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1. Introduction
As usual, we define the Hardy space H2 = H2(∆) as the space of all functions f : z →∑∞

n=0 anzn

for which the norm
(‖ f ‖ =∑∞

n=0 |an|2
)1/2 is finite. Here, ∆ is the open unit disc. For a more

general simply-connected domain Ω in the complex plane C with at least two boundary points,
and a conformal mapping ϕ from Ω onto ∆ (that is, a Riemann mapping function), a function g
analytic in Ω is said to belong to the Smirnov class E2(Ω) if and only if g = ( f ◦ϕ)ϕ′1/2 for some
f ∈ H2(∆) where ϕ′1/2 is an analytic branch of the square root of ϕ′. The reader is referred to [4],
[5], [8], [10], and references therein for a basic account of the subject. ∂∆ and ∂Ω will be used to
denote the boundary of open unit disc ∆ and the boundary of Ω, respectively.

Suppose that Γ is a simple σ-rectifiable arc (not necessarily closed). The notation Lp(Γ) will
denote the Lp space of normalized arc length measure on Γ. Let Ω denote the complement of
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Γ. The Cauchy Integral of a function f̃ defined on Γ and integrable relative to arc length is
defined as:

CΩ f̃ (z)= 1
2πi

∫
Γ

f̃ (ζ)
ζ− z

dζ (z ∈Ω). (1.1)

CΩ f̃ is analytic at each point of Ω.

If Γ is not closed, then (1.1) defines a single analytic function. If Γ is closed, then Ω has
two components, the interior and the exterior of Γ. Then in each component of (1.1) defines an
analytic function.

Recall that a closed analytic curve is a curve γ= k(∂∆) where k is analytic and conformal in
a neighbourhood U of ∂∆. If γ is simple it is called an analytic Jordan curve.

In this paper, we prove:

Theorem 1. Suppose that that D is a bounded simply connected domain and γ= ∂D is a closed
analytic curve (e.g. ellipse). Then the Cauchy Integral

CD f̃ (z)= 1
2πi

∫
∂D

f̃ (ζ)
ζ− z

dζ

defines a continuous linear operator mapping L2(∂D) into E2(D).

Remark 1. The result of Theorem 1 is well known in the literature (see e.g., [3], [6]). However,
we give a basic and direct proof.

To prove Theorem 1, we need the following lemma and remark:

Lemma 1 ([4, p. 170]). Suppose that Ω is a simply connected and bounded domain and
the boundary Γ= ∂Ω of Ω is a rectifiable Jordan curve. Then

(i) Each f ∈ E2(Ω) has a nontangential limit function f̃ ∈ L2(∂Ω), and

‖ f ‖2
E2(Ω) = ‖ f̃ ‖2

L2(∂Ω) =
1

2π

∫
∂Ω

| f̃ (z)|2|dz|.

(ii) Each f ∈ E2(Ω)) has a Cauchy representation

f (z)= 1
2πi

∫
∂Ω

f̃ (ζ)
ζ− z

Ωζ (z ∈Ω). (1.2)

In this case, for equation (1.2), we say that Cauchy Integral Formula is valid.

A special case of the above theorem is the following remark. In fact, we prove Theorem 1
using the following remark.

Remark 2 ([11, p. 423]). The Cauchy integral formula

C∆ f̃ (z)= 1
2πi

∫
∂∆

f̃ (ζ)
ζ− z

dζ

defines a continuous linear operator C∆ : L2(∂∆)→ E2(∆) with ‖C∆‖ = 1.
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There is another integral operator CΓ on the curve Γ, which is sometimes called also Cauchy
integral, viewed as an operator-valued function of the curve. This operator is given by a principal
value singular integral:

if f̃ is a function on Γ, we define CΓ( f̃ ) on Γ by

CΓ f̃ (z)= 1
2πi

P.V .
∫
Γ

f̃ (ζ)
ζ− z

dζ (z ∈Γ).

The operator CΓ is probably less familiar than CΩ. These operators are very important in real
and complex analysis, and have attracted many mathematicians to investigate them.

In fact, there are other types of Cauchy integrals and there have been extensive literature
about them and theirs applications as papers and books. For the books concerning Cauchy
type integrals and related subjects (see, for instance, [1], [2], [12], [14] and [15]). For the books
concerning boundedness of Cauchy type integrals (see, e.g., [7], [9] and [13]).

