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Numerical Approximation of Fractional Burgers Equation

A. Guesmia and N. Daili

Abstract. The mathematical modeling of physical and chemical systems is used
extensively throughout science, engineering and applied mathematics. In order
to make use of mathematical models, it is necessary to have solutions to the
model equations. Generally, this requires numerical methods because of the
complexity and number of equations. In this paper, we study and approximate
a nonlinear fractional Burgers problem by finite volume schemes of order one in
space and also in time. The purpose is to show that they converge to the solution
of the considered problem and to establish error estimates. We prove that the
finite volume schemes converge to weak entropic solutions as the discretization
parameters tend to zero.

1. Introduction

The mathematical modeling of physical and chemical systems is used
extensively throughout science, engineering and applied mathematics ([10],
[11]). In order to make use of mathematical models, it is necessary to have
solutions to the model equations. Generally, this requires numerical methods
because of the complexity and number of equations.

In this paper, we study and approximate a nonlinear fractional Burgers problem
by finite volume schemes of order one in space and also in time. The purpose is to
show that they converge to the solution of the considered problem and to establish
error estimates. In order to model solutions of Navier-Stokes equations, several
authors ([1], [2], [3], [4], [5], [6], [7], [8] and [13]) have studied fractional
Burgers equations with initial or random initial conditions.

Burgers equations involving in their linear parts fractional powers ∆α :=
−(−∆)α/2 of the Laplacian, α ∈ (0, 2], have been investigated in connection with
certain models of hydrodynamical phenomena (see [5] and its bibliography).
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Burgers equations in financial mathematics arise in connection with the
behavior of the risk premium of the market portfolio of risky assets under Black-
Scholes assumptions. These problems arise in a variety of engineering analysis and
design situations.

We approach (Dαv)(x) on a mesh K by a quadrature formula. A new quadrature
formula has been proposed which uses weight functions. For a time-discretization,
we apply one of the various basic schemes to solve a general ordinary differential
equation.

We prove that the finite volume schemes converge to weak entropic solutions as
the discretization parameters tend to zero.

2. Main Results

2.1. Numerical Approximation by Method of Lines (MOL) of Finite Volumes

The basic idea of the MOL is to replace the spatial (boundary value) derivatives
in the PDE with algebraic approximations. Once this is done, the spatial derivatives
are no longer stated explicitly in terms of the spatial independent variables. Thus,
in effect only the initial value variable, typically time in a physical problem,
remains. In other words, with only one remaining independent variable, we have
a system of ODEs that approximate the original PDE. The challenge, then, is to
formulate the approximating system of ODEs. Once this is done, we can apply any
integration algorithm for initial value ODEs to compute an approximate numerical
solution to the PDE. Thus, one of the salient features of the MOL is the use of
existing, and generally well established, numerical methods for ODEs.

Consider the following system:




ut =−Dαu− 1
2
(u2)x + f (x , t), 0< α≤ 1/2 and

(x , t) ∈ [0, 1]× [0, T]



u(0, t) = g0(t), t ∈ [0, T]
u(1, t) = g1(t), t ∈ [0, T]
u(x , 0) = U0(x), x ∈ [0, 1],

(2.1)

or under the following general hyperbolic form:




ut =−(G(u))x + f (x , t), 0< α≤ 1/2 and

(x , t) ∈ [0, 1]× [0, T]



u(0, t) = g0(t), t ∈ [0, T]
u(1, t) = g1(t), t ∈ [0, T]
u(x , 0) = U0(x), x ∈ [0, 1],

(2.2)

where �
u2

2

�

x
+ Dαu=

∂

∂ x
G(u) and Dα ≡ (−∂ 2/∂ x2)

α

2
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and Dα is defined by

(Dαv)(x) =
−1

Γ(α)

∫ x

0

(x − z)α−1v(z)dz.

