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Abstract. The combinational technique of cross decomposition is a suitable one for exact solution of
the mixed integer programming problems which uses simultaneously the advantages of Lagrangean
relaxation, Dantzig-Wolfe decomposition and Benders decomposition methods for Minimization
problem that each reinforces one another. The basic idea for this technique is the generation of
suitable upper and lower bounds for the optimal value of the original problem at each iteration. In this
paper, new cross decomposition algorithm, with the combination of Lagrangean relaxation method
(the combination of three concepts of cutting-plane, sub-gradient and trust region), Dantzig-Wolfe
decomposition and Benders decomposition methods are used in order to reinforce bounds and to
speed up convergence. By increasing the problem scale and regarding the use of the Lagrangean
relaxation method in this technique, the lower bound with more strength and efficacy, and by the aid
of Dantzig-Wolfe decomposition method more suitable upper bound (if exists) and furthermore less
number of iterations for achieving optimal solution is obtained. The convergence of this technique
regarding the convergence of Benders decomposition method in finite iteration numbers is guaranteed.

Keywords. Cross decomposition; Benders decomposition; Lagrangean relaxation; Dantzig Wolfe
decomposition; Cutting planes; Sub-gradient; Trust region; Column generation

MSC. 90-08; 90Bxx

Received: November 11, 2018 Accepted: January 27, 2019

Copyright © 2019 Hadi Mohammadi and Esmaile Khorram. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

http://doi.org/10.26713/cma.v10i3.1116 


2 A New Combination of Lagrangean Relaxation, Dantzig-Wolfe. . . : H. Mohammadi and E. Khorram

1. Introduction
The problems of mixed-integer programming are the most applied ones for optimization in
the real world. Some of these large scale problems are special restriction matrix structures
that we can use these structures for ineffective way solution. The decomposition methods
are strong tools for solving them. A problem consists of independent or close to independent
sub-problems a decomposition method can be benefited from. The idea of decomposition method
is based on the set of variables is partitioned into two subsets of sub-problem and master
problem. The solution of a sub-problem is often easier than the solution of a master problem.
The decomposition method reiterates between master problem and sub-problem, and to solve
the original problem for obtained optimal solution. Often these problems can be viewed as a
combination of several sub-problems which have several common rows or columns. Therefore,
restriction matrix structures of these problems consisting of several blocks are related. Among
the important decomposition methods we can refer to the decomposition methods of Dantzig-
Wolfe, Benders and Lagrange. The important problems that have been solved by this method
include: facility location problems, cutting stock problem, airlines crew scheduling problem,
vehicle routing problem etc. The cross decomposition method exploiting simultaneously both the
primal and the dual structure of the problem, thus combining the advantages of Dantzig-Wolfe
decomposition, Benders decomposition and Lagrangean relaxation. Finite convergence of the
algorithm equipped with some simple convergence tests has been proved. Stronger convergence
tests have been proposed, but not shown to yield finite convergence.

The cross decomposition algorithm, first proposed by Van Roy [24] along with the convergence
testing for avoidance of solving master problems (the easier solving with the aid of sub-problems)
that compared with the available methods produced a reduction in approximation of 20 percent
in the time of problem solving. Holmberg [10] investigated all kinds of this method convergence
testing and proposed the average value of the cross decomposition method for the use of the
master problem via using iteration of the previous solutions. Regarding the advancement of MIP
solvers, more expedient computers, and the parallel problem solution, Mitra [14] proposed the
use of solving the master problem and the omission of convergence test. Ogbe [4] used Dantzig-
Wolfe method instead of Lagrangean relaxation method along with Benders decomposition
method for convergence expedition and upper bound better with feasible guarantee.

To the best of our knowledge, there is no work that this new cross decomposition method
for mixed integer programming problems. We briefly explain each of the exact methods of
Benders, Lagrange and Danzig-Wolfefor solving the mixed integer programming problems in
Section 2, 3 and 4 then we submit the proposed algorithm for the new cross decomposition
method in Section 5. Section6-9 addresses the implementation of facility location problem in
terms of case studies and various exact solutions. Section 10 presents the conclusion of the
whole review paper.

