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Abstract. This paper studies the existence and uniqueness of the solution to the boundary value
problem for the nonlinear partial differential equation. We are particularly interested in the
elastic Bessel-Helmholtz and elastic Bessel Klein-Gordon wave operators. To attain the results,
the distribution theory (the generalized function theory), the iteration method and the classical
Schauder estimates are applied. The solution is consequently in the form of tempered distribution
(slow growth function).
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1. Introduction
The diamond operator, ♦k, was first introduced by A. Kananthai [4]. It is defined by

♦k =
[(

p∑
i=1

∂2

∂xi2

)2

−
(

p+q∑
j=p+1

∂2

∂x j2

)2]k

=4k�k,

where 4k and �k are the Laplace operator iterated k times and the Ultrahyperbolic iterated k
times, respectively.
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Kananthai later investigated the solution of the problem [5]

♦ku(x)= f (x)

which is given by

u(x)= (−1)k ∗Re
2k ∗RH

2k(x)∗ f (x),

where Re
2k and RH

2k(x) are the fundamental solutions of 4k and �k, respectively.
Sritanratana and Kananthai [7] extended to the nonlinear form whose solution is related

to the wave equation. While, Surikaya and Yildirim[6] explored the nonlinear structure of the
Bessel diamond operator by proving the existence of the solution. They further included the
constant to the operator [8].

In [2] the operators (4B+a2)k and (�B+b2)l are introduced by Bunpog and Kananthai, and
named the Bessel-Helmholtz operator iterated k-times and the Bessel Klein-Gordon operator
iterated k-times, respectively. They are expressed as(4B +a2)k =

(
n∑

i=1
Bxi +a2

)k

and

(�B +b2)l =
(

p∑
i=1

Bxi −
n∑

j=p+1
Bx j +b2

)l

,

where a and b are positive real numbers, n is the dimension of R+
n , k and l are nonnegative

integers and Bxi = ∂2

∂x2
i
+ 2υi

xi
∂
∂xi

, 2υi = 2αi +1, αi > −1
2 , xi > 0. The fundamental solutions are

obtained by exploiting the properties of the Gamma function and the inverse operator.
In this paper, we study the nonlinear equation of the form(

Lc1
c2

)k
l u(x)= f

(
x,

(
Lc1

c2

)k−1
l u(x)

)
,

where the continuous function f is prescribed for all x ∈Ω∪∂Ω in which Ω and ∂Ω denote an
open subset of R+

n and its boundary. The operator
(
Lc1

c2

)k
l is defined by(

Lc1
c2

)k
l =

(4c1
B +a2)k (

�c2
B +b2)l

, k, l = 1,2, . . . .

The uniqueness of the solution is provided under the condition∣∣∣ f
(
x,

(
Lc1

c2

)k−1
l u(x)

)∣∣∣≤ N, x ∈Ω,

where N is a constant and the boundary condition(
Lc1

c2

)k−1
l u(x)=ϕ(x), x ∈ ∂Ω .

Moreover, such a solution u(x) is related to the solution of the elastic Bessel-Helmholtz and
elastic Bessel Klein-Gordon wave operators.

This paper is organized into four sections. The preliminaries that include essential definitions
and lemmas used for the proof of the main results are given in Section 2. Section 3 provides the
main results and the conclusion is drawn in Section 4.
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2. Preliminaries
Let us begin by introducing some definitions and lemmas that are occasionally referred in this
paper.

Definition 2.1. Let x = (x1, x2, . . . , xn), ν= (ν1,ν2, . . . ,νn) ∈R+
n , c1 be a constant. Let us define

Y = c2
1(x2

1 + x2
2 +·· ·+ x2

p)+ x2
p+1 + x2

p+2 +·· ·+ x2
p+q, p+ q = n.

For any complex number α, the function Sα(x) is represented by

Sα(x)= 2n+2|ν|−2αΓ
(n+2|ν|−α

2

)|Y |α−n−2|ν|
n∏

i=1
2νi− 1

2Γ(νi + 1
2 )

, (2.1)

where Γ is the Gamma function.

