Communications in Mathematics and Applications Volume 1, Number 3 (2010), pp. 145–151 © RGN Publications

RGN

http://www.rgnpublications.com

Y. Talebi, T. Amoozegar, and Zh. Mansoury

Abstract. Let τ_M be any preradical for $\sigma[M]$ and N any module in $\sigma[M]$. In [2], Al-Takhman, Lomp and Wisbauer defined and studied the concept of τ_M -supplemented module. In this paper we define the concept of weakly τ_M -supplemented module and investigate some properties of such modules. We show that weakly τ_M -supplemented module N is τ_M -semilocal (i.e., $N/\tau_M(N)$ is semisimple) and that R is a τ -semilocal ring if and only if $_RR$ (or R_R) is weakly τ_M -supplemented.

1. Introduction

Throughout this paper R will denote an arbitrary associative ring with identity and all modules will be unitary right R-modules. Let $M \in Mod$ -R. By $\sigma[M]$ we mean the full subcategory of Mod-R whose objects are submodules of M-generated modules. For any module M, τ_M will denote a preradical in $\sigma[M]$. Let $N \in \sigma[M]$ be a module. Following [2], a submodule $K \subseteq N$ is called τ_M -supplement provided there exists some $U \subseteq N$ such that U + K = N and $U \cap K \subseteq \tau_M(K)$. N is called τ_M -supplemented if each of its submodule has a τ_M -supplement in N. N is called amply τ_M -supplemented, if for all submodules K and L of N with K + L = N, Kcontains a τ_M -supplement of L in N.

A module $N = \sum_{i \in I} N_I$ is called irredundant sum if for $j \in I$ we have $N \neq \sum_{i \neq j} N_i$. A precadical τ for $\sigma[M]$ is said to be idempotent, if for each $N \in \sigma[M]$, $\tau(\tau(N)) = \tau(N)$. $K \ll N$ means that K is small in N (i.e. $\forall L \leq N, L + K \neq N$). By $K \leq_e N$ we mean that K is an essential submodule of N (i.e. $\forall 0 \neq L \leq N, L \cap K \neq 0$).

In Section 2, we study some properties of τ_M -supplemented and amply τ_M -supplemented modules. In [6], Wang and Ding defined the concept of weakly generalized supplemented modules. In Section 3, we define weakly τ_M -supplemented modules, it is clear that every weakly τ_M -supplemented

²⁰⁰⁰ Mathematics Subject Classification. 16L30, 16D60, 16D80.

Key words and phrases. τ_M -Supplement submodules; Weakly τ_M -supplemented modules; τ_M -Semilocal rings.

is weakly generalized supplemented module. In Section 4, we show that every weakly τ_M -supplemented module N is τ_M -semilocal (i.e., $N/\tau_M(N)$ is semisimple) and that R is a τ -semilocal ring if and only if $_RR$ (or R_R) is weakly τ_M -supplemented.

Lemma 1.1 (See [3, Proposition 5.20]). Suppose that $K_1 \le N_1 \le N$, $K_2 \le N_2 \le N$, and $N = N_1 \oplus N_2$. Then $K_1 \oplus K_2 \le N_1 \oplus N_2$ if and only if $K_1 \le N_1$ and $K_2 \le N_2$.

2. τ_M -Supplemented and τ_M -Amply Supplemented Modules

In [2], Al-Takhman, Lomp and Wisbauer defined and studied the concept of τ_M -supplemented module. In this section we investigate some properties of such modules.

Proposition 2.1. Let $N \in \sigma[M]$ be a τ_M -supplemented module and L a submodule of N with $L \cap \tau_M(N) = 0$. Then L is semisimple. In particular, a τ_M -supplemented module N with $\tau_M(N) = 0$ is semisimple.

Proof. Let L' be any submodule of L. Since N is a τ_M -supplemented module, there exists $L'' \leq N$ such that L' + L'' = N and $L' \cap L'' \subseteq \tau_M(L'')$. Thus $L = L \cap N = L \cap (L' + L'') = L' + L \cap L''$. Since $L' \cap L'' \subseteq \tau_M(L'')$ and $L' \cap L \cap L'' = L' \cap L'' \subseteq L \cap \tau_M(L'') \subseteq L \cap \tau_M(N) = 0$, $L = L' \oplus (L \cap L'')$. So L is semisimple.

