Homogeneous Sagbi Bases Under Polynomial Composition

Nazish Kanwal
Department of Mathematical Sciences, Institute of Business Administration, Karachi, Pakistan nkanwal@iba.edu.pk

Abstract

The process of replacing indeterminates in a Polynomial with other polynomials is the polynomial composition. Homogeneous Sagbi bases are the Sagbi bases generated by the subset of homogeneous polynomials. In this article, we present adequate and essential criterion on a set θ of polynomials to guarantee that the composed set $S \circ \theta$ is Homogeneous Sagbi basis whenever S is a Homogeneous Sagbi basis.

Keywords. Homogeneoous Sagbi basis; Polynomial composition
MSC. 13P10
Received: February 7, 2019
Accepted: May 15, 2019
Copyright © 2019 Nazish Kanwal. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Our main interest in this field is inspirited by [6, 7], where the authors address the issue of the behaviour of Gröbner bases [1,2] under polynomials composition. Further expressly, let \ominus be a list of polynomials which may be as many in number as the indeterminates in our polynomial ring. The research investigation then is under which criterion on these polynomials the facts demonstrate that for any Homogeneous Gröbner basis G (under some term ordering), the composed set $G \circ \ominus$ would be Homogeneous Gröbner basis (possibly under different term ordering). If this happens, we state that the composition commutes with Homogeneous Gröbner basis computation. The result given in [6] is that, this is affirmative if and only if θ is a list of permuted powering and composition by θ is homogeneously compatible under the term ordering.

The behaviour of Sagbi (Subalgebra Anolog to Gröbner Bases for Ideals) bases under polynomials composition has extensively been discussed in research papers [5, 11]. Finally, composition of polynomial is an interesting and useful operation with an extensive number of uses in material sciences and arithmetic. Actually, we usually work with a list of polynomials where the indeterminates are given in the form of other indeterminates.

In this paper, we developed a slightly distinct case, that is, we examine the issue of the behaviour of HSB (homogeneous Sagbi bases) under composition of homogeneous polynomials of same degree. Let $K\left[x_{1}, \ldots, x_{n}\right]$ denote the polynomial ring over the field K and $F \subset K\left[x_{1}, \ldots, x_{n}\right]$ and let S be a $H S B$ (under the term ordering $>$) and $\Theta=\left(\theta_{1}, \ldots, \theta_{n}\right)$ such that, θ_{i} are homogeneous polynomials in $K\left[x_{1}, \ldots, x_{n}\right]$ with the property that, degree of each θ_{i} is same and $S \circ \theta$ is the composed set obtained by replacing each x_{i} by θ_{i} in S. Therefore, when does $S \circ \theta$ is $H S B$ under the same term ordering? We investigate this issue and provide a brief answer. We say that $H S B$ computation commutes with composition by θ, if the composed set $S \circ \ominus$ is also HSB.

The paper is organised as follows. In Section 2, we give a brief review of Sagbi bases theory and composition of polynomials and also give the theory of $H S B$. In Section 3, we state the main result (Theorem 3.1) of this paper and also provide its proof.

2. Notation and Definitions

In this section, we recall some concepts and basic properties of Sagbi basis theory and composition of polynomials that will be used in the ensuing sections. The reader who knows about the theory is also additionally urge to skim through this area so as to get acquainted with the notation.

By mean of a monomial in $K\left[x_{1}, \ldots, x_{n}\right]$, is an element of the form $x_{1}^{\alpha_{1}} \ldots x_{n}^{\alpha_{n}}$ with $\alpha_{1}, \ldots, \alpha_{n} \in$ $\mathbb{N}=0,1,2, \ldots$, Mon $_{n}$ represent the set of all monomials. Note that $1=x_{1}^{0} \ldots x_{n}^{0} \in$ Mon $_{n}$.

If $G \subset K\left[x_{1}, \ldots, x_{n}\right]$ (may be infinite), then $K[G]$ represent the subalgebra of $K\left[x_{1}, \ldots, x_{n}\right]$ generated by G. This notion is natural as the elements of $K[G]$ are specifically the polynomials in the set of given indeterminates G, observed as elements of $K[G]$.