2. Proof of Theorem 1
Proof. Suppose that ϕ is a conformal map of D onto ∆. Let ψ = ϕ−1 : ∆→ D. Consider the
maps C∆ : L2(∂∆) → E2(∆) is given by C∆ f̃ = 1

2πi
∫
∂∆

f̃ (ζ)
ζ−z dζ and Ũψ : L2(∂D) → L2(∂∆) is given

by Ũψ f (z)= f (ψ(z))ψ′(z)1/2 and Uϕ : E2(∆)→ E2(D) is given by Uϕ f (z)= f (ϕ(z))ϕ′(z)1/2. Uϕ and
Ũψ are unitary operators. The situation is illustrated in the Figure 1.

L2(∂∆) �
Ũψ = Ũ∗

ϕ
L2(∂D)

CD

?

E2(D)
Uϕ

-
?

C∆

E2(∆)

Figure 1. The maps Uϕ and Ũψ

For f̃ ∈ L2(∂∆), we have UψCDŨϕ f̃ =UψCD( f̃ ◦ϕ)ϕ′1/2
and

CD( f̃ ◦ϕ(w))ϕ′(w)1/2 = 1
2πi

∫
∂D

f̃ (ϕ(ζ))ϕ′(ζ)1/2

ζ−w
dζ

thus

UψCDŨϕ f̃ (z)=ψ′(z)1/2 1
2πi

∫
∂D

f̃ (ϕ(ζ))ϕ′(ζ)1/2

ζ−ψ(z)
dζ

= 1
2πi

∫
∂∆

f̃ (w)ψ′(w)1/2ψ′(z)1/2

ψ(w)−ψ(z)
dw (z ∈∆).

Then, we have kernel

K(z,w)= 1
w− z

H(z,w)
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where

H(z,w)= (w− z)ψ′(w)1/2ψ′(z)1/2

ψ(w)−ψ(z)
.

For any 1< r, denote ∆r and σr by ∆r = {z : |z| < 1} and σr = ∂∆r = {z : |z| = r}.

Since ∂D is analytic (closed) curve, ψ is analytic and conformal in a neighbourhood of ∆.
So without loss of generality, we may assume that ψ is analytic and conformal on ∆R for some
R > 1. Then ψ is analytic and conformal on and inside σr′ where R > r′ > 1.

Choose r, s such that 1 < r < s < R. We shall show that H is analytic on ∆r ×∆r . Hence,
because r is arbitrary, it will follow that H is analytic on ∆R ×∆R .

Fix z ∈∆R . Then w → Fz(w) = H(z,w) is analytic in ∆R except at w = z. But since residue
at w = z is 0, the singularities of H for w = z is removable. Hence w → H(z,w) is analytic on
∆R ⊇∆s ⊇∆r . We can thus apply Cauchy’s integral formula to it, giving

H(z,w)= 1
2πi

∫
σr

H(z,v)
1

v−w
dv (for w ∈∆r and fixed z ∈∆s, v ∈σr). (2.1)

Hence since z ∈∆s is arbitrary, for all z ∈∆s and w ∈∆r , equation (2.1) is valid.

By symmetry, for every v ∈ ∆R the function z → H(z,v) is analytic on ∆R . Hence

H(z,v)= 1
2πi

∫
σs

H(u,v)
1

u− z
du (z ∈∆s,v ∈∆R ,u ∈σs). (2.2)

H is separately continuous on ∆R ×∆R , so it is (jointly) continuous on ∆R ×∆R . Substitute the
value of H(z,v) from (2.2) in the integrand of (2.1). Since the function H(u,v) is continuous, we
obtain

H(z,w)=
(

1
2πi

)2 ∫
σr

∫
σs

H(u,v)dudv
(u− z)(v−w)

(z ∈∆s,w ∈∆r,v ∈σr,u ∈σs).

Since r is arbitrary, we will show that H(z,w) is analytic on ∆R× ∆R . Now,
1

(u− z)(v−w)
=

∞∑
m,n=0

zm

um+1
wn

vn+1 (v ∈σr,u ∈σs)

and this series is uniformly convergent for z ∈∆s,w ∈∆r, v ∈σr,u ∈σs. Hence

H(z,w)=
(

1
2πi

)2 ∫
σr

∫
σs

∞∑
m,n=0

zm

um+1
wn

vn+1 H(u,v)dudv (z ∈∆s,w ∈∆r,v ∈σr,u ∈σs). (2.3)

Since H is bounded, the series
∑∞

m,n=0
zm

um+1
wn

vn+1 H(u,v) is uniformly convergent for z ∈∆s,w ∈∆r,
v ∈σr,u ∈σs.

