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1. Introduction

Convex sets and convex functions play a vital role in the field of pure and applied sciences. In the
literature many inequalities have been proposed for different classes of convex functions such
as pre-invex, s-convex, quasi-convex and GG-convex etc. Among various types of inequalities
introduced in the area of convexity, Hermite-Hadamard inequality is of much interest. The
Hermite-Hadamard double inequality is the first fundamental result for convex functions with a
natural geometrical interpretation and a loose number of applications for particular inequalities.
The statement of this inequality is (see [16]):
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Let I be an interval in R. Then a function A : I — R is a convex function if the following
inequality holds

h(al +a2) - 1 a2 h(x)dx < h(a1)+ h(as) 1)

2 ags—ai Ja; 2 ’
where a1,a9 € I with a1 <as. If both the inequalities in hold in the reverse direction the
function A is concave on 1.

For more related results, generalizations, improvements, variants, refinements and
applications to Hermite-Hadamard inequality (see [3-7,(9-15,,17-29,31,(32,34,[37[).

In [2]] Anderson proved the following Montgomery Identity using the conformal fractional
integrals:

Lemma 1. Let a1,a9,s,t € R and let h :[a1,a9] — R be a differentiable function. Then for
a €(0,1], we have

a a2 a a2
h(t) = ——— f h(s)s* 1ds+ & f p(t,s)h'(s)ds, (2)
a2—a1 ai aZ_al a1
i ;al , a1<s<t;
p(t,s) = s*—ag
t<s<asg

Let A :[a1,a2] — R be an integrable function. Then we define A(h;a1,a2) as:

ai+a
A(h;aq,a9):= L 2).

* h@dx—h ( 3)

a2 —0a1 Ja;
Many researchers have shown their extensive attention on generalizations, extensions
and variants of Hermite-Hadamard inequality. The main aim of this manuscript is to prove
the result for Hermite-Hadamard types inequalities and to strengthen our results by giving
applications for means. The proof of the result is based on the Montgomery identity. We use
the Montgomery identity to establish a new identity regarding Hermite-Hadamard inequality.
Based on this identity with a class of convex and monotone functions and Jensen’s inequality,
we obtain various new results for the inequality. At the end, we also present applications for
special bivariate means.
In Section [2| we establish several Hermite-Hadamard type inequalities by using Montgomery
identity. In Section |3] we present applications of the main results for different means.

2. Main Results

We begin this section with the following lemma, which will help in the proving of our results:

Lemma 2. Let a1,a2 € R and h :[a1,a2] — R be a differentiable function. Then for a € (0,1],
the following identity holds:
1

A(h; =
(h;ai,a2) @ —a%az—ay)

fa2 s%ag—a1)h'(s)ds - fazag(s —a)h/(s)ds

1 ai
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ajtag

(s* - al)h (s)ds

—fa2 a‘f(az—s)h'(s)ds] -

1 9 — Q7 Jag

1 (e
- ﬂ (s —ah/(s)ds.

a_ 40 1+tag
g =0a1 /=5

Proof. If we put ¢ = #1392 in (2] @ we get

aitag f a1 faz aitag '
h = h(s)s“ “ds+ ,$|h'(s)ds
[ o[
ajtag
- a“ [ hors1ds + (s% —a®h'(s)ds
g —aj Ja; a2 ay Jay
1 (e
+— “ﬁ e (s*—ah'(s)ds. (4)
ag —ay JH2

We integrate (2) with respect to ¢ and then multiplying b

ag 1 az rag
ho)dt = —2 f f h(s)s* Ldsdt
a a1 Ja

az—ai Ja; 2—a‘fa2—a1

1 a az raz
+ a_a f f p(t,s)h'(s)dsdt]
a2—0a109—0a; Jay

f h(s)s* ds +

f f as h'(s)dtds

g (a —a“)(a2 ai)

ag S — 1
+f f h (s)dtds]
a1 Js a
a

ag
= h(s)s® 1ds+
ag —af Ja, (ag —a{)az—a1)

f (s“—a{)ag—s)h'(s)ds

f 2(8“ —a$)(s—a1)h'(s)ds
ai

1
(ay—af)az—ai1)

—fa2 ag(s—a)h'(s)ds —faza‘f(ag —s)h'(s)ds

1 1

Now, from (4) and (5), we have
1

a—lge+

as
f s%ag—a1)h'(s)ds
a1

(%)

