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Wavelets and Frames Based on Walsh-Dirichlet Type Kernels

Yu.A. Farkov

Abstract. Using the Walsh-Dirichlet kernel and some of its modifications, we
construct several examples of frames and periodic wavelets on the positive half-
line. The corresponding algorithms for decomposition and reconstruction are also
discussed. It is noted that similar results can be obtained for wavelets and frames
on the Cantor and Vilenkin groups.

1. Introduction

Orthogonal wavelets and refinable functions representable as lacunary Walsh
series have been initiated in [13]; recent results in this direction can be found in
[3]-[7] and the references therein. In the present paper, by analogy with frames
and wavelets on the line R, which are usually determined by appropriately chosen
trigonometric or orthogonal polynomials (cf. [2], [8] [15]), we study frames
and periodic wavelets on the positive half-line R+ associated with the Walsh-
Dirichlet kernel and some of its modifications. Results on mappings into the Walsh
polynomial spaces and algorithms for decomposition and reconstruction are also
discussed. We note that similar results can be obtained in a more general setting,
e.g., for wavelets and frames on the Cantor and Vilenkin groups (cf. [13], [4]).

Let us recall that the Walsh system {wl | l ∈ Z+} on R+ is defined as

w0(x)≡ 1, wl(x) =
k∏

j=0

(w1(2
j x))ν j , l ∈ N, x ∈ R+,

where k and ν j are deduced from the dyadic expansion

l =
k∑

j=0

ν j2
j , ν j ∈ {0, 1}, νk = 1, k = k(l),
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and w1(x) is defined on [0, 1) by the formula

w1(x) =

(
1, x ∈ [0, 1/2),

−1, x ∈ [1/2, 1)

and is extended to R+ such that w1(x + 1) = w1(x) for all x ∈ R+. For basic
properties of the Walsh series and their numerical applications see, e.g., [9], [10],
[16], [17].

We shall denote the integer and the fractional parts of a number x by [x] and
{x}, respectively. For each x ∈ R+ it is possible to take x j , x− j ∈ {0, 1} such that

x = [x] + {x}=
∞∑

j=1

x− j2
j−1 +

∞∑

j=1

x j2
− j

(for a dyadic rational x we chose an expansion with finitely many nonzero terms).
It is easy to see that

x− j = [2
1− j x](mod 2) and x j = [2

j x](mod 2) for all j ∈ N.

The binary addition on R+ is defined by the formula

x ⊕ y :=
∞∑

j=1

| x− j − y− j |2 j−1 +
∞∑

j=1

| x j − y j |2− j , x , y ∈ R+,

and plays a key role in the theory of Walsh–Fourier series (e.g., [16]). It is well-
known that, for all x ∈ R+, wm(x)wn(x) = wm⊕n(x), and, if x ⊕ y is a dyadic
irrational, then

wn(x ⊕ y) = wn(x)wn(y). (1.1)

Thus, for fixed y , equality (1.1) is valid for all x ∈ R+ except countably many
of them. An interval I ⊂ R+ is a dyadic interval of range n if I = I (n)k :=
[k2−n, (k+ 1)2−n) for some k ∈ Z+. Let ∆ := [0, 1). It is easily seen that

I (n)k ∩ I (n)l = ; for k 6= l and
2n−1⋃

k=0

I (n)k =∆.

Moreover, it is clear that wl(x) is constant on I (n)k for each 0 ≤ l ≤ 2n − 1 and
0≤ k ≤ 2n − 1. We shall use the notation

w(n)l,k := wl(k2−n) for 0≤ l, k ≤ 2n − 1.

Notice that

w(0)0,0 = 1, w(1)0,0 = w(1)1,0 = w(1)0,1 = 1, w(1)1,1 =−1, w(n)l,k = w(n)k,l , (1.2)

2n−1∑

i=0

w(n)i,l w(n)i,k =
2n−1∑

j=0

w(n)l, j w(n)k, j = 2nδl,k, 0≤ l, k ≤ 2n − 1. (1.3)

Also, the following equalities hold:

w(n+1)
2l,k = w(n+1)

2l+1,k = w(n)l,k , w(n+1)
2l,2n+k =−w(n+1)

2l+1,2n+k = w(n)l,k , (1.4)

w(n+1)
l,2k = w(n+1)

l,2k+1 = w(n)l,k , w(n+1)
2n+l,2k =−w(n+1)

2n+l,2k+1 = w(n)l,k . (1.5)
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To keep our notation simple, we write N := 2n. A finite sum

DN (x) :=
N−1∑

j=0

w j(x), x ∈ R+,

is called the Walsh-Dirichlet kernel of order N . Paley’s lemma [16, p. 7] states that

DN (x) =

(
N , x ∈ I (n)0 ,

0, x ∈∆ \ I (n)0 .
(1.6)

It follows from (1.1) that the N th partial sum of the Walsh-Fourier series of f is
written as

SN f (x) =

∫ 1

0

DN (x ⊕ t) f (t)d t, x ∈∆. (1.7)

It is known that, for any f ∈ L1(∆),

lim
N→∞

SN f = f a.e. on ∆ and lim
N→∞

‖ f − SN f ‖L1(∆) = 0.

