) and/or Eq. (2).

In Section 2 we consider the Ψ(2S), in terms of its decay directly to dissolution

and in terms of its decay involving specifically the Ψ(1S). We will find that the

associated FDs are somewhat more complicated than those seen in Figures 1 and 2,

and we will see how an associated “form factor” comes into play. We will determine

the matrix element associated with the Ψ(2S) → Ψ(1S) + Z decay, where “Z”

represents any other decay product, and see that it is very likely representative

of an electromagnetic interaction, as is |V |. In Section 3 we will carry out a

similar undertaking as associated with the Υ(2S), whose matrix element for the

Υ(2S)→Υ(2S)+Z decay will be seen to be strikingly similar to the corresponding

one associated with theΨ(2S). We will close with concluding remarks in Section 4.

2. The Ψ(2S)

As is mentioned in White (2010), as to the Ψ(1S):

Application of the GEM in accord with Figure 1, with x = c, seems reasonably

straight-forward, but it turns out to be problematic. However, when one sees

that the hadronic width of the J(3097), or Ψ(1S), given by the application of

Eq. (1) in accord with Figure 1 with x = c, is roughly sixteen times too large, as

compared to experimental results, coupled with the fact that the hadronic width

of the Υ(1S) given by the application of Eq. (1) in accord with Figure 1 with

x = b is roughly sixteen times too small, as compared with experimental results,

it becomes obvious as to what physically must transpire as regards both the Ψ(1S)

and the Υ(1S). Restricting the discussion to the Ψ(1S) for the time being, in what

we call “the zeroth order approximation”, the basic cc∗ structure of the Ψ(1S)

must make a point-like transition to an ss∗ structure of equal mass, whereupon

one of the s quarks undergoes a spin-flip to form the associated resonance (see

White (2009-J)). The point-like transition from cc∗ to ss∗ is instantaneous, thus

having no influence on the Ψ(1S)’s width. Indeed, the resonance does not even

form until an s (or s∗) quark undergoes a spin-flip. That the cc∗ to ss∗ transition is

necessary is quite understandable: The Ψ(1S) is not massive enough for it to be

able to decay into hadrons via emission of two c quarks; hence, it must transition

to a quark pair of lesser bare mass each. The simplest possible assumption is that

the cc∗ transitions to the quark pair type characterized by the next smallest mass,

viz., the s type. Nothing prevents the cc∗ structure from decaying into leptons

(e+e− and µ+µ−), however. It is found in White (2009-J), in fact, that in order

for both the hadronic width of the Ψ(1S) and the leptonic width of the Ψ(1S)

as determined via the GEM to match the results of experiment, (8/9)ths of the

cc∗ structure must undergo a slightly “un-point-like” transition to ss∗, described
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by a form factor, f < 1, which, in turn, decays into both hadrons and leptons as

per Eq. (1) and Eq. (2), respectively, while (1/9)th of the original cc∗ structure

remains to decay into leptons exclusively. We may picture the complete details of

the Ψ(1S) formation and decay via the following two arrays of FDs, the first such

array descriptive of what we may now call “the first order approximation” to the

width of the Ψ(1S), the second such array descriptive of what we call “the second

order approximation”, which follows along the lines of White (2009-J).

Immediately below are reproduced the FD associated with the “first order

approximation” (Figure 3) to the width of the Ψ(1S) and that associated with

the “second order approximation” (Figure 4) to same:

Figure 3. Feynman Diagram Array Characterizing the Formation and

Decay of the J(3097) in First Order Approximation via the GEM.

