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On Some Properties of Generalized Fock Space F2(dvα) by
Frame Theory on the Cn

M. Tatari, S.M. Vaezpour, and A. Pishinian

Abstract. We obtain a short and new sharp proof for atomic decomposition for
Fock space on the Cn by using the frame theory. In fact we show that the
generalized Fock space F2(dvα) on the Cn admit an atomic decomposition i.e
every analytic function in this space can be presented as a linear combination of
“atoms” defined using the normalized reproducing kernel of this space.

1. Introduction

The decomposition of an element of a Banach space on a domain is a widely
studied area of modern mathematics of which atomic decomposition is an example.
An atomic decomposition consists of a sequence of simple building blocks (called
atoms), such that every element is a linear combination

∑
m amk(λm) of atoms k

with
∑

m |am|p <∞ for some 1 ≤ p ≤ ∞, am ∈ C . The infimum of the sum of the
coefficients am defines the norm or an equivalent one for the Banach space. Thus
an atomic decomposition is a sequence which has basis-like properties but which
does not need to be a basis.

In general atomic decompositions are overcomplete, the sampling sequences
{λm}usually contain too many points for the set of atoms {k(λm)} to be linearly
independent in which case it forms a frame instead of a basis.

First to come up with the idea of atomic decomposition were Coifman and
Rochberg [4] who in 1980 showed that a “decomposition theorem” holds for
domains in the Bergman space Ap(D, dv) of analytic functions on a bounded
symmetric domain D ⊂ Cn.

Throughout this paper,letz = (z1, z2, . . . , zn) and w = (w1, w2, . . . , wn) be points
in Cn, we write 〈z, w〉 = z1w1 + z2w2 + . . . + znwn and let dv denote the usual
Lebesgue volume measure on Cn and for α > 0, dvα is defined as follow

dvα(z) =
α

π

n
e−α|z|

2

dv(z),
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then the Fock space F2(dvα) is the space of all entire functions f on Cn for which

‖ f ‖2
F2(dvα)

=

∫

Cn

| f (z)|2dvα(z)<∞.

F2(dvα) is a Hilbert space with an inner product

〈 f , g〉F2
a (dvα) =

∫

Cn

f (z)g(z)dvα(z).

Since each point evaluation is a bounded linear functional on F2(dvα), then the
Riesz representation theorem implies that there exists a unique function Kαn,z in
F2(dvα) such that

f (z) =

∫

Cn

f (w)Kαn,z(w)dvα(w), for all f ∈ F2(dvα). (1.1)

Let Kαn (z, w) be the function on Cn × Cn defined by

Kαn (z, w) = Kαn,z(w).

Kαn (z, w) is called the Fock kernel or the reproducing kernel of F2(dvα).
The formula for Kαn,z by [5] is:

Kαn,z(w) = exp{α〈w, z〉}, w ∈ Cn.

Here the notation 〈·, ·〉 denotes the usual inner product on Cn. For any w ∈ Cn.
Let

kαn,z(w) =
Kαn (w, z)
p

Kαn (z, z)
= exp

�
α〈w, z〉 − α

2
|z|2
�

.

kαn,z are called the normalized reproducing Kernel of F2(dvα).
By [7] a sequence {λm} of a complex numbers is a sampling sequence for

F2(dvα) if there exist positive constant A and B such that

A‖ f ‖2
F2(dvα)

≤
∞∑

m=1

e−α|λm|2 | f (λm)|2 ≤ B‖ f ‖2
F2(dvα)

.

Many operator-theoretic problems in the analysis of Fock space involve
estimating integral operators whose kernel is a power of the Fock kernel. This
together with the use of the reproducing property of the Fock kernel brings us to a
close relative of the formula (1.1), the atomic decomposition.

The integral in (1.1) is then approximated by a Riemannian sum over the
partition using the values of f and the kernel K at the points λm of the lattice.
If partition is suitable, this will produce a good approximation.

In search for a representation of f as a linear combination of atoms this makes
sense, since the kernels kn,z are also the unit vectors in F2(dvα) and, in some
sense, play the part of an orthonormal basis for F2(dvα) even though they are not
mutually orthogonal.

