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Abstract. Linking graph theory and algebra has been a rich area of mathematical exploration for
a long time. Cayley digraphs and Zero-Divisor graphs are two such examples. In this paper, we
make another connection by constructing and studying digraphs whose vertices are the elements
of the multiplicative group of the finite fields Zp for certain primes p. In particular, we determine
parameters, including the diameter of such digraphs and the eccentricity of certain vertices of these
digraphs. We also find some results on the quadratic residues and nonresidues of Zp .
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1. Introduction
Arthur Cayley introduced a connection between group theory and graph theory in 1878 [5].
Other links between graphs and algebraic structures were later found by Beck [4], Anderson
and Livingston [2]. The interplay between graphs and algebra is vastly explored even today ([3]
and [7], for example). The object of this article is to develop a connection between digraphs and
quadratic residues of finite fields of integers. This will help particularly in shedding more light
on the structure of these digraphs and on some of their parameters. Properties of these graphs
will also help shed light on the nonresidues modulo p, particularly on their sum.
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2. Preliminaries and Notation
Let S be the subgroup of squares of the multiplicative group of the finite field Zp , for a positive
integer p. We define ∆p to be the directed graph whose vertex set is the multiplicative group
Z∗

p of the finite field Zp and whose arc set is E(∆p)= {(x, y) : x, y ∈Z∗
p and x2 = y, y ∈ S}.

Let a be an element of Z∗
p such that (a, p)= 1. Then a is called a quadratic residue modulo p

if there exists an element x in Z∗
p such that x2 ≡ a mod p. If no such x exists in Z∗

p, then a is
called a quadratic non-residue modulo p. We note that we do not admit 0 as a quadratic residue
in this article.

For nonzero elements a1 and a2 of Z∗
p, an arc a1 → a2 of the digraph ∆p is a quadratic

residue arc if a2
1 ≡ a2 mod p.

Definition 2.1. Let ∆p be a digraph with vertex set Z∗
p . Then ∆p is a quadratic residue digraph

over Z∗
p if each arc of ∆p is a quadratic residue arc.

In this paper, we will study the digraphs ∆p for p = 2k+1 for a prime number p, the so-called
Fermat primes. We note that since p = 2k +1 is prime, then k must be a power of 2.

Notions of graph theory, finite fields, and number theory used in this article can be found in
[6], [8] and [9], respectively.

3. Properties of Quadratic Residue Digraphs
Now, since every element of Zp has a unique square in Zp and since 0 is not admitted, the
corresponding digraph ∆p has size m = p−1 and order n = p−1.

Definition 3.1. For any arc u → v in ∆p , we call u an out-vertex and v an in-vertex of ∆p .

Definition 3.2. A vertex v is called an end-vertex or a leaf if v is an out-vertex and deg(v)= 1.

Definition 3.3. A vertex v is a terminal vertex if v is the only vertex adjacent from v.

The set of in-vertices corresponds exactly to the set of quadratic residues. We note also that 1
is the only terminal vertex of ∆p .

Observe also that each digraph ∆p contains the loop 1 → 1 and the arc (p−1) → 1. This
is true since 12 ≡ 1 mod p and (p−1)2 ≡ 1 mod p. Another observation is that each vertex has
out-degree 1.

In the next theorems, we will only consider the digraphs ∆p , where p = 2k +1 is prime. Also,
we will admit loops in ∆p .

Theorem 3.1. Let u be a vertex in ∆p . Then, the degree of u in ∆p is either 1 or 3.

Proof. Let u be a vertex in ∆p . Note that, outdeg(u)= 1 since u2 is the squaring function in Z∗
p .

If u is a square, then there exists a vertex v in ∆p such that v2 ≡ u mod p. Since this congruence
has 2 solutions, indeg(u) = 2. Therefore, deg(u) = outdeg(u)+ indeg(u) = 1+2 = 3. If u is not a
square, then indeg(u)= 0, and so deg(u)= outdeg(u)+ indeg(u)= 1+0= 1.
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Corollary 3.1. If u is a quadratic nonresidue in Z∗
p , then u is a leaf in ∆p .

Theorem 3.2. If a → c is an arc in ∆p , then so is (p−a)→ c.

Proof. If a → c, then a2 ≡ c mod p. Since (p − a)2 ≡ a2 mod p, we obtain (p − a)2 ≡ c mod p.
Therefore, (p−a)→ c is an arc in ∆p .

Lemma 3.1. If x2k = 1 in Z∗
p for some positive integer k, then there is a path from the vertex x to

the vertex 1 in ∆p .

Proof. Let x be a vertex in ∆p . Then x2 = y for some integer y in Zp . So we have the arc x → y.
Similarly, y2 = w for some w in ∆p . Thus, we now have the path x → y→ w; i.e., we have the path
x → x2 → x22

. Continuing this process, we will obtain the path x → x2 → x22 → x23 → . . .→ x2k = 1,
for some positive integer k. Therefore, there exists a path from x to x2k

, the vertex in ∆p

corresponding to 1.