In Figures 3 and 4 above “l” represents a leptonic decay product, ζ2a represents

the gluon involved in a point-like transition from cc∗ to ss∗, and all other “ζ”

designates should be understood from previous discussion. Note that in the second

order approximation the form factor f = (1− q2
c
) = (8/9) multiplies the entire FD

array, whereas in the first order approximation it multiplies only the portion of the

decay scheme that involves the s or s∗ spin-flip. The second order approximation

should be a better representation of reality than the first order approximation (and

it is) because, logically, it is difficult to imagine how the point-like transition from
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Figure 4. Feynman Diagram Array Characterizing the Formation and

Decay of the J(3097) in Second Order Approximation via the GEM.

cc∗ to ss∗ could take place in exactly the proper proportion every time without

some kind of general “cross communication” between the cc∗ state and the ss∗

state. Accordingly, in second order approximation “ f ” influences the entire decay

scheme, not just a part of it.

In White (2009-Ψ) we carried out the width calculations associated with the

Ψ(2S), but we did so in first order approximation and without the visual aid

provided by a relevant FD. We determined in White (2009-Ψ) that the decay

scheme of the Ψ(2S) as regards its decay directly to dissolution, i.e., the Ψ(2S)→
Z1 + Z2 decay, where Z1 and Z2 represent any decay products other than Ψ(1S),

is very similar to that of the Ψ(1S). As with the Ψ(1S), a form factor, f ′, of value

slightly less than “1” is associated with the Ψ(2S) decay, but unlike the Ψ(1S),

it was determined that the remaining cc∗ states (i.e., (1 − f ′) of the original

complement) decay into hadrons, as well as leptons. Specifically, we determined

that f ′ is given by

f ′ ≈ 1− (1/4π) = 0.9204.

However, f ′ above was derived employing the Meson Table associated with the

PDG’s 2004 report (PDG (2004)). In their 2008 Meson Table (PDG (2008)) the

data associated with the Ψ(2S) has changed significantly, its full width now listed

as 13% more than that seen in PDG (2004). A recalculation of the form factor
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(see White (2009-Ψ, p.65)) now reveals that it is approximately the same as

f = (1 − q2
s
) = (8/9) above, the form factor associated with the Ψ(1S). For

notational purposes we now designate the Ψ(2S) as “level 2” of the J(3097)

resonance, reflecting the assumption that the Ψ(2S) is an excited state of the

J(3097)/Ψ(1S) resonance; as well, we designate the Ψ(1S) as “level 1” of the

J(3097). Additionally, we designate the state of complete dissolution as “level 0”.

In terms of the above notation, then, the FD associated with the level 2 to level 0

transition, i.e., complete dissolution of the Ψ(2S), in second order approximation

appears as follows:

Figure 5. Feynman Diagram Array Characterizing the Formation

and Decay of the Ψ(2S) to Complete Dissolution in Second Order

Approximation via the GEM.

In accord with Figure 5 we may now employ Eq. (1) and Eq. (2) in order to

obtain the partial width of the level 2 to level 0 decay (the 2 → 0 decay) of the

Ψ(2S). Denoting said partial width as Γ20(Ψ : GEM), we have:
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Γ20(Ψ : GEM) ≈ f {[(αs/2π)(10,042)(2me)(mρ/mΨ(2S))
3(qs)

4)

+ 2.4(α/2π)(10,042)(2me)(mρ/mΨ(2S)
3(q4

s
)]

+ (1− f ′)[(αs/2π)(10,042)(2me)(mρ/mv)
3(qc)

4

+ 2.4(α/2π)(10,042)(2me)(mρ/mΨ(2S))
3(qc)

4]}. (3a)

The value of the strong coupling parameter at the Ψ(2S) mass is given by

αs = 1.2[ln(mΨ(2s)/50Mev)]−1 = 1.2[ln(3686/50)]−1 = 0.2791. (3b)

Making the appropriate substitutions into Eq. (3a) (mass values are from PDG

(2008) and the factor “2.4” in two spots takes into account muon and tauon

production (PDG (2008), p. 111)), we obtain:

Γ20(Ψ : GEM) ≈ (8/9){[52.52Kev+ 3.30Kev]

+ (1/9)[840.24Kev+ 52.73Kev]}. (3c)

Hence,

Γ20(Ψ : GEM) ≈ {46.68+ 2.93+ 82.99+ 5.21}Kev. (3d)