A weak solution u(x , t) is defined on [0, 1]× [0, T].
Consider a partition (x i)i∈N of [0, 1] and denote x i+1/2 =

x i+1+x i

2
.

Then, define the volume of control Ki = [x i−1/2, x i+1/2] and its width hi =
x i+1/2 − x i−1/2.

The union of volumes Ki is [0, 1]. For every element Ki of mesh, we introduce a
mean value ui(t) of a solution, that one assumes exist, in the following meaning:

ui(t) =
1

hi

∫

Ki

u(x , t)d x , i ∈ N,

∂ ui(t)
∂ t

=
1

hi

∫

Ki

∂ u(x , t)
∂ t

d x , i ∈ N.

Now we go to approach (Dαv)(x) on Ki (namely x ∈ Ki) by a quadrature
formula. A new quadrature formula has been proposed which uses weight
functions. This formula has the form given below:

(Dαv)(x) =
−1

Γ(α)

∫ x

0

(x − z)α−1v(z)dz =
−1

Γ(α)

i∑

s=0

ws,i(x − sh)α−1v(sh),

where sh are nodes of a quadrature formula and ws,i are weight functions with∑i
s=0 ws,i = 1.
Integrate equation (2.1) on Ki in order to obtain

∫

Ki

ut d x =−
∫

Ki

Dαud x −
∫

Ki

1

2
(u2)x d x +

∫

Ki

f (x , t)d x

implies
∫

Ki

ut d x =
1

Γ(−α)

∫

Ki

∫ x

0

(x − z)−α−1v(z)dzd x −
∫

Ki

1

2
(u2)x d x +

∫

Ki

f (x , t)d x ,

namely,
∫

Ki

ut d x =
1

Γ(−α)
i∑

s=0

ws,iu(xs, t)

∫

Ki

(x − xs)
α−1d x −

∫

Ki

1

2
(u2)x d x +

∫

Ki

f (x , t)d x

implies
∫

Ki

ut d x =
1

αΓ(−α)
i∑

s=0

((x i+1/2 − xs)
α − (x i−1/2 − xs)

α)ws,iu(xs, t)

−1

2
(u2(x i+1/2, t)− u2(x i−1/2, t)) +

∫

Ki

f (x , t)d x
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implies
∫

Ki

ut d x =
�

1

αΓ(−α)
i∑

s=0

(x i+1/2 − xs)
αws,iu(xs, t)− 1

2
u2(x i+1/2, t)

�

−
�

1

αΓ(−α)
i∑

s=0

(x i−1/2 − xs)
αws,iu(xs, t) +

1

2
(u2(x i−1/2, t))

�

+

∫

Ki

f (x , t)d x

Denote the flux of exact solution at the vertex x i+1/2 and x i−1/2 by

F(x i+1/2, t)

=
�

1

αΓ(−α)
i∑

s=0

(x i+1/2 − xs)
αws,iu(xs, t)− 1

2
u2(x i+1/2, t)

�

=
�

1

αΓ(−α)
i∑

s=0

(x i+1/2 − xs)
αws,iu(xs, t)− 1

2

�
u(x i+1, t) + u(x i , t)

2

�2�

=
�

1

αΓ(−α)
i∑

s=0

(x i+1/2 − xs)
αws,iu(xs, t)− 1

8
(u(x i+1, t) + u(x i , t))2

�

and by

F(x i−1/2, t)

=
1

αΓ(−α)
i∑

s=0

(x i−1/2 − xs)
αws,iu(xs, t) +

1

2
(u2(x i−1/2, t))

=
1

αΓ(−α)
i∑

s=0

(x i−1/2 − xs)
αws,iu(xs, t) +

1

2

�
u(x i , t) + u(x i−1, t)

2

�2

=
1

αΓ(−α)
i∑

s=0

(x i−1/2 − xs)
αws,iu(xs, t) +

1

8
(u(x i , t) + u(x i−1, t))2. (2.3)

As x i is the midpoint of Ki , one has

|ui(t)− u(x i , t)| ≤ ch2.

