Communications in Mathematics and Applications
Volume 1, Number 3 (2010), pp. 133-138
© RGN Publications

A Note on Factors for Absolute Norlund Summability

W.T. Sulaiman

Abstract

Improvement and generalization for two known results concerning summability factors for absolute Norlund summability of infinite series is presented.

1. Introduction

Let $\sum a_{n}$ be a given infinite series with the sequence of partial sums $\left(s_{n}\right)$ and let $r_{n}=n a_{n}$. By u_{n}^{α} and t_{n}^{α} we denote n-th Cesaro means of order $\alpha>-1$ of the sequences $\left(s_{n}\right)$ and $\left(r_{n}\right)$ respectively. These are

$$
\begin{align*}
& u_{n}^{\alpha}=\frac{1}{A_{n}^{\alpha}} \sum_{v=0}^{n} A_{n-v}^{\alpha-1} s_{v} \tag{1.1}\\
& t_{n}^{\alpha}=\frac{1}{A_{n}^{\alpha}} \sum_{v=0}^{n} A_{n-v}^{\alpha-1} v a_{v}, \tag{1.2}
\end{align*}
$$

where

$$
A_{n}^{\alpha}=O\left(n^{\alpha}\right), \quad \alpha>-1, A_{0}^{\alpha}=1, A_{-n}^{\alpha}=0
$$

The series $\sum a_{n}$ is said to be summable $|C, \alpha|_{k}, k \geq 1$, if (see [5], [7])

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{k-1}\left|\Delta u_{n-1}^{\alpha}\right|^{k}=\sum_{n=1}^{\infty} \frac{1}{n}\left|t_{n}^{\alpha}\right|^{k}<\infty \tag{1.3}
\end{equation*}
$$

where $\Delta u_{n}=u_{n}-u_{n+1} .|C, \alpha|_{k}$ summability reduces to $|C, 1|_{k}$ summability on taking $\alpha=1$. The series $\sum a_{n}$ is said to be summable $\varphi-|C, \alpha|_{k}, k \geq 1$, if (see [10])

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{\varphi_{n}^{k-1}}{n^{k}}\left|t_{n}^{\alpha}\right|^{k}<\infty \tag{1.4}
\end{equation*}
$$

$\varphi-|C, \alpha|_{k}$ summability reduces to $|C, \alpha|_{k}$ summability by taking $\varphi=n$.

2000 Mathematics Subject Classification. 40D15; 40F05; 40G05; 40G99.
Key words and phrases.Norlund summability; summability factors; Holder's inequality; Minkowski' inequality; Cesaro summability.

Let $\left(p_{n}\right)$ be a sequence of constants, real or complex, and we write

$$
P_{n}=p_{0}+p_{1}+\ldots+p_{n} \rightarrow \infty \text { as } n \rightarrow \infty, n \geq 0
$$

The series $\sum a_{n}$ is said to be summable $\left|N, p_{n}\right|_{k}, k \geq 1$, if (see[8])

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{k-1}\left|\Delta \sigma_{n-1}\right|^{k}<\infty \tag{1.5}
\end{equation*}
$$

where

$$
\begin{equation*}
\sigma_{n}=\frac{1}{P_{n}} \sum_{v=0}^{n} p_{n-v} s_{v} . \tag{1.6}
\end{equation*}
$$

In the special case when

$$
p_{n}=\frac{\Gamma(n+\alpha)}{\Gamma(\alpha) \Gamma(n+1)}, \quad \alpha \geq 0
$$

$\left|N, p_{n}\right|_{k}$ summability reduces to $|C, \alpha|_{k}$ summability. The series $\sum a_{n}$ is said to be summable $\varphi-\left|N, p_{n}\right|_{k}, k \geq 1$, if

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{\varphi_{n}^{k-1}}{n^{k}}\left|\Delta \sigma_{n-1}\right|^{k}<\infty \tag{1.7}
\end{equation*}
$$

In the special case when $\varphi=n, \varphi-\left|N, p_{n}\right|_{k}$ summability reduces to $\left|N, p_{n}\right|_{k}$ summability.