Separately, the hadronic partial width of the 2→ 0 transition is given by

Γ20−H(Ψ : GEM)≈ {46.68+ 82.99}Kev = 129.67Kev ≈ 130Kev, (3e)

and the leptonic partial width of same is given by

Γ20−L(Ψ : GEM)≈ {2.93+ 5.21}Kev = 8.14Kev. (3f)

The hadronic partial width of the Ψ(2S) 2→ 0 transition reported by the PDG in

PDG (2008), p.111, is

Γ20−H(Ψ : PDG) = (132± 4)Kev, (3g)

so the GEM produces a match with experiment as regards the hadronic partial

width of same. However, the GEM’s result for the leptonic partial width of

the Ψ(2S) 2 → 0 transition of 8.14 Kev is 43% higher than the result for the

associated leptonic partial width reported in PDG (2008), viz., (5.71± 0.10)Kev.

Nevertheless, the GEM predicts the full width of the Ψ(2S)2→ 0 transition as

Γ20−Full(Ψ : GEM)≈ {129.67+ 8.14}Kev = 137.81Kev ≈ 138Kev, (3h)

which represents an exact match to the PDG (2008) report of:

Γ20−Full(Ψ : PDG)≈ {132+ 5.71}Kev. ≈ 138Kev. (3i)

What we find extraordinarily interesting about the above result is that employing

more recent data than that used in White (2009-Ψ), the form factor, f = (1−q2
s
) =

(8/9), is seen now to apply to both to the Ψ(2S) and the Ψ(1S), in each case

yielding the hadronic partial width in decays to complete dissolution essentially

exactly.
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We now turn our attention to the Ψ(2S) → Ψ(1S) + Z decay. Since both the

Ψ(2S) and the Ψ(1S) are spin one objects, the mechanism describing the 2 → 1

transition is not the same as that of the 2→ 0 transition, i.e., there is no spin-flip in

the 2→ 1 transition. Nevertheless, using the data as to the 2→ 1 transition found

in PDG (2008), we may estimate the strength of the interaction by expressing the

associated partial width as

Γ21(Ψ : GEM)

≈ f {(αs/2π)(10,042)(2me)(mρ/mΨ(2S))
2[mρ/(mΨ(2S) −mΨ(1S))](qeff)

4)

+ 2(α/2π)(10,042)(2me)(mρ/mΨ(2S)
2[mρ/(mΨ(2S) −mΨ(1S))](q

4
eff
)}, (4)

setting Γ21(Ψ : GEM) equal to the PDG (2008) result of 182 Kev, and solving

for qeff, which represents the effective charge involved in the matrix element

representing the 2 → 1 transition. One factor of “(mρ/mΨ(2S))” in Eq. (1) must

be replaced by “mρ/(mΨ(2S) − mΨ(1S))” to reflect the fact that the final energy

associated with the 2 → 1 transition is “mΨ(1S)”, and the factor “2.4” appearing

in the 2 → 0 calculations must be replaced by “2”, as tauons cannot be emitted

in the 2 → 1 decay. From here, a measure of qeff = (2/3) would signify that

an electromagnetic interaction is most likely involved in the 2 → 1 transition, as

all other factors besides the ones just mentioned in Eq. (1) were left unchanged.

Accordingly, we find:

(8/9){26,620+ 1392}q4
eff
= 182. (5a)

Hence,

24,900q4
eff
= 182, (5b)

from which

q4
eff
= 0.007309, (5c)

leading to

qeff = 0.2924 ≈ 0.88|qs|. (5d)

A similar calculation may be performed regarding the 2→ 0 transition.

Specifically, we may express Γ20−Full(Ψ : GEM) = 138Kev as

Γ20−Full(Ψ : GEM)

≈ f {[(αs/2π)(10,042)(2me)(mρ/mΨ(2S))
3(Qeff)

4)

+ 2.4(α/2π)(10,042)(2me)(mρ/mΨ(2S)
3(Qeff)

4]

= 138Kev, (6)

where Qeff represents the effective charge associated with the 2 → 0 transition.