Theorem 3.3. If p = 2k +1 is prime for some positive integer k, then the digraph ∆p constructed
with vertices from Z∗

p is a tree.

Proof. Let p = 2k +1 be prime for some positive integer k. First, we show that ∆p is connected.
Let u be a vertex in ∆p . We claim that there is a path from u to 1. We note that the multiplicative
group Z∗

p of the finite field Zp is cyclic and has order 2k . If u is a generator of Z∗
p , then u2k = 1,

where 2k is the smallest such integer. Thus, by Lemma 3.1, there is a path from u to 1. Now,
suppose that u is not a generator. Since the order of u divides 2k, we must have |u| = 2t for
some positive integer t, where t < k, so that u2t = 1, and hence there is a path from u to 1. In
the first case, we obtain a path u → u2 → u4 → . . .→ u2k = 1 of length k. In the case where u is
not a generator, we obtain a path u → u2 → u4 → . . .→ u2t = 1 of length t. Since there is a path
from every vertex of ∆p to 1, we see that ∆p is connected.

We now show that ∆p contains no cycle. Suppose, to the contrary, that ∆p has a cycle. Then,
there is a path in ∆p that is not simple, say u1 → u2 → . . . → u j → . . . → us, where s > 1. Since
∆p is of finite order, we know that this path must end. We also see that, for any l < s, ul 6= 1
and that us = 1, where s is the smallest such positive integer. Note that us = 1 implies u2s−1

1 = 1.
Since the path is not simple, we must have u j = ui for positive integers j and i, where j < s
and i < s, and i 6= 1 and j 6= 1. It is clear that u j = u2 j−1

1 and ui = u2i−1

1 . Thus, u2 j−1

1 = u2i−1

1 ; and
so, u2 j−1−2i−1

1 = 1. Therefore, |u1| divides 2 j−1−2i−1; in other words, 2s−1 divides (2 j−1−2i−1), a
contradiction to our assertion that j < s and i < s. Therefore, ∆p has a cycle.

Since ∆p is connected and acyclic, we know that ∆p is a tree.

Corollary 3.2. For p = 2k +1, the digraph ∆p has diameter k.

Proof. Choose the longest path u1 → u2 → . . .→ uk as in the proof of the previous theorem and
note that u2k = 1. This path has length k.
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Corollary 3.3. For p = 2k +1, an element a of Z∗
p is a generator of Z∗

p if and only if the distance
from a to 1 is k in ∆p .

Corollary 3.4. The eccentricity of the vertex 1 in ∆p is k.

Below are examples of quadratic residue digraphs over Z∗
3 , Z∗

5 and Z∗
17 .
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Figure 1. Graph of ∆3
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Figure 2. Graph of ∆5
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Figure 3. Graph of ∆17
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We now make a few more observations:

First, recall that, for a prime p = 2k +1, the end-vertices or leaves of ∆p are the nonresidues
of Z∗

p , and therefore they are the generators of Z∗
p . Also, we already know that, when p ≡ 1 mod 4,

the sum of the quadratic residues is equal to the sum of the quadratic nonresidues of Z∗
p (see [1]

for a proof). In particular, this is true for primes p = 2k +1 since k is a power of 2.
We finish this paper with this note. Using the notation in [1], let Q be the set of quadratic

residues modulo p and let N be the set of nonresidues. Let
∑

Q and
∑

N denote the sum of the
elements in the set of residues modulo p and the sum of the elements in the set of nonresidues
modulo p, respectively. We define

∑
N2 as the set of the squares of the elements of N . We have

the following:

Theorem 3.4. For positive integers t, if |N2t | ≥ 2, then
∑

N2t = (1
2

)t ∑N .

Proof. For the case t = 1, consider the squaring function α : N → N2 ⊂Q. We see that is 2-to-1
since, for every a ∈ N , both a and p−a have the same image modulo p, say y. Also, since y ∈Q
and since −1 is a square mod p, it is also the case that −y ∈Q; i.e. (p− y) ∈Q. Since

∑
N =∑

Q,
it follows that

∑
N2 = 1

2
∑

Q = 1
2
∑

N . For integers m ≤ t, assume that
∑

N2m = (1
2

)m ∑
N . Then∑

N2m+1 =∑
(N2m

)
2 =∑

(N2)2m = (1
2

)m ∑
N2 = (1

2

)m 1
2
∑

N = (1
2

)m+1 ∑
N . Therefore, the statement

holds by induction on t.

4. Conclusion
In this paper, we constructed and studied properties of digraphs over certain finite fields of
integers Zp. We constructed the digraphs by linking the elements of Zp to their squares. We
found that those digraphs are trees if p = 2k+1, where p is a prime. We also found the diameter
of those trees and the eccentricity of the vertex 1. We also found a formula for the sum the of the
squares of the nonresidues of Z∗

p . Since only a few of those primes are known, not a lot of these
digraphs can be constructed. However, this article opens the door for further investigations of
quadratic residue graphs over sets of integers Zp , for any integer p. Investigations can also be
made for higher order residues, such as cubic and quartic.
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