Communications in Mathematics and Applications Volume 1, Number 2 (2010), pp. 99–104 © RGN Publications

IF-dimension of Modules

Najib Mahdou and Mohammed Tamekkante

Abstract. In this paper, we introduce a dimension, called IF-dimension, for modules. With this new dimension we gives a new characterization of IFD(-) dimension of rings; see [4]. The relations between the IF dimension and other dimensions are discussed.

1. Introduction

Throughout this paper, *R* denotes a non-trivial associative ring and all modules — if not specified otherwise — are left and unitary.

Let *R* be a ring, and let *M* be an *R*-module. As usual we use $pd_R(M)$, $id_R(M)$ and $fd_R(M)$ to denote, respectively, the classical projective dimension, injective dimension and flat dimension of *M*. We use also gldim(*R*) and wdim(*R*) to denote, respectively, the classical global and weak dimension of *R*.

In [4], the authors introduced a new global dimension over a ring R, r.IFD(R), defined as

 $r.IFD(R) = \sup\{fd_R(I) | I \text{ is a right injective } R\text{-module}\}.$

For such dimension, Ding and Chen gave a various characterizations (see [4]).

For an *R*-module *M*, let IF-d_{*R*}(*M*) denote the smallest integer $n \ge 0$ such that Tor^{*i*}_{*R*}(*I*, *M*) = 0 for all i > n and all right injective *R*-module *I* and call IF-d_{*R*}(*M*) the IF-dimension of *M*. If no such *n* exists, set IF-d_{*R*}(*M*) = ∞. If IF-d_{*R*}(*M*) = 0, then *M* will be called IF-module.

In this paper, we investigate the IF-dimension and we give the following new characterization IFD (R) = sup{IF-d(R/I) | I is a left ideal of R}.

Recall that a subclass \mathfrak{X} of *R*-modules is called projectively resolving if \mathfrak{X} contain all projective modules, and for every short exact sequence $0 \to X' \to X \to X'' \to 0$ with $X'' \in \mathfrak{X}$ the conditions $X' \in \mathfrak{X}$ and $X \in \mathfrak{X}$ are equivalent (see [9, Definition 1.1]). Also an *R*-module is called FP-injective if, for all finitely presented *N*, Ext $\frac{1}{p}(N, M) = 0$. The FP-injective dimension of *M*, denoted by FP-id_{*R*}(*M*),

²⁰⁰⁰ Mathematics Subject Classification. 13D05, 13D02.

Key words and phrases. IF-dimensions of modules and rings.

is defined to be the least positive integer *n* such that $\operatorname{Ext}_{R}^{n+1}(N,M) = 0$ for all finitely presented *R*-module *N*. If no such *n* exists, set $\operatorname{FP-id}_{R}(M) = \infty$ (see [4]). The character module $\operatorname{Hom}_{\mathbb{Z}}(M, \mathbb{Q}/\mathbb{Z})$ is denoted by M^{+} and E(M) denote the envelope injective of the *R*-module *M*.

Recall that a short exact sequence of right *R*-modules

 $0 \to A \to B \to C \to 0$

is pure exact in the sense of Cohn ([2]) if for all (or equivalently for all finitely presented) left R-module K we have the exactness of

 $0 \to A \otimes_R K \to B \otimes_R B \to C \otimes_R K \to 0.$

In this case we say also that *A* is a pure submodule of *B*. For instance, a right *R*-module is FP-injective if, and only if, it is absolutely pure (i.e; it is a pure submodule of every module containing it as a submodule); see [5, 8].

Lemma 1.1 ([3, Theorem 3.1]). For any ring R, a sequence of right R-modules

 $0 \to A \to B \to C \to 0$

is pure exact if, and only if, the sequence of character modules

 $0 \to C^+ \to B^+ \to A^+ \to 0$

is split exact.

2. Main results

We start with the following proposition:

Proposition 2.1. The class of all IF module is projectively resolving, closed under arbitrary direct sums, and under direct summands.

Proof. Clearly, every flat (and then every projective) module is IF-module. Now, let $0 \to M \to M' \to M'' \to 0$ be an exact sequence of *R*-modules. If *M''* is an IF-module. It is trivial that *M'* is IF-module if, and only if, *M* is IF-module by using the functor Tor^{*i*}_{*R*}(*E*, −) with *E* right injective and the long suite exact sequence of homology. Since Tor^{*i*}_{*R*}(*E*, −) commutes with direct sums the other assertions follows immediately.