Because of uniformly convergence, we can integrate the series (2.3) term-by-term and we
obtain

H(z,w)=
∞∑

m,n=0
zmwn

(
1

2πi

)2 ∫
σr

∫
σs

H(u,v)
um+1vn+1 dudv (z ∈∆s,w ∈∆r,v ∈σr,u ∈σs)

=
∞∑

m,n=0
amnzmwn (2.4)
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where the coefficients amn are given by the integral formula

amn =
(

1
2πi

)2 ∫
σr

∫
σs

H(u,v)
um+1vn+1 dudv.

Since H is bounded, we obtain

|amn| =
∣∣∣∣( 1

2πi

)2 ∫
σr

∫
σs

H(u,v)
un+1vm+1 dudv

∣∣∣∣
≤ 1

4π2 (2πs)(2πr)‖H‖∞
1

sm+1rn+1

≤ s2 ‖H‖∞
1

rm+1rn+1

where ‖H‖∞ = sup
u,v∈σ′

|H(u,v)| <∞ and so

∞∑
m,n=0

|amn| <∞

(i.e. the series
∑∞

m,n=0 amn is absolutely convergent). Hence
∑∞

m,n=0 amnzmwn is absolutely
convergent on ∆r ×∆r . Thus H(z,w) is analytic on ∆r(⊆∆s)×∆r and so since r is arbitrary it is
analytic on ∆R ×∆R .

Now, the series H(z,w)=∑∞
m,n=0 amnzmwn is uniformly convergent for z ∈∆s,w ∈∆r . If we

set A =UψCDŨϕ, then, we have

A f (z)=UψCDŨϕ f (z) ( f ∈ L2(∂∆), z ∈∆)

= 1
2πi

∫
∂∆

f (w)ψ′(w)1/2ψ′(z)1/2

ψ(w)−ψ(z)
dw (w ∈ ∂∆)

= 1
2πi

∫
∂∆

1
w− z

H(z,w) f (w)dw

= 1
2πi

∫
∂∆

1
w− z

∞∑
m,n=0

amnzmwn f (w)dw . (2.5)

In fact, we will show that the sum and the integral in the equation (2.5) can be permutable.
For f ∈ L2(∂∆), z ∈∆, we have

∞∑
m,n=0

∫
∂∆

∣∣∣∣ 1
w− z

amnzmwn f (w)
dw
2πi

∣∣∣∣≤ ∞∑
m,n=0

∫
∂∆

1
|w− z| |amn| |z|m |w|n | f (w)| |dw|

2π

≤
∞∑

m,n=0
|amn| |z|m

(∫
∂∆

| f (w)|2 |dw|
2π

)1/2 (∫
∂∆

1
|w− z|2

|dw|
2π

)1/2

≤
∞∑

m,n=0
|amn| |z|m ‖ f ‖

(
1

(1−|z|)2

)1/2
<∞

and by Tonelli Theorem
1

2πi

∫
∂∆

1
w− z

∞∑
m,n=0

amnzmwn f (w)dw =
∞∑

m,n=0
amnzm 1

2πi

∫
∂∆

1
w− z

wn f (w)dw (2.6)

and then

A f (z)=
∞∑

m,n=0
amnzm 1

2πi

∫
∂∆

1
w− z

wn f (w)dw ( f ∈ L2(∂∆), z ∈∆).
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Now consider the following series of operators
∞∑

m,n=0
amnMmC∆Nn ,

where Mm : H2(∆) → H2(∆) is defined by Mm f (z) = zm f (z) so that ‖Mm‖ = ‖zm‖∞ = 1, and
Nn : L2(∂∆)→ L2(∂∆) is defined by Nn f (z)= zn f (z), so that ‖Nn‖ = ‖zn‖∞ = 1, then, we have

A f (z)=
∞∑

m,n=0
amnMmC∆Nn f (z) ( f ∈ L2(∂∆), z ∈∆).