Approach the flux of an exact solution at the vertex x i+1/2 by the numerical flux
which depends on mean values Ξ(u0, u1, . . . , ui , ui+1)

Ξ(u0, u1, . . . , ui , ui+1)

=
�

1

αΓ(−α)
i∑

s=0

(x i+1/2 − xs)
αws,ius(t))−

1

8
(ui+1(t) + ui(t)

�2

=
�

1

αΓ(−α)
i∑

s=0

(x i+1/2 − xs)
αws,ius(t))−Ψ(ui+1(t), ui(t)

�
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and at the vertex x i−1/2 by the numerical flux which depends on mean values
Ξ(u0, u1, . . . , ui−1, ui):

Ξ(u0, u1, . . . , ui−1, ui)

=
�

1

αΓ(−α)
i∑

s=0

(x i−1/2 − xs)
αws,ius(t))−

1

8
(ui(t) + ui−1(t)

�2

=
�

1

αΓ(−α)
i∑

s=0

(x i−1/2 − xs)
αws,ius(t))−Ψ(ui−1(t), ui(t)

�
,

to obtain an ordinary differential equation

∂ ui(t)
∂ t

=
1

hi
Ξ(u0, u1, . . . , ui , ui+1)−

1

hi
Ξ(u0, u1, . . . , ui−1, ui) + fi(t), t ≥ 0,

where

fi(t) =
1

hi

∫

Ki

f (x , t)d x .

For a time-discretization, we apply one of the various basic schemes to solve a
general ordinary differential equation:




d
−→
X

d t
= F(t,

−→
X )

−→
X (0) =

−→
X 0.

2.2. Stability for Explicit Schemes

Theorem 2.1. Let the assumptions (H1) and (H2) holds:

(H1) : u0 ∈ L∞([0, 1]);

(H2) : a condition C-F-L (Courant-Friedrichs-Lewy)

∆t ≤ 4 infi∈N hi

Lm1

where Lm1
is a Lipschitz constant, takes place, then a solution un

i defined by

un+1
i = un

i +
∆t

hi
Ξ(un

0, un
1, . . . , un

i , un
i+1)−

∆t

hi
Ξ(un

0, un
1, . . . , un

i , un
i ) +∆t fi(tn) (2.4)

and

u0
i =

1

hi

∫

Ki

U0(x)d x , i ∈ N (2.5)

verifies

A≤ un
i ≤ B, for all n, i ∈ N,

and

‖un
i ‖∞ ≤ 2Nmax‖U0‖∞ +

� Nmax∑

j=0

2 j
�
‖ fi(tn)‖∞ ≤ B.
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Proof. According to assumption A ≤ U0 ≤ B, a.e. and a definition of u0
i , we see

that A≤ u0
i ≤ B, for all i ∈ N. Let n ∈ N. Suppose

‖un
i ‖∞ ≤ ‖U0‖∞ + nmax‖ fi(tn)‖∞, for all i ∈ N.

Let us show that this property is still true in the rank n+ 1. We have

un+1
i = un

i +
∆t

hi
Ξ(un

0, un
1, . . . , un

i , un
i+1)−

∆t

hi
Ξ(un

0, un
1, . . . , un

i−1, un
i ) +∆t fi(tn)

and

un+1
i = un

i +∆t fi(tn) +
1

αΓ(−α)
i∑

s=0

ws,i((x i+1/2 − xs)
α − (x i−1/2 − xs)

α)un
s

+
∆t

8hi
((un

i + un
i−1)

2 − (un
i + un

i )
2 + (un

i + un
i )

2 − (un
i+1 + un

i )
2)

Let us explicit ((x i+1/2 − xs)α − (x i−1/2 − xs)α). Then, we have

(x i+1/2 − xs)
α − (x i−1/2 − xs)

α

=
(x i+1/2 − xs)α − (x i−1/2 − xs)α

(x i+1/2 − x i−1/2)
(x i+1/2 − x i−1/2)

= α(x i+1/2 − x i−1/2)
α−1(x i+1/2 − x i−1/2) = αhi

α.