Definition 2.2. Let x = (x1, x2, . . . , xn), ν = (ν1,ν2, . . . ,νn) ∈ R+
n , c2 be a constant. The non-

degenerated quadratic form is defined by

V = c2
2(x2

1 + x2
2 +·· ·+ x2

p)− x2
p+1 − x2

p+2 −·· ·− x2
p+q, p+ q = n.

Furthermore, we denote the interior of the forward cone by Γ+={x ∈R+
n :x1>0, x2>0, . . . , xn>0,

V > 0} and let β be any complex number. The function Rβ(x) is expressed as

Rβ(x)= V
β−n−2|ν|

2

Kn(β)
, (2.2)

where

Kn(β)=
π

n+2|ν|−1
2 Γ

(
2+β−n−2|ν|

2

)
Γ

(
1−β

2

)
Γ(β)

Γ
(

2+β−p−2|ν|
2

)
Γ

(
p−β

2

) .

Definition 2.3. Let x = (x1, x2, . . . , xn) ∈R+
n . For any complex number α, we define the function

Tα(x)=
∞∑

r=0

(−1)rΓ
(η

2 + r
)

r!Γ
(η

2

) (a2)r(−1)
α
2 +rSα+2r(x), (2.3)

where η is a complex number and Sα+2r(x) is defined by (2.1).

Definition 2.4. Let x = (x1, x2, . . . , xn) ∈R+
n . For any complex number β, we define the function

Wβ(x)=
∞∑

r=0

(−1)rΓ
(η

2 + r
)

r!Γ
(η

2

) (b2)rRβ+2r(x) , (2.4)

where β is a complex number and Rβ+2r(x) is given by (2.2).

Lemma 2.5. Given the equation (4c1
B +a2)ku(x)= δ(x) for x ∈R+

n , where (4c1
B +a2)k is the elastic

Bessel-Helmholtz operator iterated k-times, defined by(4c1
B +a2)k =

(
1
c2

1

p∑
i=1

Bxi +
n∑

i=p+1
Bxi +a2

)k

, (2.5)

where a is a positive real numbers, k is a nonnegative integers and Bxi = ∂2

∂x2
i
+ 2υi

xi
∂
∂xi

,

2υi = 2αi +1,αi >−1
2 , xi > 0.
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Then u(x) = T2k(x) is an elementary solution of such operator, where T2k(x) is defined by (2.3)
with α= η= 2k, that is

u(x)= T2k(x)=
∞∑

r=0

(−1)rΓ (k+ r)
r!Γ (k)

(a2)r(−1)k+rS2k+2r(x). (2.6)

Proof. See ([2], p.13).

Lemma 2.6. Given the equation
(
�c2

B

)l u(x)= δ(x) for x ∈R+
n , where

(
�c2

B

)l is defined by

(
�c2

B

)l =
(

1
c2

2

p∑
i=1

Bxi −
n∑

j=p+1
Bx j

)l

,

where l is a nonnegative integers and Bxi = ∂2

∂x2
i
+ 2υi

xi
∂
∂xi

, 2υi = 2αi +1,αi > −1
2 , xi > 0. Then

u(x)= R2l(x) where R2l(x) is defined by (2.2) with β= 2l

Proof. See [6, p. 433].

Lemma 2.7. Given the equation (�c2
B +b2)lu(x)= δ(x) for x ∈R+

n , where (�c2
B +b2)l is the elastic

Bessel Klein-Gordon wave operator, defined by

(�c2
B +b2)l =

(
1
c2

2

p∑
i=1

Bxi −
n∑

j=p+1
Bx j +b2

)l

, (2.7)

for a positive integer l. Then u(x) = W2l(x) is an elementary solution of such operator, where
W2l(x) is defined by (2.4) with β= η= 2k, that is

u(x)=W2l(x)=
∞∑

r=0

(−1)rΓ (l+ r)
r!Γ (l)

(b2)rR2l+2r(x) .