Here, we list the notations which will be used throughout the paper.

Notation 2.1.

K	A field
σ, δ, η	A monomial, that is, $x_{1}^{\alpha_{1}}, \ldots, x_{n}^{\alpha_{n}}$ for some $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{N}$
$>$	A global ordering (i.e. well ordering)
$L C_{>}(g)$	The leading coefficient of g under the term order $>$
$L M_{>}(g)$	The leading monomial of g under the term order $>$
$L T_{>}(g)$	The leading term of g under the term order $>$, and $L T_{>}(g)=L C_{>}(g) L M_{>}(g)$
$L M_{>}(G)$	The set $\left\{L M_{>}(g) \mid g \in G\right\}$
\ominus	A list $\left(\theta_{1}, \ldots, \theta_{n}\right)$ of n non-zero homogeneous polynomials of same degree
	in $K\left[x_{1}, \ldots, x_{n}\right]$
$L M(\ominus)$	The list $\left(L M\left(\theta_{1}\right), \ldots, L T\left(\theta_{n}\right)\right)$

2.1 Review of Sagbi Bases

In this section we collect the theory regarding Sagbi bases that we required (for a detailed annotation, see [9], [10]).

Definition 2.2 ([5, Definition 2.1]). A finite power product of the form $m(G)=g_{1}^{\alpha_{1}} \ldots g_{s}^{\alpha_{s}}$ is called a G-monomial, where $g_{i} \in G$ for $i=1, \ldots, s$, and $\alpha_{1}, \ldots, \alpha_{s} \in \mathbb{N}$.

Definition 2.3 ([5, Definition 2.2]). A subset S (may be infinite) of $K[G]$ is called Sagbi basis of $K[G]$ with respect to $>$ if

$$
K\left[L M_{>}(K[G])\right]=K\left[L M_{>}(S)\right] .
$$

Thus a parallel criterion for Sagbi bases is that, if the leading monomial of each element in S can be written in the power products of leading monomials of elements in $K[G]$ then S is a Sagbi basis.

We can show that, S generates $K[G]$ whenever S is a Sagbi basis of $K[G]$, i.e. $K[G]=K[S]$. When we say that S is a Sagbi basis, we simply mean that S is a Sagbi basis of $K[S]$.

Definition 2.4 ([11, Definition 2]). If $L M_{>}(m(G))=L M_{>}(\bar{m}(G))$, then we state that, the G-monomials $m(G)$ and $\bar{m}(G)$ form a critical pair $(m(G), \bar{m}(G))$ of G and if there exist a constant $a \in K$ such that leading coefficients of $m(G)$ and $a \bar{m}(G)$ becomes same, then corresponding T-polynomial of critical pair ($m(G), \bar{m}(G)$) is:

$$
T(m(G), \bar{m}(G))=m(G)-a \bar{m}(G)
$$

Following theorem gives the criterion for a set to be a Sagbi basis of $K[G]$.
Theorem 2.5 ([11, Theorem 1]). A subset S of $K\left[x_{1}, \ldots, x_{n}\right]$ is a Sagbi basis with respect to >, if and only if, the T-polynomials of each critical pair $(m(S), \bar{m}(S))$ of S either equal to zero, or has a following representation

$$
T(m, \bar{m})=\sum_{i=1}^{t} a_{i} m_{i}(S), L M(\bar{m}(S))=L M_{>}(m(S))>L M_{>}\left(m_{i}(S)\right), \quad \text { for all } i
$$

where the a_{i} are constant $\in K$ and m_{i} are monomials.

2.2 Composition of Polynomials

Now, we explain the procedure of composition of polynomials.
Definition 2.6 ([11, Definition 3]). Let $\Theta=\left(\theta_{1}, \ldots, \theta_{n}\right)$ be a list of polynomials of $K\left[x_{1}, \ldots, x_{n}\right]$, and let $h \in K\left[x_{1}, \ldots, x_{n}\right]$. We describe the composition of h by θ, denoted by $h \circ \theta$, is the polynomial obtained from h by replacing each occurrence of the x_{i} by θ_{i}. For a subset $H \in K\left[x_{1}, \ldots, x_{n}\right], H \circ \ominus=\{h \circ \ominus \mid h \in H\}$ is the composed set of H by Θ.