Moreover, the Walsh system {wl | l ∈ Z+} is a basis in Lp(∆) for 1 < p <∞ and it
is not a basis in L1(∆) (e.g., [9], [16]).

By analogy with [2], we introduce the following notations:

D∗N (x) :=
1

2
+

N−2∑

k=1

wk(x) +
1

2
wN−1(x), xn,k :=

k

N
,

ϕn,k(x) := Φn(x ⊕ xn,k), ψn,k(x) :=Ψn(x ⊕ xn,k), k = 0, 1, . . . , N − 1,

where

Φn(x) : =

∫ xn,1

0

D∗N (x ⊕ t)d t, (1.8)

Ψn(x) : =

∫ xn+1,1

0

[D∗2N (x ⊕ t)− D∗N (x ⊕ t)]d t

−
∫ xn,1

xn+1,1

[D∗2N (x ⊕ t)− D∗N (x ⊕ t)]d t. (1.9)

In Section 2 we prove that {ϕn,k}N−1
k=0 and {ψn,k}N−1

k=0 are bases for the spaces
Vn := span{1, w1(x), . . . , wN−1(x)}, Wn := span{wN (x), wN+1(x), . . . , w2N−1(x)},
respectively. Note that the orthogonal direct sum of Vn and Wn coincides with Vn+1,
that is, Vn

⊕
Wn = Vn+1. The spaces Vn and Wn will be called the approximation

spaces and wavelet spaces, while the functions ϕn,k and ψn,k will be called the
scaling functions and wavelets, respectively.

In Section 3 we give the algorithms for decomposition a function fn+1 ∈ Vn+1

into the direct sum:

fn+1 = fn + gn, fn ∈ Vn, gn ∈Wn,

and for reconstruction fn+1 from fn and gn. Let ψ(γ)(x) = D2γ(x)−Dγ(x), where
Dγ is the generalized Walsh-Dirichlet kernel with a parameter γ. Suppose that
γ ∈ (0, 1). In Section 4, using the Daubechies type “admissible condition”, we
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prove that the system of functions

ψ
(γ)
jk (x) = 2 j/2ψ(γ)(2 j x ⊕ k), j ∈ Z, k ∈ Z+,

is a Parseval frame for L2(R+). Moreover, it is shown that the subspaces

Vj(γ) = { f ∈ L2(R+) | bf (ω) = 0,ω> 2 jγ}, j ∈ Z,

form a frame multiresolution analysis in L2(R+) with a scaling function ϕ = Dγ.
Some new examples of Parseval frames for L2(R+) are also given.

2. Bases in Approximation and Wavelet Spaces

For each polynomial v ∈ Vn we have

v(xn,l) = v(x) for all x ∈ I (n)l , 0≤ l ≤ N − 1. (2.1)

Moreover, we can use the discrete Walsh transform to recover v from the values
v(xn,l). Indeed, if

v(x) =
N−1∑

k=0

ckwk(x), x ∈∆, (2.2)

than

ck =
1

N

N−1∑

l=0

w(n)l,k v(xn,l), 0≤ k ≤ N − 1; (2.3)

see, e.g., [10], [16], [17], where the corresponding fast algorithms are given.
As a consequence of (1.1) we observe that

∫ xn,1

0

wk(x ⊕ t)d t =

∫ 1/N

0

wk(x)wk(t)d t = N−1wk(x), 0≤ k ≤ N − 1.

Hence, since wk(t) = 1 for all t ∈ [0, 1/N), we obtain from (1.8) that

Φn(x) = N−1D∗N (x), x ∈∆. (2.4)

By (2.4) and the definition of ϕn,k it is easy to see that

N ϕn,k(x) =
1

2
+

N−2∑

j=1

w(n)k, j w j(x) +
1

2
w(n)k,N−1wN−1(x), 0≤ k ≤ N − 1. (2.5)

Furthermore, we have by (1.3) that
N−1∑

k=0

w(n)l,k
ϕn,k(x) = wl(x), 1≤ l ≤ N − 2, (2.6)

N−1∑

k=0

ϕn,k(x) =
1

2
,

N−1∑

k=0

w(n)N−1,k
ϕn,k(x) =

1

2
wN−1(x). (2.7)

For each l ∈ {0, 1, . . . , N − 1} with binary expansion

l =
n−1∑

j=0

ν j2
j , ν j ∈ {0, 1},

we let σ(l) = 1, if among the ν j there are odd units, and let σ(l) = 0 otherwise.
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Theorem 2.1. Let v ∈ Vn. Assume that αn,k = αn,k(v), k = 0, 1, . . . , N − 1, are
defined by

αn,k =





v(xn,k) + 2N−1
N−1∑
l=0
(1−σ(l))v(xn,l), if σ(k) = 0,

v(xn,k) + 2N−1
N−1∑
l=0
σ(l)v(xn,l), if σ(k) = 1.