Therefore

un+1
i = un

i +∆t fi(tn) +
1

Γ(−α)
i∑

s=0

ws,ihi
αun

s +
∆t

8hi
((un

i + un
i−1)

2

−(un
i + un

i )
2 + (un

i + un
i )

2 − (un
i+1 + un

i )
2),

hence

un+1
i = (1− bi+ 1

2
− ai− 1

2
)un

i + bi+ 1
2
un

i+1(t) + ai− 1
2
un

i−1(t)

+
i∑

s=0

β(α, i, s)un
s +∆t fi(tn),

where

bi+ 1
2
=




∆t

8hi

� (un
i+1 + un

i )
2 − (un

i + un
i )

2

un
i − un

i+1

�
, if un

i+1 6= un
i ,

0, if un
i+1 = un

i ;

and

a
i−

1

2

=




∆t

8hi

� (un
i−1 + un

i )
2 − (un

i + un
i )

2

un
i−1 − un

i

�
, if un

i−1 6= un
i ,

0, if un
i−1 = un

i ,
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and

β(α, i, s) =
1

Γ(−α)ws,ihi
α.

We have

bi+ 1
2
≤ Lm1

∆t

8hi
, ai− 1

2
≤ Lm1

∆t

8hi
, for all i ∈ N

and

Nmax∑

s=0

β(α, i, s)≤ 1.

Ψ(p, q) is a Lipschitz function on [A, B]2 with the same Lipschitz constant in p
and q: Lm1

. Consequently, un+1
i is a convex combination of un

i , un
i+1 and un

i−1 on
one part and linear combination on the other part. Then, a recurrence assumption
implies

‖un+1
i ‖∞ ≤ 2‖un

i ‖∞ + ‖ fi(tn)‖∞
and gives us

‖un
i ‖∞ ≤ 2Nmax‖U0‖∞ +

Nmax∑

j=0

2 j‖ fi(tn)‖∞

≤ 2Nmax‖U0‖∞ + nmax‖ fi(tn)‖∞ ≤ B. ¤

2.3. Convergence

Fix an initial condition u0 ∈ L∞([0, 1]), that we discretize on a mesh Tm of step
hm > 0:

(um)
0
i =

1

hi

∫

Ki

u(x , 0)d x , i ∈ N.

We use a step of time ∆tm and search a function um supposed constant on every
product of form ]ihm, (i+ 1)hm[ × ]n∆tm, (n+ 1)∆tm[:

um(x , t) = (um)
n
i , (x , t) ∈]ihm, (i+ 1)hm[ × ]n∆tm, (n+ 1)∆tm[.

Calculate (um)
n+1
i

1

∆tm
((um)

n+1
i − (um)

n
i )=

1

hm
Ξ(un

0, un
1, . . . , un

i , un
i+1)−

1

hm
Ξ(un

0, un
1, . . . , un

i−1, un
i )+ f n

i .

When ∆tm → 0 and hm → 0 for m → ∞, the functions family (um)m∈N can
converge to a weak solution of problem.
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Theorem 2.2 (Convergence). Let us situated in the frame above of a family Tm of
uniform mesh of space-step hm > 0 and a time-step ∆tm. Construct a sequence (um).
Let the assumptions (h1), (h2), (h3) and (h4) holds:
(h1) : numerical flux function Ξ(·, ·) is consistent with the flux ( u2

2
+
∫

Dαu), of
conservation law:

Ξ(u, . . . , u) =
�

u2

2
+

∫
Dαu

�
= G(u);

(h2) : a sequence (um)m∈N is uniformly bounded in L∞([0, 1])

∃ K > 0, ‖u0‖L∞([0,1]) ≤ d, ‖um‖L∞([0,1]) ≤ d, m ∈ N;