Now, we state some elementary properties and facts about the composition and leading monomials. We will be used these throughout in the composition of Sagbi bases.

Proposition 2.7 (Hong [4, Proposition 4.1]).
(1): $\left(g_{1}+g_{2}\right) \circ \theta=g_{1} \circ \theta+g_{2} \circ \theta$.
(2): $\left(g_{1} g_{2}\right) \circ \theta=\left(g_{1} \circ \theta\right)\left(g_{2} \circ \theta\right)$.
(3): $L M_{>}\left(g_{1} g_{2}\right)=L M_{>}\left(g_{1}\right) L M_{>}\left(g_{2}\right)$.
(4): $L M_{>}(\sigma \circ \theta)=\sigma \circ\left(L M_{>}(\theta)\right)$.

Remark 2.8 ([5, Remark 2.7]). We have a natural correspondence between the set $G=$ $\left\{g_{1}, g_{2}, \ldots\right\}$ and $G \circ \theta=\left\{g_{1} \circ \theta, g_{2} \circ \theta, \ldots\right\}$, therefore for any G-monomial $m(G)$, its composition with Θ satisfies

$$
m(G) \circ \theta=m(G \circ \theta) .
$$

Also, all the critical pairs of $G \circ \ominus$ are of the form ($m(G \circ \ominus$), $\bar{m}(G \circ \ominus)$), for some G-monomials $m(G), \bar{m}(G)$.

Definition 2.9 ([4, Definition 3.3]). We state that composition by \ominus is compatible with term ordering $>$ if and only if all monomials σ and δ, we have

$$
\sigma>\delta \Longrightarrow \sigma \circ L M(\theta)>\delta \circ L M(\ominus) .
$$

Definition 2.10 ([5, Definition 2.11]). We state that composition by \ominus is compatible with nonequality, if, for all monomials σ, δ we have

$$
\sigma \neq \delta \Longrightarrow \sigma \circ L M(\ominus) \neq \delta \circ L M(\ominus)
$$

2.3 Homogeneous Sagbi Bases

Homogeneous Sagbi bases are one of the important structures in commutative algebra. Here, we collect the theory related to $H S B$ that we will required (for a detailed review, we refer to [8-10]).

Definition 2.11. A Sagbi basis S is said to be $H S B$ if each element of S is a homogeneous polynomial.

Remark 2.12. Particularly it pursues that any subset S of $K\left[x_{1}, \ldots, x_{n}\right]$ involving only of monomials (or coefficients times monomials) is $H S B$; and all T-polynomials are then surely equal to zero.

Following is an example of computing $H S B$ of a given subalgebra.
Example 2.13. Here, we are computing $H S B$.
$\mathbb{Q}[G] \subset \mathbb{Q}[x, y]$, where $G=\left\{x, y^{2}+x y, x^{3} y\right\}$, we use lexicographical ordering with $y>x$.
We have $L M(G)=\left\{x, y^{2}, x^{3} y\right\}$ and $\operatorname{deg}\left(g_{1}\right)=1, \operatorname{deg}\left(g_{2}\right)=2, \operatorname{deg}\left(g_{3}\right)=4$ and a critical pair $\left(m(G), m^{\prime}(G)\right)=\left(g_{1}^{6} g_{2}, g_{3}^{2}\right)$ and $T\left(m(G), m^{\prime}(G)\right)=x^{7} y=g_{1}^{4} g_{3}$, thus $T\left(m(G), m^{\prime}(G)\right)=0$. On checking, we see that $\left(m(G), m^{\prime}(G)\right)=\left(g_{1}^{6} g_{2}, g_{3}^{2}\right)$ is the only critical pair for G and their corresponding T-polynomial is zero. Therefore $G=\left\{x, y^{2}+x y, x^{3} y\right\}$ is $H S B$ for the subalgebra $\mathbb{Q}[G]$ under lexicographical term ordering.

Now, we define the commutation of composition with $H S B$.

