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Two Modes Bifurcation Solutions of Elastic Beams
Equation with Nonlinear Approximation

Mudhir A. Abdul Hussain

Abstract. In this paper we studied two modes bifurcation solutions of elastic
beams equation by using Lyapunov-Schmidt method. The bifurcation equation
corresponding to the elastic beams equation has been found. Also, we studied two
modes of nonlinear approximation of bifurcation solutions of a specified equation
and we found the Key function corresponding to the functional related to this
equation.

1. Introduction

It is known that many of the nonlinear problems that appear in Mathematics
and Physics can be written in the form of operator equation,

f (x ,λ) = b, x ∈ O ⊂ X , b ∈ Y, λ ∈ Rn, (1.1)

where f is a smooth Fredholm map of index zero and X , Y are Banach spaces
and O is open subset of X . For these problems, the method of reduction to finite
dimensional equation,

θ(ξ,λ) = β , ξ ∈ M , β ∈ N , (1.2)

can be used, where M and N are smooth finite dimensional manifolds.
Passage from equation (1.1) into equation (1.2) (variant local scheme of

Lyapunov-Schmidt) with the conditions, that equation (1.2) has all the topological
and analytical properties of equation (1.1) (multiplicity, bifurcation diagram, etc.)
dealing with [3], [8], [11], [12].

Definition 1.1. Suppose that E and F are Banach spaces and A : E→ F be a linear
continuous operator. The operator A is called Fredholm operator, if

(i) The kernel of A, Ker (A), is finite dimensional,
(ii) The range of A, Im(A), is closed in F ,

(iii) The Cokernel of A, Coker (A), is finite dimensional.
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The number

dim(Ker A)− dim(Coker A)

is called Fredholm index of the operator A.

Suppose that f : Ω→ F is a nonlinear Fredholm map of index zero. A smooth
map f : Ω→ F has variational property, if there exist a functional V : Ω→ R such
that f = gradH V or equivalently,

∂ V

∂ x
(x ,λ)h= 〈 f (x ,λ), h〉H , ∀ x ∈ Ω, h ∈ E,

where (〈·, ·〉H is the scalar product in Hilbert space H). In this case the solutions
of equation f (x ,λ) = 0 are the critical points of functional V (x ,λ). Suppose that
f : E→ F is a smooth Fredholm map of index zero, E, F are Banach spaces and

∂ V

∂ x
(x ,λ)h= 〈 f (x ,λ), h〉H , h ∈ E,

where V is a smooth functional on E. Also we assume that E ⊂ F ⊂ H, H is a
Hilbert space, then by using method of finite dimensional reduction (Local scheme
of Lyapunov-Schmidt) the problem,

V (x ,λ)→ extr, x ∈ E, λ ∈ Rn

can be reduced into equivalent problem,

W (ξ,λ)→ extr, ξ ∈ Rn.

The function W (ξ,λ) is called Key function.
If N = span{e1, . . . , en} is a subspace of E, where e1, . . . , en are orthonormal

basis, then the Key function W (ξ,λ) can be defined in the form,

W (ξ,λ) = inf
x:〈x ,ei〉=ξi ∀ i

V (x ,λ), ξ= (ξ1, . . . ,ξn).

The function W has all the topological and analytical properties of the
functional V (multiplicity, bifurcation diagram, etc.) [10]. The study of bifurcation
solutions of functional V is equivalent to the study of bifurcation solutions of Key
function. If f has variational property, then it is easy to check that,

θ(ξ,λ) = grad W (ξ,λ).

Equation θ(ξ,λ) = 0 is called bifurcation equation.

Definition 1.2. The set of all λ for which the function W (ξ,λ) has degenerate
critical points, is called Caustic.

The linear Ritz approximation of the functional V is a function W given by the
formula,

W (ξ,λ) = V
� n∑

i=1

ξiei

�
, ξ= (ξ1, . . . ,ξn).