2. Known Results

Theorem 2.1 ([6]). Let $\left(p_{n}\right)$ be a non-increasing sequences. If $\sum a_{n}$ is summable $|C, 1|_{k}$, then the series $\sum a_{n} P_{n}(n+1)^{-1}$ is summable $\left|N, p_{n}\right|_{k}, k \geq 1$.

Theorem 2.2 ([11]). Let $\left(\varphi_{n}\right)$ be a sequence of positive real numbers with $\left(\lambda_{n}\right)$ satisfying the following

$$
\begin{align*}
& \sum_{v=1}^{m} \frac{\varphi_{v}^{k-1}}{v^{k}}\left|t_{v}\right|^{k}=O(\log m) \text { as } m \rightarrow \infty \tag{2.1}\\
& \sum_{n=v}^{m} \frac{\varphi_{n}^{k-1}}{n^{k+1}}=O\left(\frac{\varphi_{v}^{k-1}}{v^{k}}\right) \tag{2.2}\\
& \lambda_{m}=o(1) \text { as } \quad m \rightarrow \infty \tag{2.3}\\
& \sum_{n=1}^{m} n \log n\left|\Delta^{2} \lambda_{n}\right|=O(1), \tag{2.4}
\end{align*}
$$

then the series $\sum a_{n} \lambda_{n}$ is summable $\varphi-|C, 1|_{k}, k \geq 1$.
Theorem 2.3 ([2]). Let $\left(p_{n}\right)$ be a non-increasing sequence such that $p_{0}>0, p_{n} \geq 0$, and let $\left(X_{n}\right)$ be a positive non-decreasing sequence satisfying

$$
\begin{align*}
& \left|\lambda_{n}\right| X_{n}=O(1) \text { as } n \rightarrow \infty \tag{2.5}\\
& \sum_{n=1}^{\infty} n\left|\Delta^{2} \lambda_{n}\right| X_{n}<\infty \tag{2.6}
\end{align*}
$$

If the sequence (w_{n}^{α}) defined by

$$
w_{n}^{\alpha}=\left\{\begin{array}{l}
\left|t_{n}^{\alpha}\right|, \alpha=1 \tag{2.7}\\
\max _{1 \leq v \leq n}\left|t_{n}^{\alpha}\right|, \quad 0<\alpha<1
\end{array}\right.
$$

satisfies the condition

$$
\begin{equation*}
\sum_{n=1}^{m} n^{-1}\left(w_{n}^{\alpha}\right)^{k}=O\left(X_{m}\right) \quad \text { as } \quad m \rightarrow \infty \tag{2.8}
\end{equation*}
$$

then the series $\sum a_{n} P_{n} \lambda_{n}(n+1)^{-1}$ is summable $\left|N, p_{n}\right|_{k}, k \geq 1,0<\alpha \leq 1$.

3. Lemmas

The following Lemmas are needed for our aim
Lemma 3.1 ([4]). If $0<\alpha \leq 1$ and $1 \leq v \leq n$, then

$$
\begin{equation*}
\left|\sum_{\rho=0}^{v} A_{n-\rho}^{\alpha-1} a_{\rho}\right| \leq \max _{1 \leq m \leq v}\left|\sum_{\rho=0}^{v} A_{m-\rho}^{\alpha-1} a_{\rho}\right| \tag{3.1}
\end{equation*}
$$

Lemma 3.2 ([1]). Under the conditions on $\left(X_{n}\right)$ and $\left(\lambda_{n}\right)$ as taken in the statement of Theorem 3, the following conditions holds

$$
\begin{align*}
& n X_{n}\left|\Delta \lambda_{n}\right|=O(1) \text { as } n \rightarrow \infty \tag{3.2}\\
& \sum_{n=1}^{\infty}\left|\Delta \lambda_{n}\right| X_{n}<\infty \tag{3.3}
\end{align*}
$$

Lemma 3.3 ([9]). If $-1<\alpha \leq \beta, k>1$ and the series $\sum a_{n}$ is summable $|C, \alpha|_{k}$, then it is summable $|C, \beta|_{k}$.