2. Benders Decomposition Method
Benders decomposition method [1] is one of the most important and effective methods for the
solving of algorithm mixed integer programming problems and has been applied in various
fields such as network, transportation, supply chain, scheduling etc. In this method by fixing
the complicated variables, the primary problem partitioned into a sub-problem and a master
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problem which in the minimization problem,it creates an upper bound by sub-problem and
a lower bound by master problem for obtaining optimal solution. In Benders iteration, dual
sub-problem objective function, by means of the master problem optimal solution from the
previous iteration is updated and in any iterations the feasibility and optimality cuts are added
to the master problem. These cuts from extreme points (extreme rays) give the space of dual
sub-problem solution. The main idea of Benders decomposition method is on the basis that prior
to use all the cuts, the conditions of optimality and feasibility and convergence to be established.

This method is confronted with a computational bottleneck. In any Benders algorithm
iteration, the master problem must be once solved, but this problem is a mixed integer
programming whose solving in any iteration causes rising the required time for the solving
problem. Moreover, the effective method for the sensitivity analysis model, after adding new
cuts to the master problem is not in access. Regarding this bottleneck, the most investigations
in the field of the improvement of this method have been focused on reducing this bottleneck
and on accelerating algorithms. In fact the studies carried out in this respect have been divided
into two main parts:submission of a more suitable and effective algorithm for solving the master
problem and sub-problem, submission of suitable strategies for reducing the required numbers
of iterations in Benders decomposition algorithm

2.1 Classic Benders decomposition method
Supposing that we have the following mixed integer linear programming problem:

IP : Min cT x+ f T y (1)
s.t. Ax+By= b (2)

D y= d (3)
x ≥ 0 (4)
y≥ 0, integer (5)

where c ∈ Rm1 , f ∈ Rm2 , b ∈ Rn1 and d ∈ Rn2 and also A, B and D are matrices n1 × m1,
n1 ×m2 and n2 ×m2, respectively. The variables of x ∈ Rm1 are continuous and the integer and
complicating variables of y ∈ Rm2 , are the objective function of minimizing the total costs. If y
is fixed to a feasible integer configuration (y), we can rewrite this model as the following:

PSP : Min
y∈Y

{
f T y+Min

x≥0
{cT x : Ax = b−By}

}
(6)

where therein is:

Y = {y | D y= d, y≥ 0, integer}

Let x̂k be the optimal solution of PSPk . The inner minimization is a continuous linear problem
that can be dualized by dual variables u as the following:

DSP : Max
u∈Rn1

{
uT(b−By) : uT A ≤ c

}
. (7)

Let uk be the optimal solution of DSPk . In the Benders decomposition algorithm, we consider
the relationship (7) as Benders sub-problem. With regard to the duality theorem we can write
the relation (6) as the following:

Min
y∈Y

{
f T y+ Max

u∈Rn1
{uT(b−By) : uT A ≤ c}

}
. (8)
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The feasible space of the inner maximizing problem depends on selecting y which if it is
non empty for any selection of y, the problem of inner maximizing is feasible or unbounded.
Therefore by adding optimality cuts (11) and feasibility cuts (12), the master problem of Benders
decomposition is as the following (uT

i s is the vector that corresponds to the extreme points I
of the dual of PSP and vT j s is the vector that corresponds to the extreme rays J of the dual of
PSP):

BMP : Min f T y+ z (9)
s.t. D y= d (10)

uT
i (b−By)≤ z, ∀ i ∈ I (11)

vT
j (b−By)≤ 0, ∀ j ∈ J (12)

y≥ 0, integer (13)

Let yk be the optimal solution of BMPk . In Benders decomposition method we consider the
above model as the Benders master problem. Benders decomposition algorithm due to finiteness
of the extreme points (extreme rays) of dual sub-problem, in the numbers of finite iteration
becomes convergence. However it usually has slow convergence.

2.2 Accelerate solving the master problem and sub-problem
Inaccurate solution of master problem: Geoffrion and Graves [8] proposed that instead of finding
the optimal solution of the master problem, we run several first iterations with the master
problem feasible solutions(not necessarily optimal). For this reason, heuristic algorithms can be
used for finding the master problem feasible solutions [16].