The oscillations and motion of waves of the elastic beams on elastic foundations
can be described by means of the following PDE,

∂ 2 y

∂ t2 +
∂ 4 y

∂ x4 +α
∂ 2 y

∂ x2 + β y + y3 = 0,
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where y is the deflection of beam. It is known that, to study the oscillations of
beams, stationary state (u(x) = y(x , t)) should be monitored which is describes
by the equation,

d4u

dx4 +α
d2u

dx2 + βu+ u3 = 0. (1.3)

In this work equation (1.3) has been studied with the following boundary
conditions,

u(0) = u(π) = u′′(0) = u′′(π) = 0 (1.4)

Equation (1.3) has been studied by Thompson and Stewart [4] they showed
numerically the existence of periodic solutions of equation (1.3) for some values
of parameters. Bardin and Furta [1] used the local method of Lyapunov-Schmidt
and found the sufficient conditions of existence of periodic waves of equation (1.3),
also they are introduced the solutions of equation (1.3) in the form of power series.
Furta and Piccione [9] showed the existence of periodic travelling wave solutions
of equation (1.3) describing oscillations of an infinite beam, which lies on a non-
linearly elastic support with non-small amplitudes. Sapronov ([2], [10], [11],
[12]) applied the local method of Lyapunov-Schmidt and found the bifurcation
solutions of equation (1.3). Abdul Hussain ([5], [6]) studied equation (1.3) with
small perturbation when the nonlinear part has quadratic term and Mohammed
[7] studied equation (1.3) in the variational case when the nonlinear part has
quadratic term.

The goal of this paper to study two modes bifurcation solutions of equation
(1.3) with boundary conditions (1.4) by using the procedure of Bardin and Furta
[1] and then we used the result of this procedure to study the two modes nonlinear
bifurcation solutions of equation (1.3) by using the work of Sapronov.

2. Nonlinear Approximation Solutions

Suppose that f : E → F is a nonlinear Fredholm operator of index zero from
Banach space E to Banach space F defined by,

f (u,λ) =
d4u

dx4 +α
d2u

dx2 + βu+ u3 , (2.1)

where E = C4([0,π], R) is the space of all continuous functions which have
derivative of order at most four, F = C([0,π], R) is the space of all continuous
functions where u = u(x), x ∈ [0,π], λ = (α,β). In this case the solutions of
equation (1.3) is equivalent to the solutions of the operator equation,

f (u,λ) = 0 . (2.2)

We note that the operator f has variational property that is; there exist a
functional V such that f (u,λ) = gradH V (u,λ) or equivalently,

∂ V

∂ u
(u,λ)h= 〈 f (u,λ), h〉H , ∀ u ∈ Ω, h ∈ E ,
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where (〈·, ·〉H is the scalar product in Hilbert space H) and

V (u,λ) =

∫ π

0

�
(u′′)2

2
−α (u

′)2

2
+ β

u2

2
+

u4

4

�
dx .

In this case the solutions of equation (2.2) are the critical points of the
functional V (u,λ), where the critical points of the functional V (u,λ) are the
solutions of Euler-Lagrange equation,

∂ V

∂ u
(u,λ)h=

∫ π

0

(uiv +αu′′ + βu+ u3)h dx= 0

and
∂ V

∂ u
(u,λ) is the Frechet derivative of the functional V (u,λ).

Thus, the study of equation (1.3) with the conditions (1.4) is equivalent to the
study extremely problem,

V (u,λ)→ extr, u ∈ E.

Analysis of bifurcation can be finding by using method of Lyapunov-Schmidt to
reduce into finite dimensional space. By localized parameters,

α= α1 +δ1, β = β1 +δ2, δ1,δ2 are small parameters.

The reduction lead to the function in two variables,

W (ξ,δ) = inf
〈u,ei〉=ξi , i=1,2

V (u,δ), ξ= (ξ1,ξ2), δ = (δ1,δ2).

It is well known that in the reduction of Lyapunov-Schmidt the function
W (ξ,δ) is smooth. This function has all the topological and analytical properties
of functional V [10]. In particular, for small δ there is one-to-one corresponding
between the critical points of functional V and smooth function W , preserving the
type of critical points (multiplicity, index Morse, etc.) [10]. By using the scheme
of Lyapunov-Schmidt, the linearized equation corresponding to the equation (2.2)
has the form:

h′′′′ +αh′′ + βh= 0, h ∈ E,

h(0) = h(π) = h′′(0) = h′′(π) = 0.