Lemma 3.4. The condition (4.1) is weaker than

$$
\begin{equation*}
\sum_{n=1}^{m} \frac{\varphi_{n}^{k-1}}{n^{k}}\left(w_{n}^{\alpha}\right)^{k}=O\left(X_{m}\right) \tag{3.4}
\end{equation*}
$$

Proof. If (3.4) holds, then we have

$$
\sum_{n=1}^{m} \frac{\varphi_{n}^{k-1}}{n^{k} X_{n}^{k-1}}\left(w_{n}^{\alpha}\right)^{k}=O\left(\frac{1}{X_{1}^{k-1}}\right) \sum_{n=1}^{m} \frac{\varphi_{n}^{k-1}}{n^{k}}\left(w_{n}^{\alpha}\right)^{k}=O\left(X_{m}\right)
$$

while if (4.1) is satisfied then,

$$
\begin{aligned}
\sum_{n=1}^{m} \frac{\varphi_{n}^{k-1}}{n^{k}}\left(w_{n}^{\alpha}\right)^{k} & =\sum_{n=1}^{m} \frac{\varphi_{n}^{k-1}}{n^{k} X_{n}^{k-1}}\left(w_{n}^{\alpha}\right)^{k} X_{n}^{k-1} \\
& =\sum_{n=1}^{m-1}\left(\sum_{v=1}^{n} \frac{\varphi_{v}^{k-1}}{v^{k} X_{v}^{k-1}}\left(w_{v}^{\alpha}\right)^{k}\right) \Delta X_{n}^{k-1}+\left(\sum_{n=1}^{m} \frac{\varphi_{n}^{k-1}}{n^{k} X_{n}^{k-1}}\left(w_{n}^{\alpha}\right)^{k}\right) X_{m}^{k-1}
\end{aligned}
$$

$$
\begin{aligned}
& =O(1) \sum_{n=1}^{m-1} X_{n}\left|\Delta X_{n}^{k-1}\right|+O\left(X_{m}\right) X_{m}^{k-1} \\
& =O\left(X_{m-1}\right) \sum_{n=1}^{m-1}\left(X_{n+1}^{k-1}-X_{n}^{k-1}\right)+O\left(X_{m}^{k}\right) \\
& =O\left(X_{m-1}\right)\left(X_{m}^{k-1}-X_{1}^{k-1}\right)+O\left(X_{m}^{k}\right) \\
& =O\left(X_{m}^{k}\right) .
\end{aligned}
$$

Therefore (3.4) implies (4.1) but not conversely.
The object of this paper is to present a general result not only covering Theorems 2 and 3, but as well to obtain an improvements for them. In fact we give the following theorem:

4. Main Result

Theorem 4.1. Let $\left(X_{n}\right)$ be a positive non-decreasing sequence. If the conditions (1.12) and (1.13) are satisfied and if the sequence $\left(w_{n}^{\alpha}\right)$ defined by (1.14) satisfies

$$
\begin{equation*}
\sum_{n=1}^{m} \frac{\varphi_{n}^{k-1}\left(w_{n}^{\alpha}\right)^{k}}{n^{k} X_{n}^{k-1}}=O\left(X_{m}\right) \tag{4.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=v}^{m} \frac{\varphi_{n}^{k-1}}{n^{k+\alpha k}}=O\left(\frac{\varphi_{v}^{k-1}}{v^{k+\alpha k-1}}\right) \tag{4.2}
\end{equation*}
$$

then the series $\sum a_{n} \lambda_{n}$ is summable $\varphi-|C, \alpha|_{k}, k \geq 1,0<\alpha \leq 1$.
Remark 4.1. For the special case $\alpha=1$, Theorem 8 gives an improvement of Theorem 2 in the sense that conditions (4.1) and (4.2) for $\alpha=1, X_{n}=\log n$ are both weaker than conditions (1.8) and (1.9), respectively.

Remark 4.2. For the special case $\varphi=n$, Theorem 8 gives an improvement of Theorem 3 in the sense that condition (4.1) for $\varphi=n$, is weaker than condition (1.15). That is Theorem 3 follows from Theorem 8 by putting $\varphi=n$, and then making use of Lemma 6 and Theorem 1.