Definition 2.14 (Commutation of $H S B$). Let S be a $H S B$ under the term ordering $>$. If $S \circ \ominus$ is also $H S B$ under the term ordering $>$, then we state that composition by \ominus commutes with HSB computation.

Definition 2.15 ([6, Definition 2.6], Homogeneously Compatible with Term Ordering). We state that composition by \ominus is homogeneously compatible with the term ordering $>$ if and only if for all monomials σ and δ, such that

$$
\sigma>\delta, \operatorname{deg}(\sigma)=\operatorname{deg}(\delta) \Longrightarrow \sigma \circ L M_{>}(\ominus)>\delta \circ L M(\ominus) .
$$

Definition 2.16 (Homogeneously Compatible with non-equality). If for all monomials σ and δ, such that

$$
\sigma \neq \delta, \operatorname{deg}(\sigma)=\operatorname{deg}(\delta) \Longrightarrow \sigma \circ L M(\ominus) \neq \delta \circ L M(\ominus)
$$

then, we state that composition by θ is homogeneously compatible with the non-equality.

3. Main Results

We state our main result.
Theorem 3.1 (Main Theorem). Let
(A) composition by \ominus commutes with HSB computation.
(B) composition by \ominus is homogeneously compatible with the term ordering $>$. then $(A) \Longleftrightarrow(B)$.

The proof of the main theorem is based on the following subsections.

3.1 Proof of Sufficiency

We give some basic results which can be found in [3].
Lemma 3.2. Let composition by \ominus be homogeneously compatible with the term ordering $>$ then for every polynomial g, we have
(1): $L T_{>}(g \circ \theta)=L T_{>}(g) \circ L T_{>}(\ominus)$; and
(2): $L M_{>}(g \circ \theta)=L M_{>}(g) \circ L M_{>}(\theta)$.

Proof. The proofs are similar as in [3].

Lemma 3.3. Let

(A): composition by \ominus is homogeneously compatible with the term ordering; and
(B): composition by \ominus is homogeneously compatible with non-equality.
then $(\mathrm{A}) \Longrightarrow(\mathrm{B})$.
Proof. The proof is similar as the proof (of Lemma 1) in [11].
Lemma 3.4. Let $(m(S \circ \theta), \bar{m}(S \circ \theta))$ is a critical pair of $S \circ \theta$, and composition by θ is homogeneously compatible with the term ordering, then ($m(S), \bar{m}(S)$) is also a critical pair of S.

Proof. Since S-monomials is a power products of polynomials of S and each polynomial is homogeneous this implies that $m(S)$ is homogeneous, also, θ is the list of homogeneous polynomials of same degree therefore, $m(S \circ \theta)=m(S) \circ \theta$ is homogeneous (since $m(S)$ is arbitrary, this hold for $m_{i}(S)$ and $m_{i}(S \circ \ominus)$ for all $\left.i\right)$.

Let $(m(S \circ \theta), \bar{m}(S \circ \theta)$) be a critical pair of $S \circ \theta$. We have $m(S \circ \theta)=m(S) \circ \theta$ and $\bar{m}(S \circ \theta)=\bar{m}(S) \circ \theta$, so by Lemma 3.2 we get $L M_{>} m(S) \circ L M_{>}(\theta)=L M_{>} \bar{m}(S) \circ L M_{>}(\theta)$. Since our composition is also homogeneously compatible with non-equality(by Lemma 3.3), ($m(S)$), ($\bar{m}(S)$) are homogeneous. We get $L M_{>} m(S)=L M_{>} \bar{m}(S)$.
Hence ($m(S), \bar{m}(S)$) is a critical pair of S.
Now, the sufficiency side of the Theorem 3.1 is state as:
Proposition 3.5. (A): the composition by \ominus is homogeneously compatible with the term ordering >; and
(B): the composition by \ominus commutes with HSB computation.
then $(\mathrm{A}) \Longrightarrow(\mathrm{B})$.
Proof. Since composition by \ominus is homogeneously compatible with the term ordering, therefore for all σ, δ with $\sigma>\delta, \operatorname{deg}(\sigma)=\operatorname{deg}(\delta) \Longrightarrow \sigma \circ L M(\ominus)>\delta \circ L M(\ominus)$, for an arbitrary HSBS. We claim that $S \circ \theta$ is $H S B$.