A(h;at,a2) =

faz s%ag—aq)h'(s)ds — fa2 ag(s —ah'(s)ds

1

(ag —ai)az—a1)
ajtag

(s*—a)h'(s)ds

4

a

2

f al(ag—s)h (s)ds| —
ag —af Ja,

ﬁ 2 ,(8¥ —af)h'(s)ds. O

1ta
2

a_
ag —ay

In the following theorem we obtain inequalities for left difference of Hermite-Hadamard

inequality by taking A’ decreasing.
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Theorem 1. Let a1,a2 € R and h :[a1,a2] — R be a decreasing differentiable function. Then

for a €(0,1], the following inequalities hold:
ag a
f s%ag—ai)h'(s)ds —f af(ag —s)h'(s)ds
a ai

1
Ah;aq1,a9) =
P @ —aDag—a)) |
T 1 e
-— (s*—af)h'(s)ds - = aﬁ v (s“—ad)h'(s)ds.
Ay —0ay Jay Ay —ay JH=2
Alh;a1,a9) = 1 fazsa(az —al)h’(s)ds—fazag(s—al)h’(s)ds
(ag —aPaz—ai1) [ Ja, ay
1 a2 1 a2
-— (s"—ah'(s)ds — — “ﬁ ... ¥ —ah'(s)ds.
ag a3 Jay ag—ay JH2
1 asg az
f s“(az—al)h'(s)ds—f aj(s—a1)h/(s)ds
al al
aitag

Ah;aq,a9) =
(01,82 2 e ey —ay)
(s“—a{)h'(s)ds.

ag
- YUqo - (s)ds | — ————
fa aj(az—s)h'(s) S] a7 —a? J,,

1
as as

f s“(az—al)h'(s)ds—f ag(s—a)h'(s)ds
a ai

1
ajtag

Proof. Using Lemma [2, we have
1

A(h; =
(h;ai,a2) @ —a®az—aD

(s*—a)h'(s)ds

as
—fal a‘f(az—s)h’(s)ds] “ai—at ).,
1 a2 a a !
-— “ﬁ » (8% —ag)h'(s)ds. (6)
ag —ay JH=2
Since A is decreasing, so we have
as
—f as(s—a1)h'(s)ds = 0. (7
a1
By using (7) in (6), we obtain
1 as az
Ah;a1,a9) = —— f s%ag—ai)h'(s)ds —f af(ag —s)h/(s)ds
(a5 —aiXaz—a1) [ Ja, a1
G 1 (e
(s*—aDh'(s)ds - —— ﬁ ... (8" —ag)h'(s)ds.
ag —ay JH=2
]

a a
a2_a1 al

Similarly, we can prove the other inequalities.
In the next theorem we obtain bounds for the left difference of Hermite-Hadamard inequality

by using the convexity of |A'|.
Theorem 2. Let a1,a2 € R" and h :[a1,a2] — R be a differentiable function such that |h'| is

f *s%ag —aD|h()lds

1

convex. Then for a €(0,1], the following inequalities hold:
ag(az—al){|h’(a1)|+2|h’(a2)|} 1
(ag —a{az—a1)

|A(h;a1,a2)| <
Le2 (ag —ai) 6
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ajtag