5. Proof of Theorem 8

Let $\left(T_{n}^{\alpha}\right)$ be the n-th $(C, \alpha),(0<\alpha \leq 1)$ mean of the sequence $\left(n a_{n} \lambda_{n}\right)$. Then, we have

$$
\begin{aligned}
T_{n}^{\alpha} & =\frac{1}{A_{n}^{\alpha}} \sum_{v=1}^{n} A_{n-v}^{\alpha-1} v a_{v} \lambda_{v} \\
& =\frac{1}{A_{n}^{\alpha}} \sum_{v=1}^{n-1} \Delta \lambda_{v} \sum_{r=1}^{v} A_{n-r}^{\alpha-1} r a_{r}+\frac{\lambda_{n}}{A_{n}^{\alpha}} \sum_{v=1}^{n} A_{n-v}^{\alpha-1} v a_{v}
\end{aligned}
$$

By Lemma 3.1, the above implies

$$
\begin{aligned}
\left|T_{n}^{\alpha}\right| & \leq \frac{1}{A_{n}^{\alpha}} \sum_{v=1}^{n-1} A_{v}^{\alpha} w_{v}^{\alpha}\left|\Delta \lambda_{v}\right|+\left|\lambda_{n}\right| w_{n}^{\alpha} \\
& =T_{n 1}+T_{n 2}
\end{aligned}
$$

In order to complete the proof, it is sufficient, by Minkowski's inequality to show that

$$
\sum_{n=1}^{\infty} \frac{\varphi_{n}^{k-1}}{n^{k}}\left|T_{n j}\right|^{k}<\infty, \quad j=1,2
$$

Now applying Holder's inequality,

$$
\begin{aligned}
\sum_{n=2}^{m+1} \frac{\varphi_{n}^{k-1}}{n^{k}}\left|T_{n 1}\right|^{k} & =\sum_{n=2}^{m+1} \frac{\varphi_{n}^{k-1}}{n^{k}}\left(\frac{1}{A_{n}^{\alpha}} \sum_{v=1}^{n-1} A_{v}^{\alpha} w_{v}^{\alpha}\left|\Delta \lambda_{v}\right|\right)^{k} \\
& \leq \sum_{n=1}^{m+1} \frac{\varphi_{n}^{k-1}}{n^{k}} \frac{1}{\left(A_{n}^{\alpha}\right)^{k}} \sum_{v=1}^{n-1}\left(A_{v}^{\alpha}\right)^{k}\left(w_{v}^{\alpha}\right)^{k}\left|\Delta \lambda_{v}\right| X_{v}^{1-k}\left(\sum_{v=1}^{n-1}\left|\Delta \lambda_{v}\right| X_{v}\right)^{k-1} \\
& =O(1) \sum_{n=2}^{m+1} \frac{\varphi_{n}^{k-1}}{n^{k+\alpha k}} \sum_{v=1}^{n-1} v^{\alpha k}\left(w_{v}^{\alpha}\right)^{k}\left|\Delta \lambda_{v}\right| X_{v}^{1-k} \\
& =O(1) \sum_{v=1}^{m} v^{\alpha k}\left(w_{v}^{\alpha}\right)^{k}\left|\Delta \lambda_{v}\right| X_{v}^{1-k} \sum_{n=v+1}^{m+1} \frac{\varphi_{n}^{k-1}}{n^{k+\alpha k}} \\
& =O(1) \sum_{v=1}^{m} v\left|\Delta \lambda_{v}\right| \frac{\varphi_{v}^{k-1}\left(w_{v}^{\alpha}\right)^{k}}{v^{k} X_{v}^{k-1}} \\
& =O(1) \sum_{v=1}^{m-1}\left|\Delta\left(v \Delta \lambda_{v}\right)\right| \sum_{r=1}^{v} \frac{\varphi_{r}^{k-1}\left(w_{r}^{\alpha}\right)^{k}}{r^{k} X_{r}^{k-1}}+O(1) m\left|\Delta \lambda_{m}\right| \sum_{v=1}^{m}\left|\Delta \lambda_{v}\right| X_{v}+O(1) \sum_{v=1}^{m}(v+1)\left|\Delta^{2} \lambda_{v}\right| X_{v}+O(1) m\left|\Delta \lambda_{m}\right| X_{m} \\
& =O(1), \\
& =\sum_{v=1}^{m-1} \frac{\varphi_{v}^{\alpha-1}}{n^{k} X_{n}^{k-1}}\left(\left|\lambda_{n}\right| X_{n}\right)^{k-1}\left(w_{n}^{\alpha}\right)^{k}\left|\lambda_{n}\right| \\
& =O(1) \sum_{n=1}^{m} \frac{\varphi_{n}^{k-1}\left(w_{n}^{\alpha}\right)^{k}}{n^{k} X_{n}^{k-1}}\left|\lambda_{n}\right| \\
\sum_{n=1}^{m} \frac{\varphi_{n}^{k-1}}{n^{k}}\left|T_{n 2}\right|^{k} & =\sum_{n=1}^{m} \frac{\varphi_{n}^{k-1}}{n^{k}}\left(\left|\lambda_{n}\right| w_{n}^{\alpha}\right)^{k} \\
& =O(1) \sum_{n=1}^{m-1}|\Delta| \lambda_{n}| | \sum_{v=1}^{n} \frac{\varphi_{v}^{k-1}\left(w_{v}^{\alpha}\right)^{k}}{v^{k} X_{v}^{k-1}}+O(1)\left|\lambda_{m}\right| \sum_{n=1}^{m} \frac{\varphi_{n}^{k-1}\left(w_{n}^{\alpha}\right)^{k}}{n^{k} X_{n}^{k-1}}
\end{aligned}
$$