Accordingly, we find

(8/9){4254+ 267}Q4
eff
= 138. (7a)
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Hence,

4019Q4
eff
= 138, (7b)

from which

Q4
eff
= 0.034337, (7c)

leading to

Qeff = 0.4305 ≈ 1.29|qs |. (7d)

As noted above, the 2→ 1 transition does not involve a spin-flip, so it takes place

via the emission of a longitudinal gluon, whereas the 2→ 0 transition takes place

via the emission of a transverse gluon. Characterizing the square of the effective

matrix element in the 2 → 1 transition as 〈|V21(Ψ)|2〉 and that of the 2 → 0

transition as 〈|V20(Ψ)|2〉, we see that

〈|V21(Ψ)|2〉/〈|V20(Ψ)|2〉 = q4
eff
/Q4

eff
= 0.007309/0.034337 = 0.2129, (8)

indicating that the interaction potential matrix element in the longitudinal gluon

emission is roughly 46% that of the transverse gluon emission.

3. The Υ(2S)

In White (2010) it is shown that the width of the Υ(1S) is fully explained by

assuming that (1) all bb∗ (b represents the bottom quark of charge qb = −1/3)

states comprising the original structure of theΥ(1S)make a point-like transition to

a cc∗ structure, which then decays via a spin-flip, and (2) double gluon emission is

involved in the decay. Condition 1 means that the relevant form factor, f1, for the

decay is equal to “1”, while condition 2 suggests an additional route for decay not

seen as associated with the less massive vector mesons. The FD array associated

with the Υ(1S) decay appears in Figure 6.

Calculation of the above FD yields 54.02 Kev as the full width of the Υ(1S)

. . . an exact match to experiment as reported in PDG (2008), p. 119. Also in White

(2010) it is seen that the decay of the Υ(1S) contains the form factor, f2, in exact

analogy to the form factor, f = 1− q2
s
, associated with Ψ(1S) and Ψ(2S) decays,

i.e., f2 = 1− q2
c
= 5/9. In exact analogy to the J(3097), as well, the bb∗ states

decay only into leptons, and the double gluon emission route is in force, in analogy

to the Υ(1S) decay. The FD associated with the “level 2”, i.e., the Υ(2S) state, to

“level 0”, i.e., complete dissolution is thus as seen in Figure 7.

Defining Γ20−Full(Y : GEM) as the full width of the Υ(2S) associated with the

2→ 0 transition, in analogy to Eq. (3a) we obtain:

Γ20(Y : GEM)≈ f2{[(αs/2π)(10,042)(2me)(mρ/mY (2S))
3(qc)

4

+ 3(α/2π)(10,042)(2me)(mρ/mY (2S)
3(q4

c
)
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Figure 6. Basic Feynman Diagram for Υ(1S) Formation and Decay into

Hadrons (h, h′, h′′, and h′′′) and leptons (l±
1

and l±
2
) via the GEM.

+ (α2
s
/2π)(10,042)(2me)(mρ/mY (2S))

3(qc)
4

+ 3(α2/2π)(10,042)(2me)(mρ/mY (2S)
3(q4

c
)]

+ (1− f2)[3(α/2π)(10,042)(2me)(mρ/mY (2S))
3(qb)

4]}. (9a)

The value of the strong coupling parameter at the Υ(2S) mass is given by

αs = 1.2[ln(mY (2s)/50Mev)]−1 = 1.2[ln(10,023/50)]−1 = 0.2264. (9b)

Making the appropriate substitutions into Eq. (3a) (mass values are from PDG

(2008) and the factor “3” in three spots takes into account muon and tauon
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Figure 7. Basic Feynman Diagram for Υ(1S) Formation and Decay into

Hadrons (h, h′, h′′, and h′′′) and leptons (l±
1

and l±
2
) via the GEM.