(2.8)

Then

v(x) =
N−1∑

k=0

αn,kϕn,k(x), x ∈∆. (2.9)

Proof. According to (2.2), (2.6) and (2.7) we have

v(x) = 2c0

N−1∑

k=0

ϕn,k(x) +
N−1∑

l=0

N−1∑

k=0

cl w
(n)
l,k
ϕn,k(x) + 2cN−1

N−1∑

k=0

w(n)N−1,k
ϕn,k(x).

Therefore, equality (2.9) is true with the coefficients

αn,k = 2c0 + 2cN−1w(n)N−1,k +
N−1∑

l=0

cl w
(n)
l,k , k = 0, 1, . . . , N − 1. (2.10)

But from (2.2) and (2.3) it follows that
N−1∑

l=0

cl w
(n)
l,k =

N−1∑

l=0

cl wl(xn,k) = v(xn,k), w(n)N−1,k = (−1)σ(k),

c0 =
1

N

N−1∑

l=0

v(xn,l), cN−1 =
1

N

N−1∑

l=0

(−1)σ(l)v(xn,l).

Combining these equalities with (2.10), we obtain (2.8). ¤

Remark 2.2. If coefficients ck are known, then αn,k can be computed by (2.10).

Proposition 2.3. The following equalities hold

DN (x)−
1

2
= N[ϕn+1,0(x) +ϕn+1,1(x)], (2.11)

Φn(x) = ϕn+1,0(x) +ϕn+1,1(x)−
1

2N
wN−1(x), (2.12)

Ψn(x) = ϕn+1,0(x)−ϕn+1,1(x). (2.13)

Proof. We see from (1.6) that DN (0) = DN (1/2N) = N and DN (k/2N) = 0 for
k = 2, 3, . . . , 2N−1. Thus applying (2.9) with n replaced by n+1 to the polynomial
v = DN we arrive at

DN (x) = (N + 1)(ϕn+1,0(x) +ϕn+1,1(x)) +
2N−1∑

k=2

ϕn+1,k(x)

= N(ϕn+1,0(x) +ϕn+1,1(x)) +
2N−1∑

k=0

ϕn+1,k(x)
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and by (2.7) we then obtain (2.11). Now, since

DN (x)−
1

2
= D∗N (x) +

1

2
wN−1(x),

we see that (2.12) follows from (2.4) and (2.11) . Observing that

w(n+1)
1,k = w1(k/2N) =

¨
1, 0≤ k ≤ N − 1,

−1, N ≤ k ≤ 2N − 1,

by (2.5) we get

ϕn+1,1(x) =
1

2N

�
2DN (x)− D2N (x)−

1

2
− 1

2
wN−1(x)

�
. (2.14)

Further, from

∫ 1/2N

0

wk(x ⊕ t)d t =
1

2N
wk(x), 0≤ k ≤ 2N − 1,

∫ 1/N

1/2N

wk(x ⊕ t)d t =

¨
wk(x)/(2N), 0≤ k ≤ N − 1,

−wk(x)/(2N), N ≤ k ≤ 2N − 1,

we deduce that
∫ xn+1,1

0

[D∗2N (x ⊕ t)− D∗N (x ⊕ t)]d t

=
1

2N

 
1

2
wN−1(x) +

2N−1∑

k=N

wk(x) +
1

2
w2N−1(x)

!
,

∫ xn,1

xn+1,1

[D∗2N (x ⊕ t)− D∗N (x ⊕ t)]d t

=
1

2N

 
1

2
wN−1(x)−

2N−1∑

k=N

wk(x)−
1

2
w2N−1(x)

!
.

Therefore,

Ψ(x) =
1

N

 
2N−1∑

k=N

wk(x) +
1

2
w2N−1(x)

!

=
1

N

�
D2N (x)− DN (x) +

1

2
w2N−1(x)

�
,

which by (2.14) yields

Ψ(x) + 2ϕn+1,1(x) =
1

N

�
DN (x)−

1

2

�
.

From this and (2.11) we obtain (2.13). ¤
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Note that (2.12) and (2.13) with x replaced by x ⊕ xn,k give the following
equalities

ϕn,k(x) = ϕn+1,2k(x) +ϕn+1,2k+1(x)−
(−1)σ(k)

2N
wN−1(x), (2.15)

ψn,k(x) = ϕn+1,2k(x)−ϕn+1,2k+1(x). (2.16)

Hence,

ϕn+1,2k(x) =
1

2
ϕn,k(x) +

1

2
ψn,k(x) +

(−1)σ(k)

4N
wN−1(x), (2.17)

ϕn+1,2k+1(x) =
1

2
ϕn,k(x)−

1

2
ψn,k(x)−

(−1)σ(k)