This equation give in the αβ-plane characteristic lines. The point of
characteristic lines are the points of (α,β) in which equation (2.2) has non-
zero solutions. The point of intersection of characteristic lines in the αβ-plane
is a bifurcation point [10]. The result of this intersection lead to bifurcation
along the modes e1 = c1 sin(x), e2 = c2 sin(2x). For the equation (2.2) the point
(α,β) = (5, 4) is a bifurcation point [10]. Localized parameters,

eα= 5+δ1, eβ = 4+δ2.

Lead to the bifurcation along the modes e1, e2, where ‖e1‖ = ‖e2‖ = 1 and

c1 = c2 =
p

2. Let N = Ker (A) = span{e1, e2}, where A= fu(0,λ) =
d4

dx4+α
d2

dx2+β ,

then the space E can be decomposed in direct sum of two subspaces, N and
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the orthogonal complement to N ,

E = N ⊕ bE, bE = N⊥ ∩ E = {v ∈ E : v⊥N}.
Similarly, the space F decomposed in direct sum of two subspaces, N and

orthogonal complement to N ,

F = N ⊕ bF , bF = N⊥ ∩ F = {v ∈ F : v⊥N}.
There exists projections p : E → N and I − p : E → bE such that pu = w and

(I − p)u = v, (I is the identity operator). Hence every vector u ∈ E can be written
in the form,

u= w+ v, w =
2∑

i=1

ξi ei ∈ N , N⊥v ∈ bE, ξi = 〈u, ei〉.

Similarly, there exists projections Q : F → N and I −Q : F → bF such that

f (u,λ) =Q f (u,λ) + (I −Q) f (u,λ). (2.3)

Accordingly, equation (2.2) can be written in the form,

Q f (w+ v,λ) = 0,

(I −Q) f (w+ v,λ) = 0.

By the implicit function theorem, there exist a smooth map Φ : N → bE, such
that

W (ξ,δ) = V (Φ(ξ,λ),δ), δ = (δ1,δ2)

and then the linear Ritz approximation of the functional V is a function W given
by,

W (ξ,δ) = V (ξ1e1 + ξ2e2,δ) = ξ4
1 + 4ξ2

1ξ
2
2 + ξ

4
2 +

q1

2
ξ2

1 +
q2

2
ξ2

2 .

The nonlinear Ritz approximation of the functional V is a function W given by,

W (ξ,δ) = V (ξ1e1 + ξ2e2 +Φ(ξ1e1 + ξ2e2,δ),δ), v(x ,ξ,λ) = Φ(w,δ).

To determine the nonlinear Ritz approximation of the functional V we must
find the functions v(x ,ξ,λ) = O(ξ3), µ(ξ) = O(ξ2) and eµ(ξ) = O(ξ2) in the form
of power series in term of ξ, where q1 = eq1 + µ(ξ1,ξ2), q2 = eq2 + eµ(ξ1,ξ2) and
ξ = (ξ1,ξ2). Because the symmetry of the problem, the quadratic form in the
function is equal to zero, so the functions v(x ,ξ,λ), µ(ξ) and eµ(ξ) can be written
in the following form,

v(x ,ξ,λ) = v0(x ,λ)ξ3
1 + v1(x ,λ)ξ2

1ξ2 + v2(x ,λ)ξ1ξ
2
2 + v3(x ,λ)ξ3

2 + . . . ,

µ(ξ) = µ0ξ
2
1 +µ1ξ1ξ2 +µ2ξ

2
2 , (2.4)

eµ(ξ) = eµ0ξ
2
1 + eµ1ξ1ξ2 + eµ2ξ

2
2 .

Equation (2.2) can be written in the form,

f (u,λ) = Au+ Tu= 0, Tu= u3.

Since,

Q f (u,λ) =
2∑

i=1

〈 f (u,λ), ei〉ei = 0.
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Then we have
2∑

i=1

〈Au+ Tu, ei〉ei = 0

and hence

q1ξ1e1 + q2ξ2e2 +
�∫ π

0

(ξ1e1 + ξ2e2 + v)3e1 dx
�

e1

+
�∫ π

0

(ξ1e1 + ξ2e2 + v)3e2 dx
�

e2 = 0 . (2.5)

From (2.3) and (2.5) we have

v iv +αv′′ + β v + (ξ1e1 + ξ2e2 + v)3 + q1ξ1e1 + q2ξ2e2 = 0 (2.6)