Proposition 2.2. Let $N \in \sigma[M]$ be a τ_M -supplemented module. Then $N = H \oplus L$, where H is semisimple and L is a module with essential preradical.

Proof. For $\tau_M(N)$, there exists $H \leq N$ such that $H \cap \tau_M(N) = 0$ and $H \oplus \tau_M(N) \leq_e N$. Since N is a τ_M -supplemented module, there exists $L \leq N$ such that H + L = N and $H \cap L \subseteq \tau_M(L)$. Since $H \cap L = H \cap (H \cap L) \subseteq H \cap \tau_M(L) \subseteq H \cap \tau_M(N) = 0$, $N = H \oplus L$. By Proposition 2.1, H is semisimple. Thus $\tau_M(N) = \tau_M(H) \oplus \tau_M(L) = \tau_M(L)$. Since $H \oplus \tau_M(N) \leq_e N = H \oplus L$, i.e., $H \oplus \tau_M(L) \leq_e N = H \oplus L$, $\tau_M(L) \leq_e L$ (Lemma 1.1). This completes the proof.

Let *N* be a module and $K \leq N$. *K* is said to has ample τ_M -supplement in *N* if for every submodule *L* such that N = K + L, *K* has a τ_M -supplement in *N*.

Proposition 2.3. Let $N \in \sigma[M]$ be a module and $N = U_1 + U_2$. If U_1, U_2 have ample τ_M -supplements in N, then also $U_1 \cap U_2$ has.

Proof. Let *V* ≤ *N* and $U_1 \cap U_2 + V = N$. Then $U_1 = U_1 \cap U_2 + (V \cap U_1)$ and $U_2 = U_1 \cap U_2 + (V \cap U_2)$, so $N = U_1 + V \cap U_2$ and $N = U_2 + V \cap U_1$. Since U_1, U_2 have amply τ_M -supplement module in *N*, there exist $V'_2 \leq V \cap U_2$ and $V'_1 \leq V \cap U_1$ such that $U_1 + V'_2 = N$ and $U_1 \cap V'_2 \subseteq \tau_M(V'_2)$, and $U_2 + V'_1 = N$ also $U_2 \cap V'_1 \subseteq \tau_M(V'_1)$. Thus $V'_1 + V'_2 \leq V$ and $U_1 = U_1 \cap U_2 + V'_1$ and $U_2 = U_1 \cap U_2 + V'_2$. Therefore $(U_1 \cap U_2) + (V'_1 + V'_2) = N$ and $(U_1 \cap U_2) \cap (V'_1 + V'_2) = (U_2 \cap V'_1) + (U_1 \cap V'_2) \subseteq \tau_M(V'_1 + V'_2)$. This completes the proof. □

146

Lemma 2.4. Let U, V be submodules of $N \in \sigma[M]$ and $V = \tau_M$ -supplement submodule of U in N. If U is a maximal submodule of N, then $U \cap V = \tau_M(V)$ is a unique maximal submodule of V.

Proof. Since *V*/(*U* ∩ *V*) ≃ *N*/*U*, *U* ∩ *V* is a maximal submodule of *V*, and hence $\tau_M(V) \subseteq U \cap V$. Since $U \cap V \subseteq \tau_M(V)$, $U \cap V = \tau_M(V)$, as desired. □

Definition 2.5. A module *H* is called τ_M -hollow if for every proper submodule *H'* of *H*, $H' \subseteq \tau_M(H)$.

Theorem 2.6. Let $N \in \sigma[M]$ be a module. N is a sum of τ_M -hollow submodules and $\tau_M(N) \ll N$ if and only if N is an irredundant sum of local modules and $\tau_M(N) \ll N$.

Proof. Let $N = \sum_{I} L_i$ where $L_i(i \in I)$ is τ_M -hollow submodule of N. Then $N/\tau_M(N) = \sum_{I} (L_i + \tau_M(N))/\tau_M(N)$. Since $\tau_M(L_i) \subseteq L_i \cap \tau_M(N)$ and $(L_i + \tau_M(N))/\tau_M(N) \simeq L_i/(L_i \cap \tau_M(N))$, these factors are either simple or zero. Thus we have $N/\tau_M(N) = \bigoplus_{I'} (L_i + \tau_M(N))/\tau_M(N)$. Therefore $N = \sum_{I'} L_i$ is an irredundant sum of local submodules $L_i(i \in I' \subseteq I)$ (for $\tau_M(N) \ll N$), as required.

