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Abstract. It constitutes a general recognition that discrete Poisson random sums are very strong
tools of probability theory with significant applications in a very wide variety of important practical
disciplines. The paper makes use of an equality in distribution for the investigation of the structure of
a particularly significant class of discrete Poisson random sums.
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1. Introduction
We consider the discrete random variable R with values in the set N0 = {0,1,2, . . .} and
probability generating function PR(z). The discrete random variable S with values in the
set N0 and probability generating function

PS(z)= exp
{
λ[PR(z)−1]

}
, λ> 0

is called Poisson random sum [2,7].
We also consider the discrete random variable V with values in the set N0 and probability

generating function PV (z). The discrete random variable J with values in the set N0 and
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probability generating function

PJ(z)= α

(1− z)α

∫ 1

0
PV (w)(1−w)α−1dw, α> 0

is called α-monotone [5].
Moreover, the discrete random variable T with values in the set N0 and probability

generating function

PT(z)= exp
{
λ

[
α

(1− z)α

∫ 1

z
PV (w)(1−w)α−1dw−1

]}
is called Poisson random sum of α-monotone random variables [1].

The present paper is mainly devoted on the contribution of discrete Poisson random sums and
Poisson random sums of α-monotone random variables to the structure of the very important
class of discrete selfdecomposable random variables.

2. An Integral Equation for Probability Generating Functions
The present section is devoted to the formulation and investigation of equality in distribution
for the establishment of a characterization of the extremely important class of discrete
selfdecomposable distributions.

Theorem. Let X be a discrete random variable with values in the set N0 and probability
generating function PX (z) and let Y be a Poisson random sum with probability generating
function

PY (z)= exp
{
λ[PX (z)−1]

}
, λ> 0.

We suppose that C is a discrete random variable with values in the set N = {1,2, . . .} and
probability generating function PC(z) and L is the Poisson random sum of α-monotone random
variables with probability generating function

PL(z)= exp
{
λ

[
α

(1− z)α

∫ 1

z
PX (w)PC(w)(1−w)α−1dw−1

]}
then, X is a selfdecomposable random variable with probability generating function

PX (z)= exp
{
−α

∫ 1

z

1−PC(w)
1−w

dw
}

if, and only if,

Y d= L, (2.1)

where d= denotes equality in distribution.

Proof. Only the sufficiency condition will be proved since the necessity condition can be proved
by reversing the argument. If we use the probability generating function PY (z) and the
probability generating function PL(z) in (2.1) we get the integral equation

exp
{
λ[PX (z)−1]

}= exp
{
λ

[
α

(1− z)α

∫ 1

z
PX (w)PC(w)(1−w)α−1dw−1

]}
. (2.2)

It is readily shown that the integral equation in (2.2) can be written in the form

PX (z)= α

(1− z)α

∫ 1

z
PX (w)PC(w)(1−w)α−1dw. (2.3)
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By multiplying both sides of the integral equation in (2.3) by (1− z)α and then differentiating
we get the differential equation

−α(1− z)αPX (z)− (1− z)α
dPX (z)

dz
=−αPX (z)PC(z)(1− z)α−1. (2.4)

If

z 6= 1

then the differential equation in (2.4) can be written in the form

(1− z)
1

PX (z)
dPX (z)

dz
=α (1−PC(z)) . (2.5)

If we integrate in (2.5) with due regard to the boundary conditions

PX (1)= 1

and

PC(1)= 1

we obtain the function

PX (z)= exp
{
−α

∫ 1

z

1−PC(w)
1−w

dw
}

. (2.6)

Since

PC(0)= 0

then the function PX (z) in (2.6) is the probability generating function of a selfdecomposable
distribution [3,4,6].

3. Conclusion
The presentation of a Poisson random sum as a Poisson random sum of α-monotone random
variables is readily recognized as a useful stochastic model for the description, analysis and
solution of real problems.
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