(h3) : a numerical flux function Ψ is Lipschitz on [−d, d]2:

∃ L > 0, |Ξ(u1, u2, . . . , un)−Ξ(v1, v2, . . . , vn)| ≤ L
� n∑

p=1

|up − vp|
�

,

(u1, u2, . . . un; v1, v2, . . . , vn) ∈ [−d, d]2n;

(h4) : it exists u ∈ L∞([0, 1]× [0, T]) such that

lim
(m→∞)

um(x , t) = u(x , t), a.e. (x , t)

Then u(·, ·) is a weak solution to problem.

Remark 2.3. The previous theorem expresses that if the family of numerical
solutions (um)m∈N converges, it is towards a weak solution of the problem.

Definition 2.4 (Consistency with the Condition of Entropy). An explicit scheme of
finite volume is consistent with entropy inequality if, for any mathematical entropy
η, there is a function of numerical flux of entropy Φ consistent with the flux of
entropy ξ satisfying

(ξ′ = η′(G(u))′) : Φ(u, . . . , u) = ξ(u)

such that if un
i is given by the following numerical scheme:

1

∆t
(un+1

i − un
i ) =

1

hi
Ξ(un

0, un
1, . . . , un

i , un
i+1)−

1

hi
Ξ(un

0, un
1, . . . , un

i−1, un
i ) + f n

i

then we have, also, a discrete inequality of entropy

1

∆t
(η(un+1

i )−η(un
i )) +

1

hi
(Φ(un

i+1, un
i )−Φ(un

i , un
i−1))≤ η( f i

n),

where

η( f i
n) =

1

hi∆t

∫ tn+1

tn

∫ x i+1/2

x i−1/2

η′(u) f (x , t)d xd t.

This definition allows to complete the Lax-Wendroff’s theorem ([12]) on
uniqueness of solution in a fractional case.
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Proposition 2.5 (Convergence of Finite Volume Methods). Under assumptions of
Theorem 2.2, if the numerical scheme is consistent with the condition of entropy, for
any entropy η, the numerical flux Φ is Lipschitz on an interval [−d, d] , then the
limit u is a bounded unique weak entropic solution of a problem.

Proposition 2.6 (Sufficient Condition of Entropic Consistency for the Method
of Lines). Let U ∈ Ω ⊂ Rp → η(U) ∈ R be a mathematical entropy. Denote
U ∈ Ω→ π(U) = ξ= (ξ1, . . . ,ξp) ∈ Rp the vector of entropic variables,

πi(U) = ξi =
∂ η(U)
∂ ui

.

If the function of numerical flux satisfies

Dki−1,ki+1
≡
∫ ξki+1

ξki−1

((Ξ(ξn
0,ξn

1, . . . ,ξn
i ,ξn

i+1)−Ξ(ξn
0,ξn

1, . . . ,ξn
i−1,ξn

i ))− 〈ξ,∇ξ〉)dξ≤0,

for every couple (ξn
i+1,ξn

i−1) of entropic variables, then the method of lines is
consistent with the condition of entropy.

Remark 2.7. E. Tadmor ([14]) showed that any scheme of implicit finite volume
is consistent with the inequality of entropy.

2.4. Explicit and Implicit Error Estimates

In this section, we prove estimates of error in L1
loc([0, 1]× [0, T]) between the

approached solution obtained by an explicit or implicit scheme and an entropic
solution.