$$
\begin{aligned}
& =O(1) \sum_{n=1}^{m}\left|\Delta \lambda_{n}\right| X_{n}+O(1)\left|\lambda_{m}\right| X_{m} \\
& =O(1)
\end{aligned}
$$

The proof is complete.
Theorem 5.1. If the conditions of Theorem 8 are satisfied and if $\psi_{x}=\psi(x)$ is a convex function, with $\psi(0)=0$, then the series $\sum n a_{n} \lambda_{n} / \psi_{n}$ is summable $\varphi-|C, \alpha|_{k}$, $k \geq 1,0<\alpha \leq 1$.

Proof. The proof follows exactly as it has been done in Theorem 8 noticing that $n / \psi_{n}=O(1)$, as $\psi(x) / x$ is non-decreasing.

References

[1] H. Bor, On a summability factor theorem, Commun. Math. Anal. 1(2006), 46-51.
[2] H. Bor, Factors for absolute summability, Commun. Math. Anal. 7(1) (2009), 55-60.
[3] D. Borwein and F.P. Cass, Strong Norlund summability, Mart. Zeith. 130 (1968), 94111.
[4] L.S. Bosanquet, A mean value theorem, J. London Math. Soc. 16(1941), 146-148.
[5] T.M. Flett, On an extension of absolute summability and some theorems of Littlewood and Paley, Proc. London math Soc. 7(1957), 113-141.
[6] N. Kishore, On the absolute Norlund summability factors, Riv. Math. Univ. Parma, 6(1965), 129-134.
[7] K. Kogbentliantz, Sur les series obsolument par la methode des moyennes arithmetiques, Bull. Sci. Math. 49(1925), 234-256.
[8] F.M. Mears, Some multiplications theorem for Norlund mean, Bull. Amer. Math. Soc. 41(1935), 875-880.
[9] M.R. Mehdi, Linear transformations between the Banach spaces L^{p} and l^{p} with applications to absolute summability, Ph.D Thesis, University College and Birkbeck College, London, 1959.
[10] H. Seyhan, The absolute summability methods, Ph.D Thesis, Kayseri, 1995, 1-57.
[11] H. Seyhan, On absolute Cesaro summability factors of infinite series, Commun.Math. Anal. 1(2007), 53-56.
W.T. Sulaiman, Department of Computer Engineering, College of Engineering, University of Mosul, Iraq.
E-mail: waadsulaiman@hotmail.com

Received July 9, 2010
Revised November 30, 2010
Accepted December 12, 2010