We have the following characterization of IF -dimension:

Proposition 2.2. For any *R*-module *M* and any positive integer *n*, the following are equivalent:

- (1) IF-d_R(M) $\leq n$.
- (2) $\operatorname{Tor}_{R}^{i}(E, M) = 0$ for all i > n and all right injective R-module E.
- (3) $\operatorname{Tor}_{R}^{i}(E, M) = 0$ for all i > n and all right FP-injective R-module E.
- (4) $\operatorname{Tor}_{R}^{i}(E, M) = 0$ for all i > n and all right R-module E with finite FP-injective dimension.
- (5) $\operatorname{Tor}_{R}^{i}(F^{+}, M) = 0$ for all i > n and all R-module F with finite flat dimension.

(6) If $0 \to F_n \to F_{n-1} \to ... \to F_0 \to M \to 0$ is exact with $F_0, ..., F_{n-1}$ are IF-modules, then F_n is also an IF-module.

Proof. The proof of $(1) \Leftrightarrow (2) \Leftrightarrow (6)$ is standard homological algebra fare.

(2) \Rightarrow (3). Consider an arbitrary right FP-injective *R*-module *K*. From [3, Theorem 3.1], the short pure exact sequence of right *R*-modules $0 \rightarrow K \rightarrow E(K) \rightarrow E(K)/K \rightarrow 0$ where E(K) is the injective envelope of *K* induce the split exact sequence $0 \rightarrow (E(K)/K)^+ \rightarrow E(K)^+ \rightarrow K^+ \rightarrow 0$. Thus, K^+ is a direct summand of $E(K)^+$. On the other hand, by adjointness, $\operatorname{Ext}_R^i(M, E(K)^+) \cong (\operatorname{Tor}_R^i(E(K), M))^+ = 0$. Thus, $(\operatorname{Tor}_R^i(K, M))^+ = \operatorname{Ext}_R^i(M, K^+) = 0$, and so $\operatorname{Tor}_R^i(K, M)$ vanishes as desired.

(3)⇒(4). The proof will be by induction on $m = \text{FP-id}_R(K)$. The induction start is clear, from (3). If m > 0, pick a short exact sequence $0 \to K \to E(K) \to E(K)/K \to 0$ where E(K) is the envelope injective of K. Then, by a standard homological algebra we can see that $\text{FP-id}_R(E(K)/K) = m - 1$. So, we have, for all i > n, the exact sequence

$$\operatorname{Tor}_{R}^{i+1}(E(K)/K, M) \to \operatorname{Tor}_{R}^{i}(K, M) \to \operatorname{Tor}_{R}^{i}(E(K), M).$$

Clearly, $\operatorname{Tor}_{R}^{i+1}(E(K)/K, M)$ and $\operatorname{Tor}_{R}^{i}(E(K), M)$ vanishes by the induction hypothesis conditions and since E(K) is injective (and so FP-injective), respectively. Thus, $\operatorname{Tor}_{R}^{i}(K, M) = 0$, as desired.

 $(4) \Rightarrow (2)$. Obvious since every injective module is FP-injective.

(4) \Rightarrow (5). Set $m = \operatorname{fd}_R(F) < \infty$. Then, by [6, Theorem 2.1], $m = \operatorname{id}_R(F^+) = \operatorname{FP-id}(F^+)$. Thus, by hypothesis, $\operatorname{Tor}_R^i(F^+, M) = 0$ for all i > n.

(5)⇒(2). Let *I* be a right injective *R*-module. There exist a flat *R*-module *F* such that $F \to I^+ \to 0$ is exact. Then, $0 \to I^{++} \to F^+$ is exact. But $0 \to I \to I^{++}$ is exact (by [7, Proposition 3.52]). Then, $0 \to I \to F^+$ is exact and then *I* is a direct summand of F^+ . So, $\operatorname{Tor}_R^i(I, M) = 0$ as a direct summand of $\operatorname{Tor}_R^i(F^+, M)$.

Clearly every flat module is IF -module but the inverse implication is not true in the general case as shown by the following example.

Example 2.3. Consider the local quasi-Frobenius ring $R = k[X]/(X^2)$ where *k* is a field, and denote by \overline{X} the the residue class in *R* of *X*. Then, \overline{X} is an IF *R*-module but not flat.

Proof. Since *R* is quasi-Frobenius, every right injective module *E* is projective (and so flat). Then, $\operatorname{Tor}_{R}^{i}(E,\overline{X}) = 0$ for all i > 0. Thus, \overline{X} is an IF *R*-module. Now, if we suppose that \overline{X} is flat. Then, it is projective since it is finitely presented. But *R* is also local. So, \overline{X} must be a free which is absurd by the fact that $\overline{X}^{2} = 0$. So, we conclude that \overline{X} is not flat, as desired.