(s“—af)Ih'(s)lds

as
+f af(az—9)h'(s)lds | +
a

a

1 9 — a1 Jay
1 (e
A f (al - s/ (s)lds. ®)
ag —ay JUG
R/ (@)l +ag|h'(a2) ' h'
Ah:ay,a)| < as— al{a1| a1l +aglh'(as)l +a‘f‘1a2{| (a1l +] (a2)|}+a1ag_1
T _q? 4 12
{ |h/ (@) + R (@)l } . af|h/(a2)l +ag|h'(a1)l } . 1
X
12 12 (ag —af)az—a1)
ag a
U ag(s—a1)|h’(s)|ds+f a‘f(az—s)lh'(s)lds]
al ai
1 R 1 [e
+— “f (s*—aIn’ (s)lds+ “f .. (@g—sMIr'(s)lds. 9)
g~ a7 Jay —ay JHg
(az—aiaf (2|A'(a1)| +|h'(a2)| 1 2
Ah;aq,a9)| < { }+ f a%(a1—s)h'(s)ds
A a2l = — e 6 @3 —aaz—ap | Jo, 2!
as a1+a2
+f s%ag—apIh'(s)lds| + — (s*—aIn'(s)lds
al 2—(11 al
1 @
+ﬁﬁ ray (a§ —sHIR'(s)lds. (10)
Ay —ay JH52
1 ag a
Ahsar,a2)l < ——— | agts-avineids + [ sz - anin'lds
(ag —aPlaz—a1) [ Ja, a1
az
+f a%(as—3s)|h'(s)|ds
al
as—aiq 15a¢ |h (a1)|+(12|h (a2)l a“_la {11|h'(a1)|+5|h’(a2)|}
al—a? 64 L 192
_1[11|R/ (@) +5|R/(ag)]]  11laflh'(a2)l+5af|h'(a1)l
a1ad! +
2 192 192
3a9|h (ag)| +a% |k (ay) T
dahteivarihtanl) | f (@~ s (s)lds. (11)
8 Ay —ay JH52
1 ag a
Ahsar,a2)l < ——— | agts-avim'oids + [ sz - anin'slds
(az _al)(az _a’l) al al

ajtag

(s*—aD)Ih'(s)lds

a
2~ @1 Jay

1A (ay)] +2|h’(az)|}
24 ’

as
+f af(az—9)h'(s)lds| +

1

(12)

+(a2—a1){

Proof. From Lemma [2|and using the property of the modulus, we can write
1

A(h; <
|A( ’al’a2)|<(ag‘—aff)(a2—a1)

ag a
f ag(s—a1)|h'(s)|ds+f s¥ag—a1)h'(s)|ds
a1 a

1
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ajtag

(s“—afIn'(s)lds

as
+f af(az—9)h'(s)lds| +
a

1

a
9 ~ @1 Jay

+ 1 fa2 (a§ —sIh'(s)lds. (13)

a_ ,a ajtag
Qg —Q; J—=5—=

Now by change of variable and using the convexity of |A/|, we get

as 1
f (s—ap)h'(s)lds < (asy —al)zfo (1= DA (@) + A= 2R (a2))d A

1

— (ag—ay)? |h'(a1)] +2]h/(a2) . (14)

6
By using in (13), we obtain (8).

Now, we prove the inequality (9).

Similarly, as above by change of variable and the convexity of |A/|, we have

a 1
f 2s“|h'(s)|ds:(a2—a1)f (@A + (1 =a)*|h (a1A+(1 - A)as)|dA
a 0

1

1

=(az—a1)f (@1A+ (1= Daz)® Ha1d+ (1 - Dag)lh (@A + (1 - Vasg)ldA
0
1

S(ag—al)f @S A+ (1 - Vad HaiA+ (1 - Dag)lh'(aiA+(1 - Dag)ldA
0
1

S(az—al)f @$A% +a$ A1 - Vag + A1 - Va1ad ™+ (1 - 1)2adDIAA ()
0

+(1—/1)Ih'(az)|]d)t

=(az—aq) allh(a1)|+—a1 azlh(a1)|+—a1a2 |h(a1)|+ aglh(al)l

12 12

1
—aflh (ag)l + —a1 Laglh/(ag)l + —alaz LW (ag)l + Zaglh’(az)l

12 12 12
aflh/ (@)l +ag|h'(a2)l h' h'
~(ag—ar)| 2 1 ; 2 2 +aclr—1a2{| (a1)|1+2| (a2)l}
a1 [ 1R (@D + R (ag)] } af|h/(az)| +ag|h'(a1)|
. 1
+aiay { 13 + 13 (15)
By using in (13), we obtain (9).
Now, we prove the inequality (10), by similar a procedure:
as 1
f a‘f(ag—s)lh/(s)lds:(ag—al)za‘ff (1-DIA (@A + (1= A)a)ldA
ai 0
1
= (@z=ar’af [ (1= DR @)+ A= DIk @lldA
|h/(a2)| +2|h'(a1)]
:(ag—a1)2a‘f( 2 - L ) (16)

By using in (13), we obtain (10).
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Now, we prove the inequality (11). Since

