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Power Series Method for Linear Partial Differential
Equations of Fractional Order

Muhammet Kurulay and Mustafa Bayram

Abstract. In this article, a novel numerical method is proposed for linear partial
differential equations with time-fractional derivatives. This method is based
on power series and generalized Taylor’s formula. The fractional derivatives
are considered in the Caputo sense. Several illustrative examples are given to
demonstrate the effectiveness of the present method. The modified algorithm
provides approximate solutions in the form of convergent series with easily
computable components. The obtained results are in good agreement with the
existing ones in open literature and it is shown that the technique introduced
here is robust, efficient and easy to implement.

1. Introduction

In the last several decades, many researchers have found that derivatives
of noninteger order are very suitable for the description of various physical
phenomena such as rheology, damping laws and diffusion process. These findings
have invoked a growing interest of studies of the fractal calculus in some various
fields such as physics, fluid mechanics, biology, chemistry, acoustics, control theory,
chemistry and engineering. Several excellent books and papers describing the
state-of-the-art available in the literature testify to the maturity of theory of fractal
order. Podlubny [1, 13] provided the solution methods of differential equations of
arbitrary real order and applications of the described methods in various fields.
Fractional differentiation and integration operators are also used for extensions of
the diffusion and wave equations [2].

Several analytical and numerical methods have been proposed to solve
fractional ordinary differential equations, integral equations and fractional partial
differential equations of physical interest. The most commonly used ones are;
Adomian Decomposition Method (ADM) [4], Variational Iteration Method (VIM)
[5], Fractional Difference Method (FDM) [1], Differential Transform Method
(DTM) [6, 7], Homotopy Perturbation Method (HPM) [8]. Also there are some
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other classical solution techniques. These are Laplace transform method, Fractional
Green’s function method, Mellin transform method and method of orthogonal
polynomials [1]. Among these solution techniques, the variational iteration
method and the Adomian decomposition method are the most clear methods of
solution of fractional differential and integral equations, because they provide
immediate and visible symbolic terms of analytic solutions, as well as numerical
approximate solutions to both linear and nonlinear differential equations without
linearization or discretization. Recently some numerical methods have been
developed to solve linear partial differential equations of fractional order and
nonlinear partial differential equations of fractional order [9, 10, 12]. Homotopy
analysis method is applied to solve fractional partial differential equations [11].

2. Fractional Calculus

There are several definitions of a fractional derivative of order [1, 3]
e.g. Riemann-Liouville, Grunwald-Letnikow, Caputo and Generalized Functions
Approach. The most commonly used definitions are the Riemann-Liouville and
Caputo. We give some basic definitions and properties of the fractional calculus
theory which are used further in this paper.

Definition 2.1. A real function f (x), x > 0, is said to be in the space Cµ,
µ ∈ R if there exists a real number (p > µ), such that f (x) = x p f1(x), where
f1(x) ∈ C[0,∞), and it said to be in the space Cm

µ iff f m ∈ Cµ, m ∈ N .

Definition 2.2. The Riemann-Liouville fractional integral operator of order α≥ 0,
of a function f ∈ Cµ,µ≥−1, is defined as

J v
0 f (x) =

1

Γ(v)

∫ x

0

(x − t)v−1 f (t)d t, v > 0,

J0 f (x) = f (x).

It has the following properties: For f ∈ Cµ,µ≥−1, α,β ≥ 0 and γ > 1 :

(1) JαJβ f (x) = Jα+β f (x),
(2) JαJβ f (x) = Jβ Jα f (x),
(3) Jαxγ = Γ(γ+1)

Γ(α+γ+1)
xα+γ.

The Riemann-Liouville fractional derivative is mostly used by mathematicians
but this approach is not suitable for the physical problems of the real world
since it requires the definition of fractional order initial conditions, which have
no physically meaningful explanation yet. Caputo introduced an alternative
definition, which has the advantage of defining integer order initial conditions
for fractional order differential equations.

Definition 2.3. The fractional derivative of f (x) in the Caput sense is defined as

Dv
∗ f (x) = Jm−v

a Dm f (x) =
1

Γ(m− v)

∫ x

0

(x − t)m−v−1 f (m)(t)d t,

for m− 1< v < m, m ∈ N , x > 0, f ∈ Cm
−1.
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Lemma 2.4. If m− 1< α < m, m ∈ N and f ∈ Cm
µ ,µ≥−1, then

Dα∗ Jα f (x) = f (x),

JαDv
∗ f (x) = f (x)−

m−1∑

k=0

f k(0+)
x k

k!
, x > 0

The Caputo fractional derivative is considered here because it allows traditional
initial and boundary conditions to be included in the formulation of the problem.
In this paper, we have considered the time-fractional linear partial differential
equation, where the unknown function u = u(x , t) is a assumed to be a causal
function of time and the fractional derivatives are taken in Caputo sense as follows:

Definition 2.5. For m to be the smallest integer that exceeds α, the Caputo time-
fractional derivative operator of order α > 0 is defined as

Dα∗tu(x , t) =
∂ αu(x , t)
∂ tα

=





1
Γ(m−α)

∫ t

0
(t − ξ)m−α−1 ∂ mu(x ,ξ)

∂ ξm dξ, for m− 1< α < m,

∂ mu(x ,t)
∂ tm , for α= m ∈ N .