production in accord with e-µ-τ universality), we obtain:

Γ20(Y : GEM)≈ (5/9){[33.90+ 3.28+ 7.67+ 0.02] + (4/9)[0.20]}Kev. (9c)
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Separating the hadronic (H) component from the leptonic (L) component of

Γ20(Y : GEM), we find

Γ20(Y : GEM) ≈ (23.09+ 1.88)Kev. (9d)

Hence,

Γ20−H(Y : GEM)≈ 23.09Kev, (9e)

and

Γ20−L(Y : GEM)≈ 1.88Kev. (9f)

Both Γ20−H(Y : GEM) and Γ20−L(Y : GEM) are in excellent agreement with experi-

ment, as the PDG (2008) report on p. 121 lists

Γ20−H(Y : PDG) = 23.09Kev (an exact match) (9g)

and

Γ20−L(Y : PDG) = (1.84± 0.03)Kev. (9h)

By analogy to the 2 → 1 transition associated with the Ψ(2S) in the above

section, we may determine the effective charge (qeff) involved in the longitudinal

gluon emission associated with the 2→ 1 transition of the Υ(2S). Accordingly, we

have:

Γ21(Y : GEM)

≈ f2{(αs/2π)(10,042)(2me)(mρ/mY (2S))
2[mρ/(mY (2S) −mΥ(1S))](qeff)

4

+ 2(α/2π)(10,042)(2me)(mρ/mΥ(2S)
2[mρ/(mY (2S) −mΥ(1S))](q

4
eff
)}. (10)

Setting Γ21(Y : GEM) equal to Γ21(Y : PDG) = 7.05Kev and making the appro-

priate substitutions yields:

(5/9){3055+ 197}q4
eff
= 7.05. (11a)

Thus,

1807q4
eff
= 7.05. (11b)

Hence,

q4
eff
= 0.003901, (11c)

leading to

qeff = 0.2499 ≈ 0.75|qb |. (11d)

The corresponding effective charge (Qeff) associated with the 2 → 0 transition of

the Υ(2S) is determined via

f2{[(αs/2π)(10,042)(2me)(mρ/mΨ(2S))
3(Qeff)

4

+ 3(α/2π)(10,042)(2me)(mρ/mΨ(2S)
3(Qeff)

4] = 24.93Kev.
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Thus,

(5/9){1716+ 166}Q4
eff
= 24.93. (12a)

Hence,

1046Q4
eff
= 24.93, (12b)

leading to

Q4
eff
= 0.023834. (12c)

Therefore,

Qeff = 0.3929 ≈ 1.18|qb |. (12d)

Analogous to the Ψ(2S), characterizing the square of the effective matrix

element in the 2 → 1 transition as 〈|V21(Y )|2〉 and that of the 2 → 0 transition

as 〈|V20(Y )|2〉, we see that

〈|V21(Y )|2〉/〈|V20(Y )|2〉 = q4
eff
/Q4

eff
= 0.003901/0.023834

= 0.1637, (13)

indicating that the interaction potential matrix element in the longitudinal gluon

emission is roughly 40% that of the transverse gluon emission in the case of the

Υ(2S).

4. Concluding Remarks

We may summarize some of the important findings of the present work in

Table 1, seen below, in which we list the type of meson from lightest to heaviest,

the associated form factor, fi , which also represents the fraction of the meson’s

original QQ∗ state which makes a transition to the QQ∗ state associated the next

lowest mass, the decay mode (if any) associated with the fraction, (1− fi), of the

original QQ∗ state which does not make the above transition, and whether or not

there is a two-gluon mode of decay (Y = “yes”; N = “no”).

Table 1. Summary of results as regards form factors in the present work.

Index Meson fi Original QQ∗ state’s decay mode Two-gluon mode?