Inexact solution of sub-problem: it might sometimes happen due to the largeness of sub-
problem, obtaining one optimal extreme point in any iterations in order to generate cut is time
consuming. For this reason Zakeri et al. [25] have proposed the use of inexact cuts. In this
method sub-problems can be solved by the interior point algorithm.

2.3 Reducing numbers of Benders decomposition iterations
Selection of more effective cuts: Magnanti and Wong [12] regarded the quality of the generated
cuts, and introduced a concept entitled “Pareto optimal cuts” and afterwards the suitable
strategies for simplification of generation cut process were submitted [15]. Their idea was that
in the problems such as network which the sub-problem has several multiple optimal solutions
that solution to be used which its corresponding cut is stronger than others and is so-called
Pareto optimal. Fischetti et al. [5] submitted one criterion for selection of the effective feasibility
cut among the possible cuts.

The addition of the primary reliable cuts to the master problem:one of the other ideas of
accelerating the trend of Benders decomposition is the addition of a series of primary cuts to the
master problem before beginning the common iteration of Benders decomposition. By doing this
the master problem feasible region at the beginning is more restrictive and so better primary
bounds are obtained for the problem. Therefore the less numbers of iteration for reaching out to
the optimal solution is required. McDaniel and Devin [11] suggested that before to beginning of
the iterations of Benders decomposition we do several iterations with the manner of the master
problem continue and in this case to generate several numbers of primary cut and in the next
iterations we consider (discrete) manner of the master problem.
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The generation of multiple cuts: Saharidis et al. [21] generated several cuts in one iteration
via using an auxiliary problem, so that the collection of these cuts covers the master problem
maximum variables. Afterwards Saharidis et al. [19] suggested the cuts with maximum density.
Furthermore, they suggested, for the problems that feasibility cuts are considerably being
generated more than the optimality cuts, an extra cut in order to restrict the value of the master
problem [20].

Searching for better bounds: Rei et al. [18] used a local searching in the Benders
decomposition algorithm for finding better upper and lowerbounds in any iteration.

3. Lagrangean Relaxation Method
One of the suitable methods for solving the problems consisting of complicated constraints is
the Lagrangean relaxation method. The complicated constraints are those which by omitting
them from the problem set, the problem turns to have a suitable and specific structure which
can be utilized. The main idea of this method includes omitting the complicated constrains and
adding them to the problem objective function by using variables by the name of Lagrangean
multipliers. By doing that and using duality relations, we reach to a new problem which for
solving it an iterative algorithm can be used. In any iteration, a new value is considered
for Langrage multipliers vector and then a suitable sub-problem which consists of only good
constraints is solved. In this method find a suitable lower bound (for the problem of minimizing)
becomes depending on finding the best Lagrangean multipliers (the problem of dual Lagrange).
But this method does not have guaranteed convergence.

Regarding IP problem by omitting complicated constraint (3) and adding it to the objective
function, Lagrangean sub-problem is written as the following:

LSP : Lλ =Min cT x+ f T y+λ(D y−d) (14)
s.t. Ax+By= b (15)

x ≥ 0 (16)
y≥ 0, integer (17)

where λ (Lagrangean multiplier) is a real, positive and adequately large enough value.
Let (x̃k, ỹk) be the optimal solution of LSPk . We call the above model Lagrangean sub-problem.
In some of problems by considering the problem structure this sub-problem can be decomposed
to segregate sub-problems (the method of Lagrangean relaxation).

The best lower bound (minimizing problem)which can be obtained through Lagrangean
relaxation regarding the complicated constraints D y= d is the objective function optimal value
of the following model called dual Lagrangean problem:

Ld =Max
λ

Lλ (18)

Therefore, we will have υ(LD)−υ(IP)≤ 0 (one lower bound for the original problem and the
meaning of the sign υ is the optimal value).