3. τ_M -Weakly Supplemented Modules

Definition 3.1. A submodule $K \subseteq N$ is called weak τ_M -supplement provided there exists $U \subseteq N$ such that U + K = N and $U \cap K \subseteq \tau_M(N)$.

Definition 3.2. A module $N \in \sigma[M]$ is said to be a weakly τ_M -supplemented module if for any submodule $N' \leq N$, there exists $L \leq N$ such that N = N' + L and $N' \cap L \subseteq \tau_M(N)$.

Proposition 3.3. Let $N \in \sigma[M]$ be a weakly τ_M -supplemented module. Then:

- (i) If τ_M is idempotent, then every τ_M -supplement submodule of N is a weakly τ_M -supplemented module.
- (ii) Every factor module of N is a weakly τ_M -supplemented module.

Proof. (i) Let *K* be a τ_M -supplement submodule in *N*. For any submodule $N' \leq K$, since *N* is a weakly τ_M -supplemented module, there exists $L \leq N$ such that N = N' + L and $N' \cap L \subseteq \tau_M(N)$. Thus $K = K \cap N = K \cap (N' + L) = N' + (K \cap L)$ and $N' \cap (K \cap L) = N' \cap L = K \cap (N' \cap L) \subseteq K \cap \tau_M(N) = \tau_M(K)$. Therefore *K* is a weakly τ_M -supplemented module.

(ii) Let N' be any submodule of N and L/N' any submodule of N/N'. For $L \leq N$, there exists $K \leq N$ such that L + K = N and $K \cap L \subseteq \tau_M(N)$ since N is a weakly τ_M -supplemented module. Thus N/N' = L/N' + (K + N')/N'. Let $f : N \to N/N'$ be a canonical epimorphism. Since $K \cap L \subseteq \tau_M(N)$, $(L/N') \cap ((K + N')/N') = (L \cap (K + N'))/N' = (N' + (K \cap L))/N' = f(L \cap K) \subseteq f(\tau_M(N)) \subseteq \tau_M(N/N')$. This completes the proof.

Lemma 3.4. Let $K, N_1 \leq N \in \sigma[M]$ and N_1 a weakly τ_M -supplemented module. If $N_1 + K$ has a weak τ_M -supplement in N, then also K has.

Proof. By assumption, there exists $N' \leq N$ such that $(N_1 + K) + N' = N$ and $N' \cap (N_1 + K) \subseteq \tau_M(N)$. Since N_1 is a weakly τ_M -supplemented module, there exists a submodule $L \leq N_1$ such that $N_1 \cap (N' + K) + L = N_1$ and $L \cap (N' + K) \subseteq \tau_M(N_1)$. Thus N = K + N' + L and $K \cap (N' + L) \leq (K + N_1) \cap N' + L \cap (N' + K) \subseteq \tau_M(N)$, that is, N' + L is a weak τ_M -supplement of K in N.

Proposition 3.5. Let $N = N_1 + N_2$. If N_1 and N_2 are weakly τ_M -supplemented module, then N is a weakly τ_M -supplemented module.

Proof. Let N' be a submodule of N. Since $N_1 + N_2 + N' = N$ trivially has a weak τ_M -supplement in N, $N_2 + N'$ has a weak τ_M -supplement in N (Lemma 3.4). Thus N' has a weak τ_M -supplement in N (Lemma 3.4). So N is a weakly τ_M -supplemented module.

Corollary 3.6. Every finite sum of weakly τ_M -supplemented modules is weakly τ_M -supplemented.

A module N is called τ_M -semilocal if $N/\tau_M(N)$ is semisimple.

Theorem 3.7. Let $N \in \sigma[M]$ be a module and $\tau_M(N) \ll N$. Then the following statements are equivalent.

- (i) N is a weakly τ_M -supplemented module.
- (ii) N is τ_M -semilocal.
- (iii) There is a decomposition $N = N_1 \oplus N_2$ such that N_1 is semisimple, $\tau_M(N) \leq_e N_2$ and N_2 is τ_M -semilocal.