Proof. First, we utilize the following formula in which its derivation is provided in ([1, p. 3]),

Γ
(η
2
+ r

)
= η

2

(η
2
+1

)
· · ·

(η
2
+ r−1

)
Γ

(η
2

)
.

By modifying the equation above, we obtain

(−1)r 1
r!
Γ

(η
2
+ r

)
= (−1)r η

2

(η
2 +1

) · · ·(η2 + r−1
)
Γ

(η
2

)
r!

=
(−η

2

)(−η

2 −1
) · · ·[−(η

2 + r−1
)]

r!
Γ

(η
2

)
,

which leads to

(−1)r 1
r!
Γ

(η
2
+ r

)
=

(
−η

2
r

)
Γ

(η
2

)
.

By letting p = 2l in (2.4), we have

W2l(x)=
∞∑

r=0

(
−l
r

)
(b2)rR2l+2r(x).

Since the linear operator �c2
B is continuous and one to one mapping, then the inverse exists.
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By Lemma 2.6, it gives

W2l(x)=
∞∑

r=0

(
−l
r

)
(b2)r(�c2

B )−l−rδ(x)

= (�c2
B +b2)−lδ(x), (2.8)

where (�c2
B +b2)−l is the inverse operator of the operator (�c2

B +b2)l . By applying the operator
(�c2

B +b2)l to both sides of (2.8), we obtain

(�c2
B +b2)lW2l(x)= (�c2

B +b2)l .(�c2
B +b2)−lδ(x).

Thus

(�c2
B +b2)lW2l(x)= δ(x).

Lemma 2.8. Given the equation

(4c1
B +a2)ku(x)= f (x) for x ∈R+

n , (2.9)

where (4c1
B +a2)k is the elastic Bessel-Helmholtz operator iterated k-times defined by (2.5) and

f (x) is a given generalized function. Then u(x)= T2k(x)∗ f (x) is a solution of (2.9), where T2k(x)
is defined by (2.6) and k is a positive integer.

Proof. By convolving both sides of (2.9) by T2k(x), we obtain

T2k(x)∗ (4c1
B +a2)ku(x)= T2k(x)∗ f (x).

By the property of B-convolution and Lemma 2.5, this leads to

(4c1
B +a2)kT2k(x)∗u(x)= T2k(x)∗ f (x),

δ(x)∗u(x)= T2k(x)∗ f (x),

u(x)= T2k(x)∗ f (x).

Lemma 2.9. Given the equation

(�c2
B +b2)lu(x)= f (x) for x ∈R+

n , (2.10)

where (�c2
B + b2)l is the elastic Bessel Klein-Gordon wave operator iterated l-times defined by

(2.7) and f (x) is a given generalized function. Then u(x) =W2k(x)∗ f (x) is a solution of (2.10),
where W2l(x) is defined by (2.4) and l is a positive integer.

Proof. The proof is similar to Lemma 2.8.

Lemma 2.10. Given the equation

(4c1
B +a2)u(x)= f (x,u(x)), (2.11)

where (4c1
B +a2) is the elastic Bessel-Helmholtz operator defined by (2.5) with k = 1, f is defined

and has continuous first derivative for all x ∈Ω∪∂Ω, where Ω is an open subset of R+
n and ∂Ω is

the boundary of Ω. Suppose that f is bounded, ∂ f
∂u ≥ 0 and the boundary condition is u(x)=φ(x),

then (2.11) has the unique solution.
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Proof. From (2.11), we have

4c1
B u(x)= f (x,u(x))−a2u(x).

By putting h(x,u(x))= f (x,u(x))−a2u(x), we obtain

4c1
B u(x)= h(x,u(x)).

By setting u(x) = v(x)+ h(x), where h(x) satisfies 4c1
B h(x) = 0 on Ω and h(x) = φ(x) on ∂Ω,

the modified boundary value problem becomes

4c1
B v(x)= h(x,v(x)+h(x)), v(x)= 0 on ∂Ω. (2.12)

One can prove the existence and uniqueness of the solution v(x) of (2.12) by the iteration
method and the Schauder estimate. The details of the proof are given by Courant and Hilbert
(see [3, pp. 369 – 372]).