There are different methods for solving the following problem that one classic method is sub-
gradient method which has been proposed by Held [9]. In this method Lagrangean multipliers
are usually updated as well. But for the convergence we will need a suitable strategy for defining
and updating the sub-gradient step size. Another method, which from the theory standpoint
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has better convergence properties, is the method of cutting plane which is submitted by Cheney
[2]. An alternative procedure for updating the Lagrangean multiplier is based on the use of
cutting plans to approximate the Lagrangean dual function. This method for convergence needs
many iterations. Therefore, to gain suitable Lagrangean multipliers is a lot time consuming. For
removing this problem the trust region method which is proposed by Marsten [13] is used. In
this method, better updating of Lagrangean multipliers can be expected while the convergence
properties are established.

For updating Lagrangean multipliers we use a combinational method which simultaneously
applies three concepts of sub-gradient, cutting planes and trust region [22]. The cutting planes
are reliable constraints for dual problem generated in any iteration, sub-gradient prepares a
reducing direction for dual problem, while the trust region delineates the deviation value from
this direction in its range. The combination of these methods while updating the Lagrangean
multipliers ensure convergence.

In k + 1 iterationby using of the following combinational dual problem, we update the
Lagrangean multipliers:

LMP : Lk+1
d =Maxη+ δ

2
‖λ−λ‖2

2 (19)

s.t. η≤ cT x̃k + f T ỹk +λk(D ỹk −d) (20)

λk+1 =λk +βυ(Lk
D)−υ(Lk

λ
)

‖D ỹk −d‖2 (D ỹk −d) (21)

∀ k = 1, · · · ,k, η ∈ R, α ∈ R, λ ∈ R, (22)

β ∈ (−∞,β], δ ∈ [−δ,δ], λ> 0

where, therein υ(LD) is estimated via a heuristic methods. However, instead of heuristically
updating the step size, it is optimized using variable β, which is bounded by the parameter β> 0.
Note that δ variable is the deviation value form the steps of sub-gradient and the parameter
δ> 0 is the maximum deviation in directions of trust region. The parameters of β and δ, λ in
any iteration are updated in heuristic methods. In practice, computational testing shows that
the use of fixed values is suitable selections.

Stoppage criterion, for this combinational strategy, is restricted based on Lagrange gap
between the relaxed original problem and dual problem:

υ(Lk
D)−υ(Lk

λ)≤ ε.

It is necessary to mention that the methods of cutting planes and trust region have features of
finite convergence.

4. Dantzig-Wolfe Decomposition Method
This method of decomposition was at first introduced by Dantzig and Wolfe [7]. In this method
restriction matrix structures is often in the form of angular block. In this structure, the blocks
are laid in the extension of matrix diameter and they are related to each in a few rows. Let the
Y set is a multidimensional bounded and integrate in the form of Y = {y : D y= d, y≥ 0, integer}
for the problem (1)-(5). Regarding the representation theorem, each point from the feasible
space of linear programming problem can be written in the form of convex combination from
the extreme points of feasible space in addition of positive combination from the extreme rays.
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But if the feasible space is bounded, there are no extreme rays. Assuming EY is set of extreme
points of bounded polyhedron Y , therefore we have:

Y =
{ ∑

j∈EY

µ j yj :
∑

j∈EY

µ j = 1, µ j ∈ {0,1}, ∀ j ∈ EY

}
(23)

We write Dantzig-Wolfe master problem in the following form:

DWMP : min
∑

j∈EY

( f T yj)µ j + cT x (24)

s.t.
∑

j∈EY

(Byj)µ j + Ax = b (25)∑
j∈EY

µ j = 1, µ j ∈ {0,1}, j ∈ EY (26)

x ≥ 0 (27)

Therefore, we have:

zDWMP =min

{ ∑
j∈Q

( f T yj)µ j + cT x :
∑
j∈Q

(Byj)µ j + Ax = b,
∑
j∈Q

µ j=1, µ j ∈ {0,1}, ∀ j ∈Q

}
(28)

where Q is the enumerated set of integrate solutions to EY . The value of µ j is 1 if integer
solution yj is chosen and zero otherwise.