The atomic decomposition of the function f ∈ F2(dvα):

f (z) =
∞∑

m=1

am
eα〈z,λm〉
p

eα|λm|2
(1.2)



On Some Properties of Generalized Fock Space F2(dvα) by Frame Theory on the Cn 107

valid such that for any {am} ∈ `2, the function in (1.2) is in F2
a (dvα) and if

f ∈ F2(dvα), then there is a sequence {am} ∈ `2 such that (1.2) holds. For the
coefficients we get

∞∑

m=1

|am|2 <∞ and ‖{am}‖`2 � ‖ f ‖F2
( dvα). (1.3)

In Fock space the atomic decomposition can thus be regarded as a discrete
analogue of the reproducing property, where it was derived from initially. The
utility of an atomic decomposition is that it is often possible to prove statements
about F2(dvα) by verifying them first in the simple special case of atoms and then
extending the results to the entire space. An immediate corollary of the atomic
decomposition is that it establishes an isomorphism between F2(dvα) and the
sequence space `2.

2. Frames Theory

The Frame theory was introduced by Duffin and Schaeffer [6] in order to
establish general conditions under which one can reconstruct perfectly a function f
in a Hilbert space H from its inner product (〈·, ·〉H) with a family of vectors { fn}n∈I

where I can be a finite or infinite countable index set.

2.1. Definition. A set of vectors { fn}n∈I is a frame of Hilbert space H if there exists
two constants A, B > 0 so that

A‖ f ‖2
H ≤

∑

n∈I

|〈 f , fn〉H |2 ≤ B‖ f ‖2
H , for all f ∈ H

The number A, B are called frame bounds. They are not unique.

2.2. Definition. A set of vectors { fn}n∈I is called Bessel sequence if there exist a
constant B > 0 such that∑

n∈I

|〈 f , fn〉H |2 ≤ B‖ f ‖2
H , for all f ∈ H

2.3. Theorem. Let { fn}n∈I ⊂ H. Then { fn}n∈I is a Bessel sequence with Bessel bound
B if and only if the mapping T : {an} →

∑∞
n=1 an fn is a well defined operator and

bounded from `2 onto H and ‖T‖ ≤ pB.

Proof. See [3]. ¤

Since a frame { fn}n∈I is a Bessel sequence, the operator T : `2 → H by
T ({an}) =

∑∞
n=1 an fn is bounded and linear. T is sometimes called the preframe

operator.

2.4. Theorem. Let { fn}n∈I ⊂ H. The following two statements are equivalent:

(1) { fn} is a frame with bounds A, B.
(2) S f =

∑
n∈I 〈 f , fn〉 fn is a bounded and invertible linear operator on H, with

AI ≤ S ≤ BI.
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Proof. See [3]. ¤

2.5. Theorem. A sequence { fn}n∈I ⊂ H is a frame for H if and only if the mapping

T : {an} →
∞∑

n=1

an fn

is a well defined mapping of `2 onto H.

Proof. See [2]. ¤

2.6. Definition. Let the sequence { fn}n∈I be a frame with bounds A, B, then
operator S : H → H by S f =

∑
n∈I 〈 f , fn〉 fn is called the frame operator. since

AI ≤ S ≤ BI we have

‖I − B−1S‖ ≤


B− A

B

< 1,

which by the Neumann theorem shows that S in invertible. If S−1 commutes with
both S and I , and multiplying AI ≤ S ≤ BI with S−1 yields the bellow inequality

B−1 I ≤ S−1 ≤ A−1 I ,

thus S−1 is bounded. Also S is onto (see [1]).

3. Atomic decomposition

The purpose of this section is to present a short and new sharp proof for atomic
decomposition for Fock spaces and show normalized reproducing kernels are
building blocks for F2(dvα). In some sense, they play the role of an orthonormal
basis for this space, although they are clearly not mutually orthogonal. At first we
prove following lemma.

3.1. Lemma. {λm} is a sampling sequence for F2(dvα) if and only if the set of
normalized reproducing kernels {kαn,λm

} is a frame for F2(dvα).