1 Ψ(1S) (1− q2
s
) = (8/9) cc∗: leptons N

2 Ψ(2S) (1− q2
s
) = (8/9) cc∗: leptons and hadrons N

3 Υ(1S) 1 Y

4 Υ(2S) (1− q2
c
) = (5/9) bb∗: leptons Y

We note that fi is either 1 or (1−q2
z
), where qz represents the charge of the quark

of the next lowest mass from the type which originally forms either the Ψ(1S) or
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theΥ(1S). The non-zero form factors arise, we believe, because of the impossibility

in three cases . . . or the great difficulty in the case of the Ψ(2S) . . . to be able to

decay via two hadrons bearing the Q and Q∗ of the original construction of the

given meson. The lightest charm-bearing meson, for example, is the D of mass

1870 Mev. The Ψ(1S) has a mass of 3097 Mev, which is only 1.66 times the mass

of the D. The Ψ(2S), on the other hand, has a mass (3686 Mev) of 1.97 times

the mass of the D. Because of the Uncertainty Principle, therefore, some decays

involving two Ds may at least be virtually possible for the Ψ(2S), which explains

why some of the cc∗ states associated with the Ψ(2S) do decay into hadrons. The

B meson, however, has a mass of 5366 Mev, 57% as massive as the Υ(1S) and 54%

as massive as the Υ(2S). Hence the original bb∗ states making up either the Υ(1S)

or the Υ(2S) do not decay into hadrons.

The form factor analysis presented above yields, in second order approximation,

either exact or nearly exact matches with experiment as to hadronic partial widths

and full widths associated with complete dissolution of all mesons listed above

calculated via the GEM (see White (2010) in addition to the present article). Of the

four mesons listed above, for only theΨ(2S) is the partial leptonic width associated

with the decay to complete dissolution noticeably discrepant from experimental

results as calculated via the GEM (8.14 Kev via the GEM vs. 5.71 Kev as per the

PDG). However, we note in the latter connection that Γ20−L(Ψ : PDG) has risen

by 15% from 2004 (PDG (2004)) to 2008 (PDG(2008)), viz., from 4.96 Kev to

5.71 Kev. At that rate of increase, in another dozen years or so there may be

another match for the GEM even there.

Our findings herein also include some interesting results regarding the 2 → 1

transition, the transition involving longitudinal gluons of much less energy than

those transverse gluons involved in the 2 → 0 transition. We summarize such

results in Table 2 below, in which we list the meson, the type of transition,

the associated effective square of the relevant matrix element and its associated

effective charge, and the ratio of the “|V |2” associated with the 2→ 1 transition to

that associated with the 2→ 0 transition.

Table 2. Longitudinal gluon matrix elements vs. transverse gluon matrix elements.

Meson qeff 〈|V21(X )|2〉 〈|V20(X )|2〉 Qeff 〈|V21(X )|2〉/〈|V20(X )|2〉

Ψ(2S) 0.2924 0.007309 0.034337 0.4305 0.2129

Υ(2S) 0.2499 0.003901 0.023834 0.3929 0.1637

From the above it is seen that the average interaction potential responsible for

the “soft” longitudinal gluon emission is roughly four ninths that of the “hard”

transverse gluon emission (from
� 1

2
(
p

0.2129 +
p

0.1637)
�

= 0.4330 ≈ (4/9)).
Hence, it appears that the mitigating factor in the longitudinal gluon emission as
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compared to transverse gluon emission is electromagnetic in origin. It is easily

shown, for example, that if we simply multiply those parts of Figure 4 that

represent the 2→ 0 transition of the Ψ(2S) resulting in hadronic decay products

(after replacing one factor of “(mρ/mΨ(2S))” by “[mρ/(mΨ(2S) − mΨ(1S))]” in the

GEM formula for Γ20(Ψ : GEM)) by q4
c
= (2/3)4 = 16/81, we obtain 160 Kev for

the hadronic partial width of the 2→ 1 transition of the Ψ(2S), a figure reasonably

close to the PDG (2008) report of 178 Kev. Hence, once again, the electromagnetic

interaction shows itself to be an important constituent in the formation and decay

of vector mesons.
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