4N
wN−1(x). (2.18)

Proposition 2.4. For any n and N = 2n,

wN−1(x) =
2N−1∑

k=0

γn+1,kϕn+1,k(x), (2.19)

where γn+1,k are given by

γ2,0 = γ2,1 = 1, γ2,2 = γ2,3 =−1, (2.20)

γn+1,k = γn,k, γn+1,N+k =−γn,k, n≥ 2, 0≤ k ≤ N − 1. (2.21)

Proof. Using Theorem 2.1, from (2.19) we get

γn+1,k =





wN−1(k/2N) + N−1
2N−1∑
l=0
(1−σ(l))wN−1(l/2N), σ(k) = 0,

wN−1(k/2N) + N−1
N−1∑
l=0
σ(l)wN−1(l/2N), σ(k) = 1,

where wN−1(k/2N) = (−1)σ(k) if k is even and wN−1(k/2N) = (−1)σ(k)+1 if k is
odd. This immediately gives (2.20) and (2.21). ¤

Note that Proposition 2.4 can be deduced also from (1.4), (1.5) and (2.7).

We see that formulas (2.15), (2.16) and (2.19) express ϕn,k and ψn,k, the
wavelets and scaling functions at level n, in terms of scaling functions at level
n+ 1. Conversely, substituting the expression

wN−1(x) = 2
N−1∑

j=0

(−1)σ( j)ϕn, j(x) (2.22)

in (2.17) and (2.18), we obtain the representations of scaling functions ϕn+1,l ,
0 ≤ l ≤ 2N − 1, by the wavelets and scaling functions at level n. The following
theorem shows that, for each n ∈ Z+, the functions ψn,k given in Section 1, form
the basis for Wn.
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Theorem 2.5. Let v ∈Wn. Then

v(x) =
N−1∑

k=0

βn,kψn,k(x), x ∈∆, (2.23)

where, with the notations as in (2.8),

βn,k = βn,k(v) = αn+1,2k =−αn+1,2k+1, 0≤ k ≤ N − 1. (2.24)

Proof. Since v ∈Wn, we have

v(x) =
2N−1∑

k=0

ckwk(x)

with c0 = c1 = · · · = cN−1 = 0. Thus, from (1.5) and (2.10) for k = 0, 1, . . . , N − 1
it follows that

αn+1,2k = 2c2N−1w(n+1)
2N−1,2k +

N−2∑

l=0

cN+l w
(n+1)
N+l,2k

= −2c2N−1w(n+1)
2N−1,2k+1 −

N−2∑

l=0

cN+l w
(n+1)
N+l,2k+1

= −αn+1,2k+1.

Hence, βn,k can be defined by (2.24). Then, since v ∈Wn ⊂ Vn+1, by Theorem 2.1
and (2.16) we get

v(x) =
N−1∑

k=0

αn+1,2kϕn+1,2k(x) +
N−1∑

k=0

αn+1,2k+1ϕn+1,2k+1(x)

=
N−1∑

k=0

βn,kψn,k(x). ¤

3. Algorithms

For functions fn ∈ Vn and gn ∈Wn we write

fn(x) =
N−1∑

k=0

Cn,kϕn,k(x), gn(x) =
N−1∑

k=0

Dn,kψn,k(x), (3.1)

where the coefficient sequences

Cn = {Cn,k}, Dn = {Cn,k} (3.2)

uniquely determine fn and gn, respectively. In this section we describe the
algorithms, in terms of these coefficient sequences, for decomposing fn+1 ∈ Vn+1

as the orthogonal sum of fn ∈ Vn and gn ∈Wn, and for reconstructing fn+1 from fn

and gn (cf. [2, § 5]).
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According to (2.17), (2.18) and (2.22) we have

ϕn+1,l(x) =
1

2
ϕn,[l/2](x) +

(−1)l

2
ψn,[l/2](x) +

(−1)l+σ(l)

4N
wN−1(x),

where

wN−1(x) = 2
N−1∑

k=0

(−1)σ(k)ϕn,k(x).

Hence,

ϕn+1,l(x) =
∑

k

A(n)l,k
ϕn,k(x) + B(n)l,kψn,k(x), (3.3)

where

A(n)l,k =

(�
1/2+ (−1)l+σ(l)/(2N)

��
1/2+ (−1)σ([l/2])/(2N)

�
, k = [l/2],

(2N)−1(−1)l+σ(l)+σ(k), k 6= [l/2],

B(n)l,k =

(
(−1)l/2, k = [l/2],

0, k 6= [l/2].

Thus, in view of (3.1) and (3.3),
∑

k

Cn,kϕn,k(x) +
∑

k

Dn,kψn,k(x)

=
∑

l

Cn+1,l

¨∑

k

A(n)l,k
ϕn,k(x) + B(n)l,kψn,k(x)

«

=
∑

k

¨∑

l

Cn+1,lA
(n)
l,k

«
ϕn,k(x) +

∑

k

¨∑

l

Cn+1,l B
(n)
l,k

«
ψn,k(x).