Proposition 2.4. Let *R* be any ring and *n* a positive integer. The following are equivalents:

- (1) $r.IFD(R) \leq n.$
- (2) IF-d_R(M) \leq n for every R-module M.
- (3) IF-d_R(M) \leq n for every finitely generated R-module M.
- (4) IF-d_R(R/I) $\leq n$ for every ideal I.

Proof. (1)⇒(2). Let *M* be an arbitrary *R*-module and *E* an injective right *R*-module. Since *r*.IFD(*R*) ≤ *n*, fd_{*R*}(*E*) ≤ *n*. Then, Tor^{*i*}_{*R*}(*E*,*M*) = 0 for all *i* > *n*. Thus, IF-d(*M*) ≤ *n*, as desired.

 $(2) \Rightarrow (3) \Rightarrow (4)$. Obvious.

(4)⇒(1). Let *E* be a right injective *R*-module. Since IF-d_{*R*}(*R*/*I*) ≤ *n* for every ideal *I*, we have Tor^{*i*}_{*R*}(*E*,*R*/*I*) = 0 for all *i* > *n*. Thus, from [11, Lemma 9.18], fd_{*R*}(*E*) ≤ *n*. □

Corollary 2.5 (Theorem 3.5, [4]). For any ring *R* and any positive integer *n*, the following are equivalent:

- (1) IFD(R) $\leq n$.
- (2) $\operatorname{fd}_R(E) \leq n$ for every FP-injective right module E.
- (3) $\operatorname{fd}_{R}(E)$ for every right *R*-module with finite FP-injective dimension.
- (4) $\operatorname{fd}_R(F^+) \leq n$ for every *R*-module with finite flat dimension.

Proof. Follows immediately from Propositions 2.2 and 2.4.

For a left coherent ring and a finitely presented modules we get:

Proposition 2.6. Let *R* be a left coherent ring and *M* a finitely presented *R*-module. Then, the following are equivalent for any positive integer *n*.

- (1) $r.\text{IF-d}_R(M) \le n$
- (2) $\operatorname{Ext}_{R}^{i}(M,R) = 0$ for all i > n.
- (3) $\operatorname{Tor}_{R}^{i}(Q,M) = 0$ for all i > n where Q is any injective cogenerator in the class of the right R-module.
- (4) $\operatorname{Tor}_{R}^{i}(E(S), M) = 0$ for all i > n and for all right simple module S.

Proof. (1) \Rightarrow (3). Trivial.

(3)⇒(1). Let *I* be a right injective *R*-module. Since *Q* is an injective cogenerator in the class of the right *R*-module, *I* can be embedded in some product of *Q*; $\prod Q$. Thus, *I* is a direct summand of $\prod Q$. Using [10, Lemma 1], $\operatorname{Tor}_{R}^{i}(\prod Q, M) = \prod \operatorname{Tor}_{R}^{i}(Q, M) = 0$ for all i > n. Thus, $\operatorname{Tor}_{R}^{i}(I, M) = 0$ for all i > n, as desired.

(1)⇒(2). Since *R* is left coherent, $(\text{Ext}_{R}^{i}(M,R))^{+} = \text{Tor}_{R}^{i}(R^{+},M) = 0$ for all i > 0. Thus, $\text{Ext}_{R}^{i}(M,R) = 0$.

102

(2) \Rightarrow (1). Follows from the implication (3) \Rightarrow (1) since R^+ is an injective cogenerator in the class of right *R*-module and since $(\text{Ext}_R^i(M, R))^+ = \text{Tor}_R^i(R^+, M)$ (recall that *R* is left coherent).

 $(1) \Rightarrow (4)$. Trivial.

(4) \Rightarrow (1). Using [1, Proposition 18.15], $Q = \prod E(S)$ (direct product of the envelope injective of simple right modules) is an injective cogenerator in the class of right *R*-modules. On the other hand, from [10, Lemma 1], $\operatorname{Tor}_{R}^{i} (\prod E(S), M) =$

 $\prod \operatorname{Tor}_{R}^{i}(E(S), M) = 0. \text{ Thus, this implication follows from (3)} \Rightarrow (1).$

Proposition 2.7. For any *R*-module *M*, we have $\text{IF-d}_R(M) \leq \text{fd}_R(M)$ with equality if $\text{fd}_R(M)$ is finite.