In Dantzig-Wolfe Method, We Solve the Restricted Master Problem (DWRMP) for a bounded
number of extreme points in any iteration. Then, we solve the problem of relaxation linear
programming in column generation method (being binary is waived). One of the important
features of this method is that in determining the optimal solution there is no need to have all
variables but we consider a small sub-set of columns and put zero value for the rest variables.
Then the next column (variable) by solving one optimization special sub-problem that is called
the Primal Problem of Dantzig-Wolfe (DWPP) is added to the original problem:

DWPP : min f T y−vTBy− z (29)
s.t. y ∈Y (30)

where vT and z are dual solutions for the restricted master linear programming problem. It is
necessary to mention that the value of the objective function of DWPP is the reduced cost of the
Dantzig-Wolfe restricted master problem. If this value is non-negative then no extreme point
in Y gives the results of negative reduced cost for the basic feasible solutions to the master
problem; therefore, the solution of DWRMP is the optimal solution. Otherwise an entry variable
of µ j+1 related to the primary problem solution namely yj+1 is added for generation of new
column to the master problem. Dantzig-Wolfe method in general manner for MIP does not
become convergence to the optimal solution, however if the solution µ of DWMP is an integer
solution, then zDWMP is a suitable upper bound for MIP.

5. New Cross Decomposition Method
The combination of Benders decomposition and Dantzig-Wolfe decomposition and Lagrangean
relaxation methods leads to the new cross decomposition method in which sub-problems of each
of the methods are solved in parallel and these sub-problems reinforce the master problems
together in the form of ping-pong and admits suitable upper and lower bound for the optimal
solution to the original problem in any iterations.
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Algorithm
1. initialization

k = 0, K = {0}, yk=0 = 0, xk=0 = 0, λk=0 = 0, µk=0 = 0, LB =−∞, UB =∞, set ε≥ 0.
2. Benders sub-problem

For given yk solve (BSPk)
Store solution uk, if υ(BSPk)<UB set UB = υ

(
BSPk)

and go to step 3.
3. Dantzig-Wolfe sub-problem

For given xk solve (DWPPk) in parallel
Store solutionyk and go to step 4.

4. Dantzig-Wolfe master problem
For given yk and υ(BSPk) solve DWRMPk+1

Store solution for xk+1 and set µk+1 and update z and v.
If υ (DWRMPk+1)<UB set υ (DWRMPk+1)=UB and go to step 5
Otherwise go to step 3.

5. Lagrangean sub-problem
For given λk solve (LSPk) in parallel
Store x̃k, ỹk and υ(LSPk) and go to step 6.

6. Lagrangeanmaster problem
For given x̃k and ỹk solve (LMPk+1).
Store solution for Lagrangean multipliers and set λk+1 and update β, δ and λ and go to
step 7.

7. Benders master problem
For given uk, υ

(
LSPk)

and k ∈ K solve (BMPk+1).
Store solution for yk+1.
If LB < υ

(
BMPk+1), set LB = υ

(
BMPk+1) and go to step 8 otherwise go to step 5.

8. Check convergence (optimality)
If UB−LB ≤ ε stop.
Else set k = k+1 and include in K ; go back to step 2.

Illustrative Case Study
Keeping in mind the end goal to give the proposed model, cross decomposition method has
been applied under the risk of disruptions to a facility location problem with distribution
centers (DCs). The Capacitated Reliable Facility Location Problem (CRFLP) design has been
figured as a two-stage stochastic programming issue for incorporating the disturbances risk
at distribution centers. The selection of distribution centers along with the capacity from the
set of candidate locations is the first-stage decision. The demanded assignments to distribution
centers in scenarios are the second-stage decisions. The model permits finding the plan choices
that minimize the sum of investment cost and expected transportation costs over a finite time
horizon by suspecting the dissemination methodology in the scenarios with disturbances. Snyder
and Daskin [23] indicated the (CRFLP) formulation and for including the capacity design of
facilities Garcia-Herroros et al. [6] adapted it. The (CRFLP) and (CRFLP-t) are the two versions
of the model. The first one has a poor linear relaxation. For improving the linear relaxation, the
second one involves a redundant collection of constraints.
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Figure 1. Cross Decomposition Algorithm