This implies that

Cn,k =
∑

l

A(n)l,k Cn+1,l , Dn,k =
∑

l

B(n)l,k Cn+1,l . (3.4)

Further, using (2.15), (2.16) and (2.19), we obtain

ϕn,l(x) =
∑

k

P(n)l,k
ϕn+1,k(x) +Q(n)l,k

ϕn+1,k(x),

where

P(n)l,k =

¨
1+ (−1)σ(l)+1γn+1,k/(2N), if k = 2l or k = 2l + 1,

γn+1,k, otherwise,

Q(n)l,k =





1, if k = 2l,
−1, if k = 2l + 1,

0 otherwise.
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Therefore, we have
∑

k

Cn+1,kϕn+1,k(x)

=
∑

l

Cn,l

¨∑

k

P(n)l,k
ϕn+1,k(x)

«
+
∑

l

Dn,l

¨∑

k

Q(n)l,k
ϕn+1,k(x)

«

=
∑

k

¨∑

l

P(n)l,k Cn,l +Q(n)l,k Dn,l

«
ϕn+1,k(x)

and so

Cn+1,k =
∑

l

P(n)l,k Cn,l +Q(n)l,k Dn,l . (3.5)

We remark that the decomposition and reconstruction algorithms based on
formulas (3.4) and (3.5) have more simply structure than the similar algorithms
constructed in [2] for the case of trigonometric wavelets.

4. Examples of Frames for L2(R+)

Let H be a Hilbert space and let M be a countable set. We recall that a family
{gm| m ∈ M} is a frame for H if there exist positive constants A and B such that,
for every f ∈H ,

A‖ f ‖2 ≤
∑

m∈M

|〈 f , gm〉|2 ≤ B‖ f ‖2.

The constants A and B are known respectively as lower and upper frame bounds.
A frame is called a tight frame if the lower and upper frame bounds are equal;
A= B. A frame is a Parseval frame if A= B = 1. The following two propositions are
well-known (e.g., [11, p. 142], [15]):

Proposition 4.1. A sequence {gm} is a Parseval frame for a Hilbert space H if and
only if the following formula holds for every f ∈H :

f =
∑

m∈M

〈 f , gm〉gm.

Proposition 4.2. Let {gm} be a frame forH and let P :H →H be an orthogonal
projection. Then {P gm} is a frame for P (H ) with the same frame bounds. In
particular, if {gm} is an orthonormal basis for H , then {P gm} is a Parseval frame
for P (H ).

A function f : R+→ C is said to be W-continuous at a point x ∈ R+, if

sup
0≤h<1/2n

| f (x ⊕ h)− f (x)| → 0 as n→∞.

A function f is W-continuous if it is W -continuous at each point of R+. The Walsh
functions {wl} are W -continuous (e.g., [16], § 1.3).
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For x ,ω ∈ R+ we set

χ(x ,ω) = (−1)σ(x ,ω), σ(x ,ω) =
∞∑

j=1

x jω− j + x− jω j .

The Walsh-Fourier transform of a function f ∈ L1(R+)∩ L2(R+) is defined by

bf (ω) =
∫

R+
f (x)χ(x ,ω)d x , ω ∈ R+,

and admits a standard extension to the whole space L2(R+). Denote by 〈·, ·〉 and
‖·‖ the inner product and the norm in L2(R+), respectively. In the next proposition
we list several well-known properties of the Walsh-Fourier transform.

Proposition 4.3. The following properties take place:

(a) If f ∈ L1(R+), then bf is a W-continuous function and bf (ω)→ 0 as ω→∞.
(b) Suppose that both f and bf belong to L1(R+). If f is W-continuous at a point x,

then the following inversion formula

f (x) =

∫

R+

bf (ω)χ(x ,ω)dω

holds.
(c) If f ∈ L2(R+), then bf ∈ L2(R+) and ‖bf ‖= ‖ f ‖.

For any function f ∈ L2(R+) we set

f jk(x) := 2 j/2 f (2 j x ⊕ k), j ∈ Z, k ∈ Z+, x ∈ R+.

It is easily seen that

bf jk(ω) = 2− j/2wk(2
− jω)bf (2− jω)

and, by Plancherel’s theorem, for all g ∈ L2(R+),

〈g, f jk〉= 〈bg, bf jk〉= 2− j/2

∫

R+
bg(ω)bf (2− jω)wk(2

− jω)dω. (4.1)

The Haar wavelet on R+ is defined by

ψH(x) :=





1, x ∈ [0, 1/2),
−1, x ∈ [1/2, 1),
0, x ∈ [1,+∞).