Proof. The first inequality follows from the fact that every flat module is an IFmodule. Now, set $\operatorname{fd}_R(M) = n < \infty$ and suppose that $\operatorname{IF-d}_R(M) = m < n$. Thus, there is a right *R*-module *N* such that $\operatorname{Tor}_R^n(N,M) \neq 0$. Clearly, *N* can not be injective. Thus, we can consider the exact sequence $0 \to N \to E(N) \to E(N)/N \to 0$ where E(N) is the envelope injective of *N*. Then, we have

$$0 = \operatorname{Tor}_{R}^{n+1}(E(N), M) \to \operatorname{Tor}_{R}^{n+1}(E(N)/N, M) \to \operatorname{Tor}_{R}^{n}(N, M) \to \operatorname{Tor}_{R}^{n}(E(N), M) = 0$$

Therefore, $\operatorname{Tor}_{R}^{n+1}(E(N)/N, M) \neq 0$. Absurd, since $\operatorname{fd}_{R}(M) = n$.

The proof of the next proposition is standard homological algebra.

Proposition 2.8. Let $0 \to A \to B \to C \to 0$ an exact sequence of *R*-modules. If two of IF-d_R(A), IF-d_R(B), and IF-d_R(C) are finite, so is the third. Moreover,

- (1) IF-d_R(B) \leq sup{IF-d_R(A), IF-d_R(C)}.
- (2) IF-d_R(A) \leq sup{IF-d_R(B), IF-d_R(C) 1}.
- (3) IF-d_R(C) \leq sup{IF-d_R(B), IF-d_R(A) + 1}.

The next corollary is an immediate consequence of Proposition 2.8

Corollary 2.9. Let *R* be a ring, $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ an exact sequence of *R*-modules. If *B* is an IF-module and IF-d(*C*) > 0 then, IF-d(*C*) = IF-d(*A*) + 1.

Proposition 2.10 (Flat base change). Consider a flat homomorphism of commutative rings $R \to S$ (that is, S is flat as an R-module). Then for any R-module M we have the inequality, IF-d_S $(M \otimes_R S) \leq$ IF-d_R(M).

Proof. Suppose that IF-d_{*R*}(*M*) \leq *n*. If *I* is an injective *S*-module, then since *S* is *R*-flat, *I* is also an injective *R*-module. On the other hand, from [11, Theorem 11.64], we have Tor^{*i*}_{*S*}(*I*, *M* $\otimes_R S$) \cong Tor^{*i*}_{*R*}(*I*, *M*) = 0 for all *i* > *n*. Thus, IF-d_{*S*}(*M* $\otimes_R S$) \leq *n*, as desired.

Najib Mahdou and Mohammed Tamekkante

References

- F.W. Anderson and K.R. Fuller, *Rings and Categories of Modules*, Springer, New York Heidelberg — Berlin, 1973.
- [2] P.M. Cohn, On the free product of associative rings, Math. Z. 71 (1959), 380–398.
- [3] D.J. Fieldhouse, Character modules, Comment. Math. Helv. 46 (1971), 274–276.
- [4] N.Q. Ding and J.L. Chen, The flat dimensions of injective modules, *Manuscripta Math.* 78 (1993), 165–177.
- [5] J. Xu, Flat covers of modules, in *Lecture Notes in Mathematics*, Vol. 1634, Springer, Berlin, 1996.
- [6] D.J. Fieldhouse, Character modules: dimension and purity, *Glasgow Math. J.* **13** (1972), 144–146.
- [7] C. Faith, Algebra 1: Rings, Modules and Categorie, Springer, Berlin Heidelberg New York, 1981.
- [8] S. Glaz, Commutative coherent rings, *Lecture Notes in Mathematics*, Springer-Verlag, 1371 (1989).
- [9] H. Holm, Gorenstein homological dimensions, *J. Pure Appl. Algebra* **189** (2004), 167–193.
- [10] J. Rainwater, Global dimension of fully bounded Noetherian rings, *Comm. Algebra* 15 (1987), 2143–2156.
- [11] J. Rotman, An Introduction to Homological Algebra, Pure and Appl. Math, A Series of Monographs and Textbooks, Academic Press, 25 (1979).

Najib Mahdou, Department of Mathematics, Faculty of Science and Technology of Fez, Box 2202, University S.M. Ben Abdellah Fez, Morocco. E-mail: mahdou@hotmail.com

Mohammed Tamekkante, Department of Mathematics, Faculty of Science and Technology of Fez, Box 2202, University S.M. Ben Abdellah Fez, Morocco. E-mail: tamekkante@yahoo.fr

Received January 15, 2010 Accepted May 27, 2010