Proof. (i) \Longrightarrow (ii) Let *L* be any submodule of *N* containing $\tau_M(N)$. Since *N* is weakly τ_M -supplemented module, there exists $N' \leq N$ such that N' + L = N and $N' \cap L \leq \tau_M(N)$. Thus $N/\tau_M(N) = L/\tau_M(N) + (N' + \tau_M(N))/\tau_M(N)$ and $L/\tau_M(N) \cap (N' + \tau_M(N))/\tau_M(N) = (L \cap N' + \tau_M(N))/\tau_M(N) = 0$. So $N/\tau_M(N) = L/\tau_M(N) \oplus (N' + \tau_M(N))/\tau_M(N)$, as required.

(ii) \Longrightarrow (i) For any submodule $N' \leq N$, since $N/\tau_M(N)$ is semisimple, there exists a submodule $L \leq N$ containing $\tau_M(N)$ such that $N/\tau_M(N) = (N' + \tau_M(N))/\tau_M(N) \oplus L/\tau_M(N)$. Thus $N = N' + \tau_M(N) + L$. Since $\tau_M(N) \ll N$, N = N' + L. $N' \cap L \subseteq \tau_M(N)$ is obvious.

(ii) \Longrightarrow (iii) Let N_1 be a complement of $\tau_M(N)$ in N. Then $N_1 \simeq (N_1 \oplus \tau_M(N))/\tau_M(N)$ is a direct summand of $N/\tau_M(N)$, and hence it is semisimple. Therefore, there exists a semisimple submodule $N_2/\tau_M(N)$ such that $(N_1 \oplus \tau_M(N))/\tau_M(N) \oplus N_2/\tau_M(N) = N/\tau_M(N)$. Thus $N_1 + N_2 = N$ and $N_1 \cap N_2 \leq \tau_M(N) \cap N_1 = 0$ implies $N = N_1 \oplus N_2$. Since $N_1 \oplus \tau_M(N) \leq_e N = N_1 \oplus N_2$, $\tau_M(N) \leq_e N_2$ by Lemma 1.1. **Corollary 3.8.** Let $N \in \sigma[M]$ be a module with $\tau_M(N) = 0$. Then N is weakly τ_M -supplemented if and only if N is semisimple.

Proof. This follows by Theorem 3.7.

4. τ_M -Semilocal Modules and Rings

Let Gen(M) denote the class of *M*-generated modules.

Theorem 4.1. The following statements for a finitely generated module *M* are equivalent:

- (a) *M* is τ_M -semilocal;
- (b) Any $N \in Gen(M)$ is τ_M -semilocal;
- (c) Any $N \in Gen(M)$ is a direct sum of a semisimple module and a τ_M -semilocal module with essential radical;
- (d) Any $N \in Gen(M)$ with small preradical is weakly τ_M -supplemented.

Proof. (a) \Longrightarrow (b) For every $N \in Gen(M)$ there exists a set Λ and an epimorphism $f: M^{(\Lambda)} \to N$. Since $f(\tau_M(M^{(\Lambda)})) \subseteq \tau_M(N)$ and $M^{(\Lambda)}/\tau_M(M^{(\Lambda)}) \simeq (M/\tau_M(M))^{(\Lambda)}$ always holds we get an epimorphism $\overline{f}: (M/\tau_M(M))^{(\Lambda)} \to N/\tau_M(N)$. Hence N is τ_M -semilocal.

(b) \Longrightarrow (a) It is trivial.

 $(d) \iff (b) \iff (c)$ By Theorem 3.7.

The ring *R* is called τ_M -semilocal if $_RR$ (or R_R) is a τ_M -semilocal *R*-module.

Proposition 4.2. For a ring R the following statements are equivalent:

- (a) $_{R}R$ is weakly τ_{M} -supplemented;
- (b) R is τ_M -semilocal;
- (c) R_R is weakly τ_M -supplemented.

Proof. Apply Theorem 3.7 and use that ' τ_M -semilocal' is a left-right symmetric property.

Theorem 4.3. For any ring R the following statements are equivalent:

- (a) R is τ_M -semilocal;
- (b) Every left R-module is τ_M -semilocal;
- (c) Every left R-module is the direct sum of a semisimple module and a τ_M -semilocal module with essential preradical;
- (d) Every left R-module with small preradical is weakly τ_M -supplemented.