6. Implementation
In GAMS 24.1.2 on the 8 processors of an Intel i7- 2600 (3.40 GHZ) machine with 8 GB RAM,
the full-space model, the classical multi-cut Benders decomposition and cross decomposition
methods are achieved.
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7. Model
The formulation of Capacitated Reliable Facility Location Problem (CRFLP) indicates:

CRFLP : Min
|J|−1∑

j
(F jx j +Vj c j)+

∑
s∈S

∑
j∈J

∑
i∈I
τs A j,iD i ys, j,i (31)

s.t. c j − cmaxx j ≤ 0 ∀ j < | j| (32)∑
i∈i

D i ys, j,i −Ts, j c j ≤ 0 ∀ s ∈ S, j ∈ J (33)∑
j∈ j

ys, j,i = 1 ∀ s ∈ S, i ∈ I (34)

x j ∈ {0,1}, 0≤ c j ≤ cmax ∀ j ∈ J (35)
0≤ ys, j,i ≤ 1 ∀ s ∈ S, i ∈ I, j ∈ J (36)

The objective function (31) minimizes the total of investment cost at distribution centers,
the expected cost of transportation from distribution centers. Based on the place selection,
constraints (32) bound the capacity of storage of DCs. The inventory availability show that the
constraints (33) in every scenario for the customer assignments are limited based on the binary
parameter Ts, jthat in the scenarios represent the form of distributions (Ts, j = 0). Constraints
(34) ensure demand assignments for all scenarios. Finally, the domain of the variables is
presented in constraint (35) and (36).

For strengthening the formulation of MILP, a redundant set of constraint (39) specifically
avoid demand assignment to distribution centers that are not chosen and can be added to the
model:

CRFLP-t : Min
|J|−1∑

j
(F jx j +Vj c j)+

∑
s∈S

∑
j∈J

∑
i∈I
τs A j,iD i ys, j,i (37)

s.t. (32)− (36) (38)
ys, j,i −Ts, jx j ≤ 0 s ∈ S, i ∈ I, j ∈ J (39)

8. Data
Daskin’s [3] data has been employed for this case study. The 49 United States cities which
are the demand sites and the feasible centers of distribution are considered as the original
problem. In 1990 this demand for the population of state was considered to be proportional for
each commodity. With investment costs based on the real-state market, the main formulation
contains uncapacitated DCs. For a rate of $0.0001 for each type of product the variable costs
along with the capacities of DC have been added. Between facilities, the cost of transportations
to the great-circle distance are proportional. The researcher selected the facilities of subsets of
10, 11, and 12 as the places of the candidate for DCs problem of various instances by considering
a large number of potential scenarios (249). The scenarios classified into a group where all the
demands are penalized through the small feasibility of them with more than five simultaneous
disruptions. The value of originality which was employed by Synder and Daskin [23] that
indicates q = 0.05 is the potential failure of all DCs.
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9. Computational results
We compare four methods Full-space model, Benders decomposition, new and old cross
decomposition (cross decomposition of Mitra et al.) methods for 3 instance of the two problem
formulations (CRFLP) and (CRFLP-t).

In Table 1 and 3, we report the problem sizes of the model for (CRFLP) and (CRFLP-t).

Table 1. Size of Full-space model for (CRFLP) in terms of constraint and variables

DCs (N) Scenarios Constraints Variables Binary Var
10 639 38,992 345,084 10
11 1025 63,564 603,751 11
12 1587 99,996 1,012,534 12

Given that Table 2, it is seen that owing to the existence of poor LP relaxation. Full-space
models in this case is hardly solved. For example, in the largest instance with 12 distribution
centers, time of 722 minutes is elapsed to solve the model but it is possible to find the optimality
in all instances. In this case, to solve the model with the help of Benders method, an increase in
the number of DCs results in failure. For example, a time of 2781 minutes (about 2 days) in an
instance for 10 DCs and also a time of 4000 minutes in an instance of 11 and 12 DCs is elapsed
to solve the model and also for the large instance with 11 and 12 candidate DCs in algorithm,
optimality gap with 12.2% and 18.8% is created after 130 and 239 iteration respectively. In old
crossdecomposition method, any of three instances with the number of 21, 37 and 36 iterations
in turn reach optimality. Instance of 10 and 12 DCs with runtime of 48% and 34% in comparison
with Full-space model is also solved respectively. In new cross decomposition method, any of
three instances with the number of iterations 21, 32 and 21 reach optimality respectively, but
an instance of 12 DCs with runtime of 50% in solved in comparison to the Full-space model.