Theorem 2.8 (Error Estimate for An Explicit Scheme). Let u be a solution of (2.1)
satisfying

∫ T

0

∫ 1

0

�
|u− k|∂ ϕ

∂ t
+ sg0(u− k)

�
(u2 − k2)

∂ ϕ

∂ x
+ f (x , t)ϕ

��
d xd t

+

∫ 1

0

|u0(x)− k|ϕ(x , 0)d x

≥
∫ T

0

sg0(u2(t)− k)
�u2

2(t)−χu1
(t)2

2

�
ϕ(1, t)d t

−
∫ T

0

sg0(u1 − k)
�u2

1(t)−χu0
(t)2

2

�
ϕ(0, t)d t;

χur
(t) is the trace of u(., t) at r. Let uT = un

i , for x ∈ Ki and t ∈ ]n∆t, (n+ 1)∆t[,
be an approached solution defined by the following explicit scheme

un+1
i = un

i +
∆t

hi
Ξ(un

0, un
1, . . . , un

i , un
i+1)−

∆t

hi
Ξ(un

0, un
1, . . . , un

i−1, un
i ) +∆t. f n

i .
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If U0 ∈ BVloc(]0, 1[) ∩ L∞(]0, 1[), we have the following error estimate: for any
compact E of (]0, 1[ × ]0, T[) there exists kc which depends of E, U0 and Lm1

such
that

∫ E

|uT (x , t)− u(x , t)|d xd t ≤ kch
1
4 .

Proof. A proof rests on the integral of continuous entropy satisfied by uT (x , t) and
on the following lemma:

Lemma 2.9. Suppose U0 ∈ BVloc(]0, 1[)∩L∞(]0, 1[). Let eu ∈ L∞(]0, 1[× ]0, T[) be
such that A≤ un

i ≤ B almost everywhere. Suppose there existsσ ∈ M(]0, 1[× ]0, T[)
and σ0 ∈ M(]0, 1[) where M(Ω) is the set of positive continuous linear functionals
on Cc(Ω) such that

∫ T

0

∫ 1

0

�
|u− k|∂ ϕ

∂ t
+ sg0(u− k)

��
u2 − k2

2

�
∂ ϕ

∂ x
+ f (x , t)ϕ

��
d xd t

+

∫ 1

0

|u0(x)− k|ϕ(x , 0)d x

≥
∫ T

0

sg0(u2(t)− k)
� g2

1(t)−χu1
(t)2

2

�
ϕ(1, t)d t

−
∫ T

0

sg0(u1 − k)
� g2

0(t)−χu0
(t)2

2

�
ϕ(0, t)d t

−
∫ T

0

∫ 1

0

�����
∂ ϕ(x , t)
∂ t

����+
����
∂ ϕ(x; t)
∂ x

����
�

dσ(x , t)−
∫ 1

0

|ϕ(x , 0)|dσ0(x),

for all k ∈ R, for all ϕ ∈ C∞c (]0, 1[ × ]0, T[).

Let u ∈ L∞(]0, 1[ × ]0, T[) such that:

∫ T

0

∫ 1

0

�
|u− k|∂ ϕ

∂ t
+ sg0(u− k)

��
u2 − k2

2

�
∂ ϕ

∂ x
+ f (x , t)ϕ

��
d xd t

+

∫ 1

0

|u0(x)− k|ϕ(x , 0)d x

≥
∫ T

0

sg0(u2(t)− k)
� g2

1(t)−χu1
(t)2

2

�
ϕ(1, t)d t

−
∫ T

0

sg0(u1 − k)
� g2

0(t)−χu0
(t)2

2

�
ϕ(0, t)d t,

for all k ∈ R, for all ϕ ∈ C∞c (]0, 1[ × ]0, T[).
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Then, for any compact E ⊂]0, 1[ × ]0, T[, there exist cE,u0
, u, er and eT independent

of E, u and u0 such that
∫ E

|eu (x , t)− u(x , t)|d xd t

≤ cE,u0
(σ0(B(0,er)) +σ(B(0,er)× [0, eT]) +σ(B(0,er)× [0, eT]) 1

2 ).