Proof. For f ∈ F2
a (dvα)

∞∑

m=1

|〈 f , kαn,λm
〉|2 =

∞∑

m=1

����
∫

Cn

f (z)kαn,λm
(z)dvα(z)

����
2

=
∞∑

m=1

����
∫

Cn

f (z)
eα〈z,λm〉
p

eα|λm|2
dvα(z)

����
2

=
∞∑

m=1

e−α|λm|2
����
∫

Cn

f (z)eeα〈z,λm〉dvα(z)

����
2

=
∞∑

m=1

e−α|λm|2 | f (λm)|2. ¤
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Let {λm} be a sampling sequence for F2
a (dvα), we define two operators

Tαn : `2→ F2(dvα)

Tαn ({am})(z) =
∞∑

m=1

an
eα〈z,λm〉
p

eα|λm|2

Sαn : F2(dvα)→ F2(dvα)

Sαn ( f (z)) =
∞∑

m=1

e−α|λm|2 f (λm)e
αzλm .

3.2. Lemma. Tα is bounded and onto.

Proof. Since {kαn,λm
} is a frame for F2(dvα), so

Tα({am})(z) =
∞∑

m=1

amkαn,λm
(z) =

∞∑

m=1

am
eα〈z,λm〉
p

eα|λm|2
.

Thus by theorem (2.3) Tαn is bounded and onto ¤

3.3. Theorem. Sαn is bounded and invertible.

Proof. Since {kαn,λm
} is a frame for F2(dvα), so

Sαn ( f (z)) =
∞∑

m=1

〈 f , kαn,λm
〉kαn,λm

(z)

=
∞∑

m=1

∫

Cn

f (z)kαn,λm
(z)dvα(z)k

α
λm
(z)

=
∞∑

m=1

∫

Cn

f (z)
eα〈z,λm〉

e
p
α|λm|

dvα(z)k
α
n,λm
(z)

=
∞∑

m=1

e
−α|λm |2

2 f (λm)
eα〈z,λm〉
p

eα|λm|2

=
∞∑

m=1

e−α|λm|2 f (λn)e
eα〈z,λm〉 .

Thus by theorem (2.4) Sαn is bounded and invertible. ¤

Finally we state the atomic decomposition theorem for the Fock space.

3.4. Theorem. There exists a sequence {λm} in Cn and constant c > 0 with the
following properties:

(1) For any {am} in `2, the function

f (z) =
∞∑

m=1

am
eα〈z,λm〉
p

eα|λm|2
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is in F2(dvα) with

‖ f ‖F2(dvα) ≤ c‖{an}‖`2

(2) For any f ∈ F2(dvα), there is {am} ∈ `2 such that,

f (z) =
∞∑

m=1

am
eα〈z,λm〉
p

eα|λm|2

and ‖{am}‖`2 ≤ c‖ f ‖F2(dvα).

Proof. Let {λm} be a sampling sequence for F2(dvα)

(1) By definition of Tαn , it is clear that:

f (z) =
∞∑

m=1

am
eα〈z,λm〉
p

eα|λm|2

is in F2(dvα). Also by theorem (2.3), Tαn is bounded. Thus

‖ f ‖F2(dvα) ≤ c‖{am}‖l2 .

(2) By definition (2.6) Sαn is onto. Thus if f ∈ F2(dvα) then there exist g ∈ F2(dvα)
such that

f (z) = Sαn g(z)

=
∞∑

m=1

e−α|λm|2 g(λm)e
α〈z,λm〉

=
∞∑

m=1

e
−α|λm |2

2 g(λm)
eα〈z,λm〉
p

eα|λm|2

=
∞∑

m=1

am
α〈z,λm〉p

eα|λm|2

such that am defined by am = e
−α|λm |2

2 g(λm).

Now the second part of (2) by the boundedness of (Sαn )
−1 and definition of

sampling sequence is proved by

‖am‖`2 =
� ∞∑

m=1

|am|2
� 1

2

=
� ∞∑

m=1

e−α|λm|2 |g(λm)|2
� 1

2

≤ (c1‖g‖2
F2(dvα)

)
1
2

= c1‖g‖F2(dvα)

= c1‖(Sαn )−1 f ‖F2(dvα)

≤ c‖ f ‖F2(dvα). ¤
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