By using Theorem 2.5, let ($m(S \circ \theta), \bar{m}(S \circ \theta)$) be any critical pair of $S \circ \theta$. By Lemma 3.4, we realized that, $(m(S), \bar{m}(S))$ is also a critical pair of S. Since S is $H S B$ therefore, by Theorem 2.5 we can write

$$
\begin{equation*}
m(S)-a \bar{m}(S)=\sum_{i} a_{i} m_{i}(S), \quad(\text { or zero }) \text { where } a, a_{i} \in K \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
L M(\bar{m}(S))=L M_{>}(m(S))>L M_{>}\left(m_{i}(S)\right) \quad \text { for all } i . \tag{3.2}
\end{equation*}
$$

All S-monomials ($m_{i}(S)$) are homogeneous as they are the power products of homogeneous polynomials of S. Composing the equation (3.1) with θ and using Proposition 2.7, we get

$$
\begin{equation*}
m(S \circ \theta)-a \bar{m}(S \circ \theta)=\sum_{i} a_{i} m_{i}(S \circ \theta), \quad(\text { or zero }) . \tag{3.3}
\end{equation*}
$$

We know that, $m_{i}(S \circ \ominus)$ are homogeneous for all i. Composing the inequality in (3.2) by $L M_{>}(\ominus)$, we get

$$
L M_{>}(\bar{m}(S)) \circ L M_{>}(\ominus)=L M_{>}(m(S)) \circ L M_{>}(\ominus)>L M_{>}\left(m_{i}(S)\right) \circ L M_{>}(\ominus) \quad \text { for all } i .
$$

Using Lemma 3.2, this becomes

$$
\begin{equation*}
L M(\bar{m}(S \circ \theta))=L M_{>}(m(S \circ \theta))>L M_{>}\left(m_{i}(S \circ \theta)\right) \quad \text { for all } i . \tag{3.4}
\end{equation*}
$$

The leading terms of left-hands sides of (3.3) cancel. Thus (3.3) and (3.4) together give a representation of Theorem 2.5, also the each polynomial of $S \circ \theta$ is homogeneous therefore, we conclude that $S \circ \theta$ is a $H S B$ with respect to $>$.

3.2 Proof of Necessity

In this section, we give the converse with regard to the Theorem 3.1, that is, we will prove that commutativity implies homogeneously compatibility.

We first show the relation, that is, commutation of $H S B$ implies homogeneously compatibility with non-equality, and by the use of this conclusion we will proof the compatibility with the term ordering. We begin with the following lemma.

Lemma 3.6. Let δ, σ be two monomials of same degree, that is; $\operatorname{deg}(\delta)=\operatorname{deg}(\sigma), \delta \neq \sigma$ but $\delta \circ L M_{>}(\ominus)=\sigma \circ L M_{>}(\ominus)$. Then for every $\eta<\delta$ with $\operatorname{deg}(\eta)=\operatorname{deg}(\delta), S=\{\delta-\eta, \sigma\}$ is HSB.

Proof. We must have both δ and σ are different from 1. Namely if $\sigma=1$ then $\delta \neq 1$, and also we have θ_{i} are non-constant $([11$, Remark 3$]), \delta \circ L M_{>}(\theta)=\sigma \circ L M_{>}(\theta) \neq 1$, a contradiction.

Since $\operatorname{deg}(\eta)=\operatorname{deg}(\delta)$ implies all polynomials of S are homogeneous. So, we just need to prove the more strong case, that is, S do not has any non-trivial critical pairs, that is, if $L M_{>} m(S)=L M_{>} \bar{m}(S)$, then m and \bar{m} both are equal. Then it is obvious that S is $H S B$; and all T-polynomials surely equal to zero. Therefore, assume an arbitrary critical pair $(m(S), \bar{m}(S))$ of S and $L M_{>}(S)=\{\delta, \sigma\}$ we have $L M_{>} m(S)\left(=m\left(L M_{>}(S)\right)\right)=\delta^{k} \sigma^{l}$ and $L M_{>} \bar{m}(S)\left(=\bar{m}\left(L M_{>}(S)\right)\right)=\delta^{s} \sigma^{t}$, and $\delta^{k} \sigma^{l}=\delta^{s} \sigma^{t}$.