It is well-known that if f = ψH , then { f jk | j ∈ Z, k ∈ Z+} is an orthonormal
bases for L2(R+). In general, we say that a function ψ is wavelet in L2(R+), if the
following condition is satisfied:

0< cψ :=

∫

R+
| bψ(ω)|2 dω

ω
<+∞. (4.2)
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The continuous wavelet transform of a function f ∈ L2(R+) with analyzing
wavelet ψ is defined by the integral:

(Wψ f )(a, b) = a−1/2

∫

R+
f (x)ψ((x ⊕ b)/a) d x , a > 0, b ∈ R+.

This transform was studied in [6], where an analog of the Grossmann and Morlet
theorem is proved. Note that some discrete constructions of this type give frames
for L2(R+) (cf. [14, § 5.2]).

Now, for m ∈ Z+, l ∈ N we set

aml(x) =

¨
2−m/2wl(2−m x), x ∈ [0, 2m),
0, x ∈ [2m,+∞). (4.3)

We see that a0,1 coincides with the Haar wavelet ψH . Besides, the following
properties take place:

1. For each fixed m ∈ Z+ the system {aml | l ∈ N} satisfy the orthogonality
condition on [0, 2m), that is,

∫ 2m

0

aml(x)amk(x)d x = δl,k, l, k ∈ N.

2. The Walsh-Fourier transform of aml can be written as

baml(ω) =

¨
2m/2, ω ∈ [l2−m, (l + 1)2−m),
0, ω /∈ [l2−m, (l + 1)2−m).

3. Each function aml is a wavelet in L2(R+) (ifψ= aml , then (4.2) is satisfied with
cψ = 2m log(1+ 1/l)).

4. There exist orthogonal wavelets in L2(R+) which are finite linear combinations
of functions aml .

The proofs of properties 1-3 are straightforward while the last property follows
from examples of dyadic wavelets on R+ given in [5].

For α > 0, m ∈ Z+, l ∈ N let g(α)ml be a function in L2(R+) such that

bg(α)ml (ω) =

¨
1, ω ∈ [lα−m, (l + 1)α−m),
0, ω /∈ [lα−m, (l + 1)α−m).

One can see that each g(α)ml is wavelet in L2(R+). Returning to the general case, we
define

Dψ(ω) :=
∑

j∈Z
| bψ(2− jω)|2, Ml,ψ := sup

ω∈R+

∑

j∈Z
| bψ(2− jω)|| bψ(2− jω⊕ l)|. (4.4)

We note that Dψ(ω) = Dψ(2ω) for all ω ∈ R+, and that sup in (4.4) can be taken
over 1 ≤ ω < 2. The following theorem similar to the well-known Daubechies
result (e.g., [14, § 5.3]).
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Theorem 4.4. Let ψ ∈ L2(R+) be such that

Aψ := ess inf
ω∈R+

Dψ(ω)−
∑

l∈N
Ml,ψ > 0

and

Bψ := ess sup
ω∈R+

Dψ(ω) +
∑

l∈N
Ml,ψ <∞.

Then {ψ jk} is a frame with frame bounds Aψ and Bψ.

Proof. For j ∈ Z, l ∈ Z+ we have

∫ (l+1)2 j

l2 j

wk(2
− jω)dω =

∫ 2 j

0

wk(2
− j(ω⊕ l2 j)dω

=

∫ 2 j

0

wk(2
− jω)dω.

Let f ∈ L2(R+). Then, according to (4.1),

〈 f ,ψ jk〉= 2− j/2

∫ 2 j

0

�∑

l∈Z+
F jl(ω)

�
wk(2

− jω)dω, (4.5)

where F jl(ω) := bf (ω⊕ l2 j) bψ(2− jω⊕ l). Now, for each j let F j be the function
defined by

F j(ω) :=
∑

l∈Z+
F jl(ω).

This function is periodic: F j(ω⊕ 2 j) = F j(ω) for all ω ∈ R+, and one sees easily
that F j can be expanded to the Walsh series:

F j(ω) =
∑

k

ck(F j)wk(2
− jω), ω ∈ [0, 2 j),

where

ck(F j) = 2− j

∫ 2 j

0

F j(ω)wk(2
− jω)dω.

By Parseval’s formula,

∑

k

|ck(F j)|2 = 2− j

∫ 2 j

0

|F j(ω)|2dω.

Therefore, in view of (4.5),

∑

j,k

|〈 f ,ψ jk〉|2 =
∑

j,k

2− j

����
∫ 2 j

0

F j(ω)wk(2
− jω)dω

����
2
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=
∑

j

2 j
∑

k

|ck(F j)|2

=
∑

j

∫ 2 j

0

|F j(ω)|2dω.