Indeed; the following theorem proves the existence of measures σ ∈
M(]0, 1[ × ]0, T[) and σ0 ∈ M(]0, 1[):

Theorem 2.10. Under previous assumptions on data and mesh, there exists measures
µτ ∈ M(]0, 1[) and µτ,k ∈ M(]0, 1[ × ]0, T[) such that for all k ∈ R, for all
ϕ ∈ C∞c (]0, 1[ × ]0, T[):
∫ T

0

∫ 1

0

�
|uT − k|∂ ϕ

∂ t
+ sg0(uT − k)

��
u2
T − k2

2

�
∂ ϕ

∂ x
+ f (x , t)ϕ

��
d xd t

+

∫ 1

0

|u0(x)− k|ϕ(x , 0)d x

≥
∫ T

0

sg0(g1(t)− k)
� g2

1(t)−χu1
(t)2

2

�
ϕ(1, t)d t

−
∫ T

0

sg0(g0 − k)
� g2

0(t)−χu0
(t)2

2

�
ϕ(0, t)d t −

∫ T

0

∫ 1

0

�����
∂ ϕ(x , t)
∂ t

����

+

����
∂ ϕ(x; t)
∂ x

����
�

dµτ,k(x , t)−
∫ 1

0

|ϕ(x , 0)|dµτ(x)

Moreover,

(i) for any ball Br of radius, er > 0, eT > 0; there exists cm which depends of U0, er,
Lm and eT such that

µτ,k(Br × [0, eT])≤ cm(h+
p

h), for all h< er;

(ii) µτ is the measure of density |uT ,0 − U0| (where uT ,0 = u0
i , for all i ∈ N)

relatively to Lebesgue measure. For any er > 0, one has then

lim
(h→0)

µτ(Br) = 0.

If U0 ∈ BVloc(]0, 1[) ∩ L∞(]0, 1[), there exists Dm which depends of U0 and er such
that

µτ(Br)≤ Dmh, for all h< er.

Error estimates verified by implicit scheme shall be obtained in the same way as
explicit scheme. We have the following result:

Theorem 2.11 (Error Estimate for An Implicit Scheme). Let uT = un
i , while x ∈ Ki

and t ∈ ]n∆t, (n+1)∆t[, be an approached solution defined by the following explicit



88 A. Guesmia and N. Daili

scheme:

un+1
i = un

i +∆t · f n+1
i +

∆t

hi
Ξ(un+1

0 , un+1
1 , . . . , un+1

i , un+1
i+1 )

−∆t

hi
Ξ(un+1

0 , un+1
1 , . . . , un+1

i−1 , un+1
i ).

If U0 ∈ BVloc(]0, 1[)∩ L∞(]0, 1[), then we have the following error estimate: for any
compact E of (]0, 1[×]0, T[), there exists k which depends of E, U0 and Lm1

such
that

∫ E

|uT (x , t)− u(x , t)|d xd t ≤ kc

�
∆t

h
+
p

h
� 1

2

.

Remark 2.12. Tadmor ([14]) proved that any implicit finite volume scheme is
consistent with inequality of entropy.

Proposition 2.13 (Convergence of finite volumes method). Under assumptions of
previous theorem, if the numerical scheme is consistent with the entropic condition,
for any entropy η where the numerical flux Φ is Lipschitz on the interval [−d, d],
then a limit u is a bounded unique and weak entropic solution of problem.

2.5. Numerical Results

We give, below, some results of numerical simulations and error estimates for
α= 1

2
and

f (x , t) =
�

2x
3
2

3
p
π
+

2
p

xp
π
+ x(x − 1)(−β + (2x − 1)exp(−β ∗ t))

�
exp(−β ∗ t).

We have the following numerical results:

Figure 1
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Figure 2

Figure 3

2.6. Conclusions and Perspective

We studied and give finite volumes approach on a regular domain then estimate
errors made for the fractional Burgers equation.

In view of the importance of fractional Burgers equation in sciences of
engineering and his various applications, we hope to develop these results, always
by using the finite volumes technique, for perturbed fractional Burgers equation
on a non regular domain.

Acknowledgement. We would like to thank the referees of this paper.
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