It follows that,
�
(eq1 +µ(ξ1,ξ2))ξ1 + ξ

3
1

∫ π

0

e4
1dx+ 3ξ2

1ξ2

∫ π

0

e3
1e2dx+ 3ξ1ξ

2
2

∫ π

0

e2
1e2

2dx

+ξ3
2

∫ π

0

e1e3
2dx
�

e1 +
�
(eq2 + eµ(ξ1,ξ2))ξ2

+ξ3
1

∫ π

0

e3
1e2dx+ 3ξ2

1ξ2

∫ π

0

e2
1e2

2dx+ 3ξ1ξ
2
2

∫ π

0

e1e3
2dx+ ξ3

2

∫ π

0

e4
2

�
e2 = 0,

v iv +αv′′ + β v + ξ3
1e3

1 + 3ξ2
1ξ2e2

1e2 + 3ξ1ξ
2
2e1e2

2 + ξ
3
2e3

2

+ v3 + 3v2ξ1e1 + 3v2ξ2e2 + 3vξ2
1e2

1 + 6vξ1ξ2e1e2

+3vξ2
2e2

2 + (eq1 +µ(ξ1,ξ2))ξ1e1 + (eq2 + eµ(ξ1,ξ2))ξ2e2 = 0. (2.7)

To determine the functions v(x ,ξ,λ), µ(ξ) and eµ(ξ) we first substitute (2.4) in
(2.7) and then we find the coefficients µ0, µ1, µ2, eµ0, eµ1, eµ2, v0, v1, v2 and v3 by
equating the terms of ξ1 and ξ2 as follows:

Equating the coefficients of ξ3
1 we have the following tow equations,

�
µ0 +

∫ π

0

e4
1dx
�

e1 +
�∫ π

0

e3
1e2dx

�
e2 = 0,

v iv
0 +αv′′0 + β v0 + e3

1 +µ0e1 = 0. (2.8)

From the first equation of (2.8) we have

µ0 =−
3

2π
.

Substitute the value of µ0 in the second equation of (2.8) we have the following
linear ODE,

v iv
0 +αv′′0 + β v0 + e3

1 −
3

2π
e1 = 0.

And then we have

v iv
0 +αv′′0 + β v0 −

1

2π

r
2

π
sin(3x) = 0. (2.9)
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Solve equation (2.9) we have

v0(x ,λ) =
1

2π

r
2

π

1

(81− 9α+ β)
sin(3x).

Similarly, equating the coefficients of ξ2
1ξ2 we have

�
µ1 + 3

∫ π

0

e3
1e2dx

�
e1 +

�
eµ0 + 3

∫ π

0

e2
1e2

2dx
�

e2 = 0,

v iv
1 +αv′′1 + β v1 + 3e2

1e2 +µ1e1 + eµ0e2 = 0. (2.10)

From the first equation of (2.10) we have µ1 = 0 and eµ0 = −
3

π
. Substitute

these values in the second equation of (2.10) we have

v iv
1 +αv′′1 + β v1 + 3e2

1e2 −
3

π
e2 = 0. (2.11)

Solve equation (2.11) we have

v1(x ,λ) =
3

2π

r
2

π

1

(256− 16α+ β)
sin(4x).

Equating the coefficients of ξ1ξ
2
2 we have

�
µ2 + 3

∫ π

0

e2
1e2

2dx
�

e1 +
�
eµ1 + 3

∫ π

0

e1e3
2dx
�

e2 = 0,

v iv
2 +αv′′2 + β v2 + 3e1e2

2 +µ2e1 + eµ1e2 = 0. (2.12)

From the first equation of (2.12) we have eµ1 = 0 and µ2 = −
3

π
. Substitute

these values in the second equation of (2.12) we have

v iv
2 +αv′′2 + β v2 +

3

2π

r
2

π
(sin(3x)− sin(5x)) = 0. (2.13)

Solve equation (2.13) we have

v2(x ,λ) =− 3

2π

r
2

π

1

(81− 9α+ β)
sin(3x) +

3

2π

r
2

π

1

(625− 25α+ β)
sin(5x).