Proof. It follows from Theorem 4.1.

We call $K \tau_M$ -cover of a module N if there exists an epimorphism $f : K \to N$ such that $Ker(f) \subseteq \tau_M(K)$. K is called a τ_M -projective cover, τ_M -free cover of Nrespectively if K is a τ_M -cover of N and K is a projective, free module resp.

Proposition 4.4. Every finitely generated *R*-module over a τ_M -semilocal ring is a direct summand of a module having a finitely generated τ_M -free cover.

Proof. Let *N* be a finitely generated *R*-module. Then there exists a number *k* and a epimorphism $f : \mathbb{R}^k \to N$. Since *R* is τ_M -semilocal, \mathbb{R}^k is weakly τ_M -supplemented. Hence Ker(f) has a weak τ_M -supplement $L \subseteq \mathbb{R}^k$. Thus the natural projection $\mathbb{R}^k \to N \oplus (\mathbb{R}^k/L)$ with kernel $Ker(f) \cap L \subseteq \tau_M(\mathbb{R}^k)$ implies that \mathbb{R}^k is a τ_M -projective cover for $N \oplus (\mathbb{R}^k/L)$.

Lemma 4.5. Let R be a ring, $r, a \in R$ and b := 1 - ra. Then $Ra \cap Rb = Rab$.

Proof. See [4, Lemma 3.4].

Proposition 4.6. For any ring R the following statements are equivalent:

(a) Every principal left ideal of R has a weak τ_M -supplement in $_RR$;

(b) $R/\tau_M(R)$ is von Neumann regular;

(c) Every principal right ideal of R has a weak τ_M -supplement in R_R .

Proof. (a) \Longrightarrow (b) Let $a \in R$. By assumption there exists a weak τ_M -supplement $I \subset R$ of Ra. Then there exist $b \in R$ and $x \in I$ such that x = 1 - ba. Moreover, by Lemma 4.5, $Rax = Ra \cap Rx \subseteq Ra \cap I \subseteq \tau_M(R)$ implies $ax = a - aba \in \tau_M(R)$. Thus $R/\tau_M(R)$ is von Neumann regular.

(b) \Longrightarrow (a) For any $a \in R \setminus \tau_M(R)$ we get an element $b \in R \setminus \tau_M(R)$ such that $a - aba \in \tau_M(R)$. Then $Ra \cap R(1 - ba) = R(a - aba) \subseteq R\tau_M(R) \subseteq \tau_M(R)$ (Lemma 4.5). Hence R(1 - ba) is a weak τ_M -supplement of Ra in $_RR$.

(b) \Longrightarrow (c) Analogous.

References

- R. Alizade and E. Bugukasik, Cofinitely weakly supplemented modules, *Comm. Algebra* 31 (2003), 5377–5390.
- [2] K. Al-Takhman, C. Lomp and R. Wisbaure, τ -complemented and τ -supplemented modules, *Algebra and Discrete Mathematics* **3** (2006), 1–15.
- [3] F.W. Anderson and K.R. Fuller, *Rings and Categories of Modules*, Springer-Verlog, New York, 1974.
- [4] C. Lomp, On semilocal modules and rings, Comm. Algebra 27 (4) (1999), 1921–1935.
- [5] S.H. Mohamed and B.J. Müller, *Continuous and Discrete Modules*, London Math. Soc. Lecture Notes Series 147, Cambridge, University Press, 1990.
- [6] Y. Wang, and N. Ding, Generalized supplemented modules, Taiwanese Journal of Mathematics 10 (2006), 1589–1601.
- [7] R. Wisbauer, *Foundations of Module and Ring Theory*, Gordon and Breach, Reading, 1991.

150

Y. Talebi, Department of Mathematics, Faculty of Science, University of Mazandaran, Babolsar, Iran. *E-mail*: talebi@umz.ac.ir

T. Amoozegar, Department of Mathematics, Faculty of Science, University of Mazandaran, Babolsar, Iran. *E-mail*: t.amoozegar@umz.ac.ir

Zh. Mansoury, Department of Mathematics, Faculty of Science, University of Mazandaran, Babolsar, Iran. E-mail: zhila-mansoury@yahoo.com

Received November 21, 2009 Accepted November 25, 2010