Table 2. Computational results for (CRFLP)

DCs (N) Full-space Benders Old Cross New Cross
10 Objective ($)

LP relaxation ($)
Optimality gap (%)
Iterations (#)
Runtime (min)

1,003,707.231
520,311.87
0
-
33

1,003,707.231
-
0
440
2781

1,003,707.231
-
0
21
17

1,003,707.231
-
0
27
28

11 Objective ($)
LP relaxation ($)
Optimality gap (%)
Iterations (#)
Runtime (min)

1,003,632.26
495,055.02
0
-
167

1,007,279.28
-
12.2
239
4000

1,003,632.26
-
0
37
182

1,003,632.26
-
0
32
172

12 Objective ($)
LP relaxation ($)
Optimality gap (%)
Iterations (#)
Runtime (min)

1,004,855.83
479,563.62
0
-
722

1,028,650.66
-
18.8
130
4000

1,004,855.83
-
0
36
474

1,004,855.83
-
0
21
364
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As one can see in Table 3, the tightening constraint (39) increases the problem size for the
model.

Table 3. Size of Full-space model for (CRFLP-t) in terms of constraint and variables

DCs (N) Scenarios Constraints Variables Binary Var
10 639 383,413 345,084 10
11 1025 666,234 603,751 11
12 1587 1,110,915 1,012,534 12

It is considered in Table 4, owning to the existence of a tightening constraint (39) that
improves the LP relaxation, in terms of time of solution of (CRFLP-t) for Full-space model
in comparison to the time of solution of (CRFLP) for the Full-space model increases. But the
number iterations and the times of solution for Benders method highly decreases. This is
because the number of iterations and times of solution for old cross decomposition method
decreases and even this number of iterations and times of solution for new cross decomposition
methods will become less again in a way that is seen with an instances of 12 DCs in Benders
method with 65 iterations and old cross decomposition method and also with 24 iterations in
new cross decomposition with 19 iteration reaches optimality. Also we find answer in term
of time in comparison to old cross decomposition methods with Benders decomposition with
runtime the less than 63% and in comparison to new cross decomposition methods with Benders
decomposition with a less 83% runtime.

Table 4. Computational results for (CRFLP-t)

DCs (N) Full-space Benders Old Cross New Cross
10 Objective ($)

LP relaxation ($)
Optimality gap (%)
Iterations (#)
Runtime (min)

1,003,707.231
1,000,314.99
0
-
61

1,003,707.231
-
0
13
2.5

1,003,707.231
-
0
12
6.5

1,003,707.231
-
0
11
4.5

11 Objective ($)
LP relaxation ($)
Optimality gap (%)
Iterations (#)
Runtime (min)

1,003,707.23
995,531.18
0
-
328

1,003,632.26
-
0
38
42

1,003,632.26
-
0
20
44

1,003,632.26
-
0
16
43

12 Objective ($)
LP relaxation ($)
Optimality gap (%)
Iterations (#)
Runtime (min)

1,004,855.83
996,777.36
0
-
2,015

1,004,855.83
-
0
65
435

1,004,855.83
-
0
24
158

1,004,855.83
-
0
19
96

10. Conclusion
This investigation suggests a new framework for a cross decomposition method that is
different from the current cross decomposition methods. This method utilizes Dantzig-Wolfe
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decomposition, Benders decomposition and Lagrangean relaxation methods simultaneously
and alternatively which therein a trail of upper bound is bounded by Bender sub-problem and
Dantzig-Wolfe bounded master problem and also a trail of lower bounds by Lagrangean master
problem, a combination of three concepts (cutting planes, sub-gradient and trust region) and
Benders Master Problem (BMP) is obtained. The numerical results obtained from applying
this method for capacitated reliable facility location problem shows while this method becomes
convergence to the original problem optimal solution, reaching to the solution speeds up too.
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