Equating the coefficients of ξ3
2 we have the following two equations,

�
eµ2 + 3

∫ π

0

e4
2dx
�

e2 +
�∫ π

0

e1e3
2dx
�

e1 = 0,

v iv
3 +αv′′3 + β v3 + e3

2 + eµ2e2 = 0. (2.14)

From the first equation of (2.14) we have eµ2 =−
3

2π
Substitute the value of eµ2

in the second equation of (2.14) we have the following linear ODE,

v iv
3 +αv′′3 + β v3 + e3

2 −
3

2π
e2 = 0.

And then we have

v iv
3 +αv′′3 + β v3 −

1

2π

r
2

π
sin(6x) = 0 . (2.15)
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Solve equation (2.15) we have

v3(x ,λ) =
1

2π

r
2

π

1

(1296− 36α+ β)
sin(6x).

Now substitute the values of µ0, µ1, µ2, eµ0, eµ1, eµ2, v0, v1, v2 and v3 in (2.4) we
have the nonlinear approximation solutions of equation (2.2) in the form,

u(x ,ξ) = ξ1 sin(x) + ξ2 sin(2x)

+
1

2π

r
2

π

ξ3
1

(81− 9α+ β)
sin(3x)

+
3

2π

r
2

π

ξ2
1ξ2

(256− 16α+ β)
sin(4x)

+
3

2π

r
2

π
ξ1ξ

2
2

�
sin(5x)

(625− 25α+ β)
− sin(3x)
(81− 9α+ β)

�

+
1

2π

r
2

π

ξ3
2

(1296− 36α+ β)
sin(6x) +O(ξ5),

q1 = eq1 −
3

2π
ξ2

1 −
3

π
ξ2

2 +O(ξ3),

q2 = eq2 −
3

π
ξ2

1 −
3

2π
ξ2

2 +O(ξ3),

ξ= (ξ1,ξ2). (2.16)

By using (2.16) we have stated the following theorem,

Theorem 2.1. The Key function of the functional V has the following form,
fW (ξ,δ) = ξ12

1 + ξ
12
2 +λ1ξ

2
1ξ

10
2 +λ2ξ

4
1ξ

8
2 +λ3ξ

6
1ξ

6
2 +λ4ξ

8
1ξ

4
2

+λ5ξ
10
1 ξ

2
2 +λ6ξ

2
1ξ

8
2 +λ7ξ

8
1ξ

2
2 +λ8ξ

6
1ξ

4
2 +λ9ξ

4
1ξ

6
2

+λ10ξ
8
1 +λ11ξ

8
2 +λ12ξ

6
1ξ

2
2 +λ13ξ

2
1ξ

6
2 +λ14ξ

4
1ξ

4
2

+λ15ξ
6
1 +λ16ξ

6
2 +λ17ξ

4
1ξ

2
2 +λ18ξ

2
1ξ

4
2 +λ19ξ

4
1

+λ20ξ
4
2 +λ21ξ

2
1ξ

2
2 +λ22ξ

2
1 +λ23ξ

2
2

+ o(|ξ|12) +O(|ξ|12)O(|δ|), (2.17)

λi = λi(α,β), i = 1, 2, . . . , 23.

The prove of Theorem 2.1 is directly from the formula,
fW (ξ,δ) = V (ξ1e1 + ξ2e2,Φ(ξ1e1 + ξ2e2,δ),δ), v(x ,ξ,λ) = Φ(w,δ).

Function (2.17) has all the topological and analytical properties of functional
V . Also, the function is symmetric in the variables ξ1 and ξ2 (fW (ξ1,ξ2) =
fW (−ξ1,−ξ2)) it have 121 critical points. So it is not easy to determine the Caustic
of function (2.17) and study the bifurcation solutions of this function. The point
u(x) = ξ1e1 + ξ2e2 + v(x ,ξ,λ) is a critical point of the functional V (u,λ) iff
the point ξ is a critical point of the function fW (ξ,δ) [10]. This mean that the
existence of the solutions of equation (2.2) depend on the existence of the critical
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points of the functional V (u,λ) and then on the existence of the critical points of
the function fW (ξ,δ). From this notation, we can find a nonlinear approximation
of the solutions of equation (2.2) corresponding to each critical point of the
function fW (ξ,δ). Caustic of the function fW (ξ,δ) and the distribution of the
critical points in the plane of parameters (Bifurcation diagram) depending on the
corner singularities of smooth maps will be discuses in other paper.
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