Lemma 2.11. Let T2k(x) and W2k(x) be defined by (2.3) and (2.4), respectively. Then the
convolution T2k(x)∗W2k(x) exists and it lies in S′, where S′ is a space of tempered distribution.

Proof. See [2, p. 14].

3. Main Results
These are the main results of the paper.

Theorem 3.1. Given the nonlinear equation(
Lc1

c2

)k
l u(x)= f

(
x,

(
Lc1

c2

)k−1
l u(x)

)
, (3.1)

where
(
Lc1

c2

)k
l is defined by (2.1). Let f have continuous first derivative for all x ∈Ω∪∂Ω, where

Ω is an open subset of R+
n and ∂Ω denotes the boundary of Ω. Assume that

∂
[(

Lc1
c2

)k−1
l u

]
∂u

≥ 0 (3.2)

and f is bounded, for x ∈Ω∣∣∣ f (x,
(
Lc1

c2

)k−1
l u(x))

∣∣∣≤ N , (3.3)

where N is a constant and the boundary condition for x ∈ ∂Ω(
Lc1

c2

)k−1
l u(x)=ϕ(x). (3.4)

Then, we obtain

u(x)= T2k−2(x)∗W2l(x)∗F(x)

as a solution of (3.1). The refined boundary condition therefore becomes

u(x)= T2k−2(x)∗W2l(x)∗ϕ(x),

where F(x) is a continuous function for x ∈Ω∪∂Ω, T2k−2(x) and W2l(x) are defined by (2.3) and
(2.4) with α= 2k−2 and β= 2l, respectively.
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Proof. From (3.1), we have(4c1
B +a2)(Lc1

c2

)k−1
l u(x)= f (x,

(
Lc1

c2

)k−1
l u(x)). (3.5)

Since u(x) has continuous derivatives up to order 2k+2l for k, l = 1,2, . . . , we may assume that
for all x ∈Ω(

Lc1
c2

)k−1
l u(x)= F(x). (3.6)

Thus (3.5) can be written in the form(4c1
B +a2)F(x)= f (x,F(x)), (3.7)

by (3.3) we have for x ∈Ω,

| f (x,F(x))| ≤ N,

and by (3.4) we obtain that for x ∈ ∂Ω,

F(x)=ϕ(x). (3.8)

Then, by Lemma 2.10, there exists the unique solution F(x) of (3.7) which satisfies boundary
condition (3.8). The equation (3.6) can be rewritten as(4c1

B +a2)k−1 (
�c2

B +b2)l u(x)= F(x). (3.9)

By convolving both sides of (3.9) by T2k−2(x)∗W2l(x), we obtain

T2k−2(x)∗W2l(x)∗ (4c1
B +a2)k−1 (

�c2
B +b2)l u(x)= T2k−2(x)∗W2l(x)∗F(x). (3.10)

By the properties of B-convolution, Lemma 2.8 and Lemma 2.9, the left hand side of
(3.10) becomes

δ(x)∗u(x)= u(x).

Thus

u(x)= T2k−2(x)∗W2l(x)∗F(x) for x ∈Ω.

Similarly, from (3.4) we obtain

u(x)= T2k−2(x)∗W2l(x)∗ϕ(x) for x ∈ ∂Ω,

which completes the proof.

4. Conclusions
This paper focuses on finding the solution of the boundary value problem (3.1) and (3.4). We
first consider the elementary solution of the elastic Bessel-Helmholtz and elastic Bessel Klein-
Gordon wave operators and use them to find nonhomogeneous linear equation for such two
operators. Later, we prove the existence and uniqueness of the nonlinear equation for the
elastic Bessel-Helmholtz operator by utilizing the distribution theory, the iteration method and
the classical Schauder estimate. Finally, we combine the previous results in order to find the
solution of (3.1) and (3.4) under the conditions (3.2) and (3.3), and this leads to the solution
which is in the form of the tempered distribution.
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