Also, for any j ∈ Z we have

∫ 2 j

0

F j(ω)F j(ω)dω =

∫ 2 j

0

�∑

l∈Z+

bf (ω⊕ l2 j) bψ(2− jω⊕ l)F j(ω)

�
dω

=
∑

l∈Z+

∫ (l+1)2 j

l2 j

bf (ω) bψ(2− jω)F j(ω)dω

=

∫

R+

bf (ω) bψ(2− jω)F j(ω)dω

and so
∑

j,k

|〈 f ,ψ jk〉|2 =
∑

j

∫

R+

bf (ω) bψ(2− jω)F j(ω)dω

=

∫

R+
|bf (ω)|2

∑

j

| bψ(2− jω)|2dω+ R( f ),

where, by the Cauchy-Schwarz inequality,

|R( f )| =
����
∑

j∈Z

∑

l∈N

∫

R+

bf (ω)bf (ω⊕ l2 j) bψ(2− jω)ψ(2− jω⊕ l)dω

����

≤
∑

l∈N

∫

R+

�
|bf (ω)|2

∑

j

| bψ(2− jω)|| bψ(2− jω⊕ l)|
�

dω.

Thus, for every f ∈ L2(R+),

Aψ‖ f ‖2 ≤
∑

j,k

|〈 f ,ψ jk〉|2 ≤ Bψ‖ f ‖2,

where Aψ and Bψ are defined in the theorem. ¤

EXAMPLE 1. Let ψ = g(α)ms , where α ≥ 1, m ∈ Z+, s ∈ N. Then for any l ∈ N the
supports of bψ(2− jω) and bψ(2− jω⊕ l) are disjoint. Since

ess inf
1≤ω<2

Dψ(ω) = ess sup
1≤ω<2

Dψ(ω) = 1,

we see that Aψ = Bψ = 1. Therefore, {ψ jk} is a Parseval frame for L2(R+). By
setting α = 2, we find also that each function ams generates a Parseval frame for
L2(R+).

In the sequel, 1E stands for the characteristic function of a subset E of R+.
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Example 4.5. Let us assume that

ψ(x) = 2−1/2(a14(x) + νa11(x)),

where ν is a positive parameter. Then, for every ω ∈ R+,

bψ(ω) = 1[2,5/2)(ω) + ν1[1/2,1)(ω), | bψ(ω)|2 = 1[2,5/2)(ω) + ν
21[1/2,1)(ω),

and

bψ(2− jω) bψ(2− jω⊕ l) = 0 for all j ∈ Z+, l ∈ N.

Further, if 1 ≤ ω < 5/4 then bψ(ω/2) = ν , bψ(2ω) = 1, and if 5/4 ≤ ω < 2 then
bψ(ω/2) = ν . Besides, bψ(2− jω) = 0 for j 6= −1 and j 6= 1. From these equalities

we deduce that

Aψ = ν
2, Bψ = 1+ ν2, Bψ/Aψ = 1+

1

ν2 .

Thus, {ψ jk} tends to the tight frame when ν →∞.
Let En be the space of functions which are constant on all dyadic intervals of

range n. It is clear from the definition that, for every f ∈ En,

f (x) =
∞∑

k=0

f (k2−n)1[k2−n,(k+1)2−n)(x), x ∈ R+. (4.6)

The following two properties (see [10, § 6.2], [16, p. 461]) are known:

• if f ∈ L1(R+)∩En, then suppbf ⊂ [0, 2n];
• if f ∈ L1(R+) and supp f ⊂ [0, 2n], then bf ∈ En.

The generalized Walsh-Dirichlet kernel Dt with t > 0 is defined by

Dt(x) :=

∫ t

0

χ(x ,ω)dω, x ∈ R+.

It is known also that

D2n = 2n1[0,2−n) for all n ∈ Z (4.7)

and

bDt = 1[0,t) for all t > 0. (4.8)

EXAMPLE 3. Let ψ= D2γ−Dγ, where 0< γ≤ 1. Putting α= 1/γ, from (4.8) we

have bψ= 1[1/α,2/α); that is, ψ= g(α)11 with α≥ 1. According to Example 1, {ψ jk} is
a Parseval frame for L2(R+).

Observe that, for any t > 0, the subspaces

Vj(t) := { f ∈ L2(R+)| bf (ω) = 0,ω> 2 j t}, j ∈ Z, (4.9)
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satisfy the following:

Vj(t)⊂ Vj+1(t),
⋂

j

Vj(t) = {0},
⋃

j

Vj(t) = L2(R+).

Theorem 4.6. Let ϕ be the generalized Walsh-Dirichlet kernel Dt with 0 < t ≤ 1.
Then

ϕ(x) =
∑

k∈Z+

ϕ(k/2)ϕ(2x ⊕ k), x ∈ R+. (4.10)

Moreover, for each j ∈ Z the system {ϕ jk | k ∈ Z+} is a Parseval frame for Vj(t).

Proof. For t = 1 we have ϕ = 1[0,1) and the subspaces Vj(t) form the Haar
multiresolution analysis in L2(R+). In this case we can write equation (4.10) as
follows:

ϕ(x) = ϕ(2x) +ϕ(2x ⊕ 1).