1 ajtag
—a®)|h(s)ld
el (s* —a{)|h'(s)lds
b —
2 alf((alﬂt+(1 Vag)® Haid+(1-Nag)—ad)h' (@1 A+ (1 - Vag)ldA
<Zz 4 1““1 1A +(1 - Dal Yaid+(1- Dag) —a®IAR (1) + (1 - DIk (@)l1dA
2 1 2
_az—ay[15a 5a{lh' (@)l +aglh'(a)l 4 {11|h’(a1)l+5lh’(a2)|}
ta{ a2
0&2—a1 64 192
a1 | 11IA (@) +5IR'(ag)l|  1laflh'(a2)l+5ag|h (a1l
ai1aqy +
192 192
_3a‘f|h’(a2)lgra‘flh’(a1)l . an

By using in (13), we obtain (11).
Now, we prove the inequality (I12). Since

1 = a_ L ayp! ag—ay (! a ay !
R f (ag —sM)Ih'(s)lds = 2 —a® f (ag —(Aaz +(1-MVa1))h' (Aag +(1-ValdA
a, —ay Jur2 - L

a2 ai

< f(az (Aag +(1- Dad)IR' (Aag + (1 - Va1)ldA

<

1
<(az-ap) [, A1 -k @)+~ k' (@1))dA
2
2|h (a2)| + 1A' (a1)]
24 '
By using in (13), we obtain (12). O

(18)

=(az—a1)

In the last theorem we obtain new bounds for the left difference of Hermite-Hadamard

inequality by using concavity of |A'|.

Theorem 3. Let a1,a2 € R and h :[a1,a2] — R be a differentiable function such that |h'| is
concave. Then for a €(0,1], the following inequalities hold.:

as(az—ar) a1+2as 1 ag
Ah;a,a9)| < — ’( ) f“—h'd
|A(R;a1,a2)l 2(a? —a®) 3 @ —aaz—ap | Jor s (ag—ap)lh'(s)lds
as a1+a2
+f af(az—9)h'(s)lds| + - (s“—afIn'(s)lds
a1 2—(11 al
1 [a
+ﬁf (a§ —sHIR (9)lds. (19)
ag —aj JHge
- 20% +a% lag+aia? 1 +2a%
Ahsar,ap) = 2= | T T G2ty TR
(a5 —a?) 6
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x |h

a+1 a a—1 2 _ a-1 a-1,_2 a+1
,[3a17" +2aaz +2a1ay " +ajay " +aj Ta;+3ag
2(2a{ + a‘f‘laz + alozg'1 +2a3)

az

1
+ a a
(a2 _al)(a2 _a]_)
ajt+ag

1 2 ' 1 2 a_ ay g/
" f (s —a®)/(s)lds + ﬁaz(aZ—s JR'(s)ds.  (20)

a_ a_ & [ag+
Ay — a7 Jay Ag —ay1 J=5

faz as(s—ap)lh'(s)lds+ f

1 ai

af(az —S)Ih’(s)lds]

Proof. From Lemma [2|and using the property of the modulus, we can write

|A(h;a1,a2)l
1 ag ag a
S — f ag(s—al)lh'(s)lds+f s“(az—al)lh'(s)lds+f a‘f(ag—s)lh'(s)lds]
(a2 _al)(aZ _al) aj aj a
1 a1+a2 1 as
+ (s®—aIn'(s)lds + = “f (a§ —sHIR'(s)lds. (21)
Qg — a3 Jay ag —ay JHUy=

Now, by change of variable and using Jensen’s integral inequality we obtain

% (fol(l -MAaq+(1- ﬂt)ag)dﬂt)
Jla-nda

a 1
f Z(S—al)lh'(S)ldsS(az—a1)2( f (1—A)om)
ai 0

% (a1 +2a2)
3 .

_(ag—a1)?
2
By using in (21), we obtain (19).
Now, we prove the inequality (20).

Similarly, as above by change of variable and using Jensen’s integral inequality, we have

as
f s A (s)|ds
a

1

(22)

= (a2 —al)fol(al/l +(1-Daz)*1h/(@1A + (1 - Vag)ldA

=(ag— al)fol(al/l +(1-Dax)* Ha1d + 1 - Va)lh (@A +(1 - Dag)ldA

<(ay —al)fol(a%—la +(1-Mad Ha1d + (1 - Nag)h' (@A +(1 - Dag)ldA

=(az - al)fol(a‘fxz +a% A1 - Dag + A1 - Varad ™ + (1 - V2adIh' (@A + (1 - Dag)ldA