Suppose that, this is a non trivial critical pair. therefore, $k \neq s$ and $l \neq t$, further expressly $k>s$ and $l<t$ or with the order reversed. After the cancellation of common powers of δ and σ we thus finish up with $\delta^{a}=\sigma^{b}, a, b>0$ also \ominus is the list of homogeneous polynomials of same degree. Composing this last equality by $L M_{>} \Theta$ we get, $\left(\delta \circ L M_{>}(\Theta)\right)^{a}=\left(\sigma \circ L M_{>}(\theta)\right)^{b}$.

Since $\delta \circ L M_{>}(\ominus)=\sigma \circ L M_{>}(\ominus) \neq 1$, at that point we obviously have $a=b$. From $\delta^{a}=\sigma^{b}$ it now lastly follows that $\delta=\sigma$ a contradiction.

Therefore, we conclude that ($m(S), \bar{m}(S)$) is trivial. Thus, S is $H S B$.

Proposition 3.7. Let

(A): composition by \ominus commutes with HSB computation; and
(B): composition by \ominus is homogeneously compatible with non-equality.
then $(\mathrm{A}) \Longrightarrow(\mathrm{B})$.
Proof. Since composition by \ominus commutes with $H S B$ computation, i.e. each polynomial of $S \circ \theta$ is homogeneous. On contrary suppose that, there exist two monomials δ, σ with $\operatorname{deg}(\delta)=\operatorname{deg}(\sigma), \delta \neq \sigma$ but $\delta \circ L M_{>}(\ominus)=\sigma \circ L M_{>}(\ominus)$; as in the proof of Lemma 3.6 we have $\delta, \sigma \neq 1$. By using Remark 2.12, we know that $S=\{\delta, \sigma\}$ is $H S B$, so $S \circ \theta=\{\delta \circ \theta, \sigma \circ \theta\}$ is again HSB. If $g=\delta \circ \theta-\sigma \circ \theta \in K[S \circ \theta$] is different from 1 or zero, at that point we are finished; as $L M_{>} g<\left(\delta \circ L M_{>}(\ominus)=\sigma \circ L M_{>}(\ominus)\right)$, can then not be written as product from $L M_{>} S \circ \theta=\left\{\delta \circ L M_{>} \ominus, \sigma \circ L M_{>} \ominus\right\}$, so $S \circ \ominus$ cannot be $H S B$.

Now, let $\delta^{\prime}=\delta x_{i}, \sigma^{\prime}=\sigma x_{i}$ for some (arbitrary) $x_{i} \in K\left[x_{1}, \ldots, x_{n}\right]$ such that $x_{i}^{\lambda+1}<\delta^{\prime}$, where $\lambda=\operatorname{deg}(\delta)$. It is clear that for example $\delta^{\prime} \circ \theta=(\delta \circ \theta) \theta_{i}$, and that

$$
\begin{equation*}
\delta^{\prime} \neq \sigma^{\prime} \quad \text { and } \quad L M_{>} \delta^{\prime} \circ \theta=L M_{>} \sigma^{\prime} \circ \theta \tag{3.5}
\end{equation*}
$$

If $g=\delta \circ \theta-\sigma \circ \theta=1$, at that point we use $S^{\prime}=\left\{\delta^{\prime}, \sigma^{\prime}\right\}$ which is $H S B$.

We then have

$$
g^{\prime}=\delta^{\prime} \circ \theta-\sigma^{\prime} \circ \theta=(\delta \circ \theta) \theta_{i}-(\sigma \circ \theta) \theta_{i}=g \theta_{i}=\theta_{i} \in K\left[S^{\prime} \circ \theta\right],
$$

and as above it pursues that $S=\left\{\delta^{\prime} \circ \theta, \sigma^{\prime} \circ \ominus\right\}$ can not be $H S B$

$$
\left(L M_{>} \theta_{i}<L M_{>} \delta^{\prime} \circ \theta=\sigma^{\prime} \circ \theta\right) .
$$

(Also we notice that, it is impossible to use $g=1$ as a counter example straightly; $p=x_{1}^{0} \ldots x_{n}^{0}$ is an allowed monomial.)