Then the series A =∑∞
m,n=0 amnMmC∆Nn is absolutely convergent in operator norm in the space

B(L2(∂∆),H2(∆)), in fact,

‖MmC∆Nn f ‖H2(∆) ≤ ‖Mm‖‖C∆‖‖Nn‖‖ f ‖ ( f ∈ L2(∂∆))

= ‖ f ‖L2(∂∆)

and

‖MmC∆Nn‖ ≤ 1

implies
∞∑

m,n=0
‖amnMmC∆Nn‖ ≤

∞∑
m,n=0

|amn| <∞

(i.e.
∑∞

m,n=0 amnMmC∆Nn converges absolutely) and

‖A f ‖E2(∆) =
∥∥∥∥∥ ∞∑

m,n=0
amnMmC∆Nn f

∥∥∥∥∥
E2(∆)

≤
∞∑

m,n=0
‖amnMmC∆Nn f ‖ (since

∞∑
m,n=0

amnMmC∆Nn converges absolutely)

=
∞∑

m,n=0
|amn|‖Mm‖‖C∆‖‖Nn‖‖ f ‖

≤
∞∑

m,n=0
|amn| .1.1.1‖ f ‖

≤ ‖ f ‖
∞∑

m,n=0
|amn| <∞

and so

‖A‖ =
∥∥∥∥∥ ∞∑

m,n=0
amnMmC∆Nn

∥∥∥∥∥≤
∞∑

m,n=0
|amn| .

This shows that A = UψCDŨϕ is a continuous operator. It follows that CD is a continuous
operator.

Second Proof of of the Continuity of A
Since in a Banach space X (here X = B(L2(∂∆),H2(∆))), every absolutely convergent series is
convergent, in the norm of X , to an element of X ,

∑∞
m,n=0 amnMmC∆Nn converges to an element
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B ∈ B(L2(∂∆),H2(∆)), in the sense that

lim
m,n→∞

m∑
k=0

n∑
l=0

akl MkC∆Nl = B

i.e. ∥∥∥∥∥B−
m∑

k=0

n∑
l=0

akl MkC∆Nl

∥∥∥∥∥→ 0 as m,n →∞.

Our aim is to show that B = A, (i.e. Bf (z)= 1
2πi

∫
∂∆

1
w−z H(z,w) f (w)dw). Fix z ∈∆ and f ∈ L2(∂∆).

Then ∥∥∥∥∥Bf −
m∑

k=0

n∑
l=0

akl MkC∆Nl f

∥∥∥∥∥→ 0

i.e.

Bf = lim
m,n→∞

m∑
k=0

n∑
l=0

akl MkC∆Nl f .

Hence
m∑

k=0

n∑
l=0

akl MkC∆Nl f (z)→ Bf (z)

Now

Bf (z)= lim
m,n→∞

m∑
k=0

n∑
l=0

akl MkC∆Nl f (z)

= lim
m,n→∞

1
2πi

m∑
k=0

n∑
l=0

∫
∂∆

akl zkwl f (w)
w− z

dw

= lim
m,n→∞

1
2πi

∫
∂∆

m∑
k=0

n∑
l=0

akl zkwl f (w)
w− z

dw

= 1
2πi

∫
∂∆

f (w)
w− z

∞∑
0

∞∑
0

amnzmwndw (from equation (2.6))

= 1
2πi

∫
∂∆

f (w)
w− z

H(z,w)dw

= A f (z).

So for z ∈ ∆ and f ∈ L2(∂∆), Bf (z) = A f (z). Hence B = A. Therefore, since B is a continuous
operator it follows that A =UψCDŨϕ is a continuous operator. Therefore, CD is a continuous
operator.

3. Conclusion and Further Work
In this paper we proved Theorem 1 in detail by showing the continuity of the Cauchy integral
operator CD . The result of Theorem 1 is well known in the literature, however, we give a basic
and direct proof.

By using the methods of the proof of Theorem 1, further work includes investigating more
complex scenarios such as choosing the domain D as (bounded or not) simply connected and ∂D,
the boundary of D, as closed analytic σ-rectifiable Jordan curve. Note that an arc or closed curve
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γ is called σ-rectifiable if and only if it is a countable union of rectifiable arcs in C, together
with (∞) in the case when ∞∈ γ. For instance, a parabola without ∞ is σ-rectifiable arc, and a
parabola with ∞ is σ-rectifiable Jordan curve.
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