1
<(az—ay) (f @$A% +a$ A1 - Vag + A1 -AVaad t+ 1 —}L)2ag)d/1)
0

1 - -
x |h/ Jo @A +a$7 A1 - Nag + A1 - Narad ™t + (1 -1)%ad)a1Ad +(1-Naz)d A ‘
S @22 +a% A1 - Dag + A1 - Vagad™ +(1 - )2ad)dA
2a‘f+a‘1”_1a2+a1ag_1+2ag)

6
a+1 11 a—-1 2 a—-1 a—-1,2 a+1
,(Sal +2afag+2a1a5" " +ajay " +aj "a;+3ag

=(a2—a1)(

X

(23)

a a—1 a—1 a
2(2af +ai tag+aiag " +2af)
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By using in (21I), we obtain (20). O

3. Application to Means

There are many application of means in the real life. For example, if R; and Ry are the
resistances of two series combination of resistor, then the total resistance is computed by the
formula:

Rr=R{+Ry=2AR1,R9),

which is double the arithmetic mean. Similarly, applications of the harmonic mean in Asian
options of stock can be found in [[1]. We will consider the following particular means for any
ai,a2 € R, a1 #ag, which are well-known in the literature, see [[13]:

a1taz . .
Alaq,a9) = T ai,as >0, the arithmetic mean,
as—ai . )
L(ai,a9) = ———, ai,as >0, the logarithmic mean,
Inas —Ina;
+1 +1 1
gt
L/,t(alyaZ): ’ a1<a2,/,t€R,

(u+1)az—a1)
the Stolarsky mean and limlL#(al,az) =L(ai,a9).
frae

In the following proposition we give applications of Theorem [1/for means.
Proposition 1. Let 0 <aj <ag and < 0. Then we have the following inequality

Ly(ai,a2)" —At(a1,a2)
@ty
_ a

1 paz—ailay ¥ —aj
=>
(ag —a{)az—a1)

+1 +1
{az(ag—a’f) ag —a’f })

K p+1
1 a
e e[ S MR B [C Y

ot et (52} e - (152

ag—af\ u 2 a+ul? 2

a
a+u Ha1

Proof. We choose hi(s)=s",s>0, u<0. Since h’l(s) = us“_l <0, h1(s) is decreasing. Now, by
using A1 in (6), we deduce the required result. O

In the following proposition we give applications of Theorem [2| for means.

Proposition 2. Let 0 < a1 <ag and pu> 2. Then we have the following inequality
|A*(a1,a2) - Ly(ag,a2)"|
_ pag(az—a1) { laq P +2|a2|“—1}

(ag —af) 6
+ 1 (u(aZ —a@y " —ai™ + a{az(aé‘ ~a)) ay"-af" })
a _
(ag —af)az—a1) a+p 1 P s
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e e[ e IR S| S 1)
a

gt (5 gl (57,

Proof. Consider hga(s) = s#,s > 0, > 2, then f(s) := |hj(s)| = us#~1. Now £(s) = p(u — 1)(p -
2)s#73 > 0. So |k, is convex. By using & in (8), we deduce the required result. O

In the following proposition we give applications of Theorem |3|for means.

Proposition 3. Let 0 <aj <ag and 1< u<2. Then we have the following inequality

|Af(a1,a2) - Ly(a,a2)!|

- pag(ag —ai) |ag +2aq |1
2(ay —af) 3
. 1 (u(az —a)ay " -ai™) N aa{az(a’;—a‘l‘) ah-af })
(a5 —a{)az—a1) a+u 1 U u+1

el (5 - S o)

et (e () - e (252

Proof. Consider h3(s) = s#, s >0, 1 < pu <2, then f(s) := |h5(s)| = ust=1. Now, f"(s) =
w(p—1)(p—2)s#3 <0. So |h5] is concave. By using 3 in (19), we deduce the required result. [

Remark. The remaining parts of Theorems can analogously be applied for h1,ho,h3
respectively to obtain the related results of Propositions 1-3.

4. Conclusion

In this paper we have used Montgomery identity and obtained an integral identity for
the difference of Hermite-Hadamard inequality. By using this identity for different classes
of monotone and convex functions we have established several Hermite-Hadamard type
inequalities. We have also applied the results for particular functions and deduced inequalities
for arithmetic and generalized logarithmic means.
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