Now we just need to eliminate the case $g=\delta \circ \theta-\sigma \circ \theta=0$ (for example: if $\theta=L M_{>} \theta$). We presently using the set $S^{\prime}=\left\{\delta^{\prime}+x_{i}^{\lambda+1}, \sigma^{\prime}\right\}$. Since we have (3.5) and $x_{i}^{\lambda+1}<\delta^{\prime}=\delta x_{i}$, and also $\operatorname{deg}\left(\delta^{\prime}\right)=\operatorname{deg}\left(x_{i}^{\lambda+1}\right)$ therefore, S^{\prime} is $H S B$ by Lemma 3.6. We now get $g^{\prime}=\delta^{\prime} \circ \theta-\sigma^{\prime} \circ \theta=\theta_{i} \in$ $K\left[S^{\prime} \circ \ominus\right]$, a contradiction.

Hence $\operatorname{deg}(\delta)=\operatorname{deg}(\sigma), \delta \neq \sigma \Longrightarrow \delta \circ L M_{>}(\ominus) \neq \sigma \circ L M_{>}(\ominus)$.
We can now complete the proof of the necessity side of Theorem 3.1.

Proposition 3.8. Let

(A): composition by \ominus commutes with HSB computation; and
(B): composition by \ominus is homogeneously compatible with the term ordering.
then $(\mathrm{A}) \Longrightarrow(\mathrm{B})$.
Proof. Let composition by \ominus commutes with $H S B$ computation. Assume that δ, σ are two monomials such that $\operatorname{deg}(\delta)=\operatorname{deg}(\sigma), \delta>\sigma$, then we claim that $\delta \circ L M_{>}(\theta)>\sigma \circ L M_{>}(\theta)$. Particularly we have $\delta \neq \sigma$, we know from Proposition 3.7 that it is not possible to have $\delta \circ L M_{>}(\theta)=\sigma \circ L M_{>}(\theta)$. So we only need to eliminate the case $\delta \circ L M_{>}(\theta)<\sigma \circ L M_{>}(\theta)$.

First, we claim that $S=\{\delta-\sigma, \sigma\}$ is $H S B$. Infact we know that $S^{\prime}=\{\delta, \sigma\}$ is $H S B$ so, our claim follows since $K[S]=K\left[S^{\prime}\right]$ and $L M_{>} S=L M_{>} S^{\prime}$. We conclude that $S \circ \theta=\{\delta \circ \theta-\sigma \circ \theta, \sigma \circ \theta\}$ requisite to be $H S B$.

Now, we assume that $\delta \circ \theta<\sigma \circ \theta$. We then have $L M_{>} S \circ(\theta)=\left\{\sigma \circ L M_{>}(\theta)\right\}$, and $\delta \circ \theta=$ $(\delta \circ \theta-\sigma \circ \theta)+\sigma \circ \theta \in K[S \circ \theta]$. But (as in the proof of Proposition 3.7) since $\delta \circ L M_{>}(\theta)<\sigma \circ L M_{>}(\theta)$. $\delta \circ L M_{>} \ominus \neq 1$ impossible to be written in the powers of $\sigma \circ L M_{>}(\ominus)$, therefore $S \circ \ominus$ cannot be $H S B$.

Thus our supposition that, $\delta \circ L M_{>} \ominus<\sigma \circ L M_{>} \ominus$ was incorrect, so composition by \ominus is homogeneously compatible with the term ordering.