3. Power Series Method

In this paper, we consider the solution of linear time-fractional partial
differential equations of form [12]

∂ αu

∂ tα
+ a0(x)u+ a1(x)

∂ u

∂ x
+ a2(x)

∂ 2u

∂ x2 + a3(x)
∂ 3u

∂ x3 + . . .+ an(x)
∂ nu

∂ xn = q(x , t),

t > 0, x ∈ R (3.1)

subject to the initial and boundary conditions

u(x , 0) = f (x), 0< α≤ 1, u(x , t)→ 0 as |x | →∞, t > 0

u(x , 0) = f (x),
∂ u(x , 0)
∂ t

= g(x), 0< α≤ 2, u(x , t)→ 0 as |x | →∞, t > 0

where ai(i = 0, 1, . . . , n), f (x), g(x) and (x , t) all are continuous functions and α is
a parameter describing the order of the time-fractional derivative. When 0< α≤ 1,
equation(3.1) can be reduced to a fractional heat-like equation, and to a wave-like
equation for 0 < α ≤ 2. In case of α=1, the fractional equation reduces to the
classical linear partial differential equation.

The coefficients of variables of a function u(x , y) are defined as follows:

Uα,β(k, h) =
1

Γ(αk+ 1)Γ(βh+ 1)
[(Dα∗x0

)k(Dβ∗y0
)hu(x , y)](x0,y0),

where (Dαx0
)k = Dαx0

Dαx0
· · ·Dαx0

, k-times.
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The function u(x , y) can be represented as

u(x , y) =
∞∑

k=0

Fα(k)(x − x0)
kα
∞∑

h=0

Gβ (h)(y − y0)
hβ

=
∞∑

k=0

∞∑

h=0

Uα,β(k, h)(x − x0)
kα(y − y0)

hβ ,

where 0< α, β ≤ 1, Uα,β(k, h) = Fα(k)Gβ(h) is called the spectrum of u(x , y).
From equations (3.2) and (3.2), we have

u(x , y) =
∞∑

k=0

∞∑

h=0

1

Γ(αk+ 1)Γ(βh+ 1)
[(Dα∗x0

)k(Dβ∗y0
)hu(x , y)](x0,y0)

× (x − x0)
kα(y − y0)

hβ ,

where it is to noted that upper case symbol U(k, h) is used to denote the coefficients
of variables in (3.2) which are represented by a corresponding lower case symbol
original function u(x , y).

This section aims at describing a numerical solution of time-fractional derivative
partial differential equations by power series method. We write power series
method in the form

u(x , t) = U0 + U1 x + U01 tα + U11 x tα + · · ·+ Umn−1 xm t(n−1)α + axm tnα,

k− 1< α < k, m, n, k ∈ N (3.2)

where U0, U1, U01, U11, . . . are known constants but a is an unknown constant.
Substituting into (1), we can get the following:

U(m, n) = (µa+λ)xm tnα−i = 0

where µ and λ are constant and i is the order of the partial differential equation.
From (8), we have a constant. Substituting (3.3) into (3.2), we get the solution
of the partial differential equation. Repeating this procedure from (3.2)-(3.3), we
can get the power series method of the solution for time-fractional derivative PDEs
in (3.1).

4. A Numerical Solution of Second-order Partial Differential Equations

4.1. Example

Consider the linear time-fractional equation [11]

∂ αu

∂ tα
=

1

2
x2 ∂

2u

∂ x2 , t > 0, 0< x < 1, 0< α≤ 1,

Subject to the initial condition

u(x , 0) = x2,

and the boundary conditions

u(0, t) = 0, u(1, t) = et .



Power Series Method for Linear Partial Differential Equations of Fractional Order 75

Using equation (3.2), and initial condition , we obtain

U(i, 0) = 0, i = 0, 1, 3, 4, . . . , m, (4.1)

U(2, 0) = 1.

Substituting equations (4.4) into equations (3.2), we have

u1(x , t) = x2 + ax2 tα.

Substituting equations(4.2) into equations (4.1),

U(2, 1) =
1

Γ(α+ 1)
and by recursive method, the results corresponding to n→∞ are listed as follows:

u(x , t) = x2
�

1+
tα

Γ(α+ 1)
+

t2α

Γ(2α+ 1)
+

t3α

Γ(3α+ 1)
+

t4α

Γ(4α+ 1)
+ · · ·

�

= x2
∞∑

n=0

tnα

Γ(nα+ 1)

4.2. Example

We next consider linear inhomogeneous time-fractional equation [12]:
∂ αu

∂ tα
+ x

∂ u

∂ x
+
∂ 2u

∂ x2 = 2tα + 2x2 + 2, t > 0, 0< α≤ 1,

subject to the initial condition

u(x , 0) = x2.

Using equation (3.2), and initial condition, we obtain

U(i, 0) = 0, i = 0, 1, 3, 4, . . . , m, (4.2)

U(2, 0) = 1.

Substituting equations (4.9) into equations (3.2), we have

u1(x , t) = x2 + at2α.

Substituting equations(4.3) into equations (4.2),

a = 2
Γ(α+ 1)
Γ(2α+ 1)

and we get the results corresponding to m→∞, n→∞ are listed as follows:

u(x , t) = x2 + 2
Γ(α+ 1)
Γ(2α+ 1)

t2α .

Which is the exact solution of the linear-inhomogeneous time-fractional equation
(4.2).

5. Conclusions

A new generalization of the power series method has been developed for linear
partial differential equations with time-fractional derivatives. The new method
is based on the power series method, generalized Taylor’s formula and Caputo
fractional derivative. It may be concluded that the power series is very powerful
efficient technique in finding exact and approximate solutions for ordinary and
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partial differential equations of fractional order. Although the method is well suited
to solve the time-fractional equation in terms of a rapid convergent series with
easily computable components, the method could lead to a promising approach
for many applications in applied sciences.
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