Therefore $H S B$ computation commutes with composition by Θ.
The following example emphasize the result of Theorem 3.1.
Example 3.9. Let $S=\left\{x, y^{2}+x y, x^{3} y\right\}$ and $\ominus=\left(x^{2}+2 x y, 2 y^{2}\right)$ with lexicographical ordering $y>x$. Clearly all polynomials of $ө$ are of same degree(=2) and \ominus is homogeneously compatible with the term ordering. Thus by Theorem 3.1 we conclude that,

$$
S \circ \ominus=\left\{\left(x^{2}+2 x y\right),\left(\left(2 y^{2}\right)^{2}+\left(x^{2}+2 x y\right) 2 y^{2}\right),\left(\left(x^{2}+2 x y\right)^{3} 2 y^{2}\right)\right\}
$$

is $H S B$ under the lexicographical ordering $y>x$.

4. Conclusion

We discussed the problem of the behaviour of homogeneous Sagbi bases under polynomial composition. One natural application is in the computation of the subalgebra generated by composed polynomials: In order to compute the $H S B ; S \circ \ominus$ of subalgebra $F \circ \theta$, we first compute the $H S B ; S$ of subalgebra F and carry out the composition on S to obtain the $H S B$ of $F \circ \theta$. One research direction is to investigate the behaviour of λ-Sagbi bases under polynomial composition, that is, when does composition commutes with λ-Sagbi bases computation.

Acknowledgment

I would like to thanks Dr. Junaid Alam Khan for his continuous support, motivation and valuable suggestions.

Competing Interests

The author declares that he has no competing interests.

Authors' Contributions

The author wrote, read and approved the final manuscript.

References

[1] B. Buchberger, An Algorithm for Finding the Bases of the Residue Class Ring Modulo a Zero Dimensional Polynomial Ideal, Ph.D. Thesis, Universitat Innsbruck, Austria (1965), URL: https://core.ac.uk/download/pdf/82459944.pdf.
[2] B. Buchberger, Gröbner bases: an algorithmic method in polynomial ideal theory, in Multidimensional Systems Theory - Progress, Directions and Open Problems in Multidimensional Systems, N. K. Bose (editor), Reidel Publishing Company, 184 - 232 (1985), DOI: 10.1007/978-94-009-5225-6_6.
[3] H. Hong, Gröebner, Basis under composition II, in Proceeding ISSAC '96 Proceedings of the 1996 International Symposium on Symbolic and Algebraic Computation Zurich, Switzerland, July 24-26, 1996, pp. 79 - 85, ACM Press (1996), DOI: 10.1145/236869.236906.
[4] H. Hong, Gröebner basis under composition I, J. Symbolic Computation 25 (1998), 643 - 662, DOI: 10.1006/jsco.1997.0192.
[5] J. A. Khan, Further on the composition of Sagbi bases, International Electronic Journal of Algebra 20 (2016), 100 - 110, URL: http://www.ieja.net/files/papers/volume-20/6-V20-2016.pdf.
[6] J. Liu and M. Wang, Homogeneous Gröebner bases under composition, Journal of Algebra 303 (2006), 668 - 676, DOI: 10.1016/j.jalgebra.2005.08.037.
[7] J. Liu and M. Wang, Further results on homogeneous Gröebner bases under composition, Journal of Algebra 315 (2007), 134 - 143, DOI: 10.1016/j.jalgebra.2007.05.023.
[8] L. Robbiano, On the theory of graded structures, J. Symbolic Computation 2(2) (1986), 139 - 170, DOI: 10.1016/S0747-7171(86)80019-0.
[9] L. Robbiano and M. Sweedler, Subalgebra basses, in Commutative Algebra (Proceedings of a Workshop held in Salvador, Brazil, August 8-17, 1988), W. Bruns and A. Simis (eds.), Vol. 1430 of Lecture Notes in Mathematics Series, Springer-Verlag, 42, 61 - 87 (1988), https://www. springer. com/us/book/9783540527459.
[10] L. Robbiano and M. Sweedler, Subalgebra bases in commutative algebra, in Lecture notes in Mathematics 1430, W. Bruns and A. Simis (eds.), 61 - 87, Springer, Berlin - Heidelberg (1990), DOI: $10.1007 / \mathrm{BFb} 0085537$.
[11] P. Nordbeck, Sagbi bases under composition, J. Symbolic Computation 33 (2002), 67 - 76, DOI: 10.1006/jsco.2001.0498.