Now, let 0< t < 1 and assume that E = [0, t). Then the linear mapping

P : L2[0, 1]→ L2[0, 1], P f = f · 1E ,

is an orthogonal projection. In fact, let L0(E) be the closure of the linear span of
{wk · 1E | k ∈ Z+} in L2[0, 1]. If f ∈ L2[0, 1] and g ∈ L0(E), then

〈 f , g〉 =
∫ 1

0

f (t)g(t)d t

=

∫

E

f (t)g(t)d t

=

∫

E

P f (t)g(t)d t

= 〈P f , g〉.

Hence,

〈 f −P f , g〉= 0 for all g ∈ L0(E).

Since {wk | k ∈ Z+} is an orthonormal basis for f ∈ L2[0, 1], by Proposition
4.2 we obtain that {wk · 1E | k ∈ Z+} is a Parseval frame for L0(E). Recall that
ϕ0,k(·) = ϕ(· ⊕ k) and

bϕ0,k(ω) = wk(ω)bϕ(ω) = wk(ω)1[0,t)(ω), k ∈ Z+.

Therefore, an application of the inverse Walsh-Fourier transform shows that
{ϕ(· ⊕ k) | k ∈ Z+} is a Parseval frame for V0(t). Also, in view of (4.9),

Vj(t) = D j(V0(t)), where D f (x) = 21/2 f (2x).
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Observing that ϕ j,k = D j ϕ0,k, we conclude that for each j ∈ Z the system
{ϕ jk | k ∈ Z+} is a Parseval frame for Vj(t). From this, since ϕ ∈ V0(t) ⊂ V1(t), by
Proposition 4.1 it follows that

ϕ(x) =
∑

k∈Z+
〈ϕ,ϕ1k〉ϕ1k(x), x ∈ R+. (4.11)

Also, by (4.1) and Parseval’s formula we have

〈ϕ,ϕ1k〉 =
p

2

∫

R+

ϕ(x)ϕ(2x ⊕ k)d x

=
1p
2

∫ t

0

bϕ(ω)bϕ(ω/2)wk(ω/2)dω

=
1p
2

∫

R+

bϕ(ω)χ(k/2,ω)dω

=
1p
2
ϕ(k/2),

which by (4.11) yields (4.10). ¤

Remark 4.7. For 0 < t < 1 let us denote by Wj(t) the orthogonal complement of
Vj(t) in Vj+1(t):

Wj(t) = Vj(t)
⊥ ∩ Vj+1(t), j ∈ Z.

Then the orthogonal projection Q j : L2(R+)→Wj(t) can be defined as follows:

g j =Q j f ⇐⇒ bg j = bf · 1[2 j t,2 j+1 t), f ∈ L2(R+).

Hence, letting ψ= D2t −Dt , we see that

bψ jk(ω) = 2− j/2wk(ω)1[2 j t,2 j+1 t)(ω), j ∈ Z, k ∈ Z+,

and that, for each j, the system {ψ jk | k ∈ Z+} is a Parseval frame for Wj(t).

Remark 4.8. Suppose that f ∈ Vj(t), where j ∈ Z, 0 < t ≤ 1. Using Theorem 4.5
and Proposition 4.1, we then obtain

f (x) =
∑

k∈Z+
〈 f ,ϕ jk〉ϕ jk(x), x ∈ R+,

where 〈 f ,ϕ jk〉 = 2− j/2 f (k2− j), ϕ jk(x) = 2 j/2Dt(2 j x ⊕ k). Thus, the following
formula holds for every f ∈ Vj(t):

f (x) =
∞∑

k=0

f (k2− j)Dt(2
j x ⊕ k), x ∈ R+.

Notice that, in view of (4.7), for t = 1 this gives (4.6).
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We say that a compactly supported function ϕ ∈ L2(R+) is a refinable function,
if it satisfies an equation of the type

ϕ(x) =
2n−1∑

k=0

ckϕ(2x ⊕ k), x ∈ R+. (4.12)

Using the Walsh-Fourier transform, we obtain bϕ(ω) = m0(ω/2) bϕ(ω/2), where
the Walsh polynomial

m0(ω) =
1

2

2n−1∑

k=0

ckwk(ω)

is the mask of equation (4.12). Note that m0 ∈ En and m0(ω+ 1) = m0(ω) for all
ω ∈ R+. Moreover, the coefficients of equation (4.12) are related to the values

bl = m0(ω), ω ∈ [l2−n, (l + 1)2−n), 0≤ l ≤ 2n − 1,

by means of the discrete Walsh transform:

ck =
1

2n−1

2n−1∑

l=0

bl wl(k2−n), 0≤ k ≤ 2n − 1;

cf. (2.2) and (2.3). Suppose that M either is the union of some of the intervals
[l2−n, (l + 1)2−n), l = 1, 2, . . . , 2n − 1, or coincides with one of these intervals.
Then we define

S(M) := {ω/2 : ω ∈ M} ∪ {(ω+ 1)/2 :ω ∈ M}.
A set M is said to be blocking for a mask m0 if it satisfies the condition

S(M)⊂ M ∪ {ω ∈∆| m0(ω) = 0}.
According to [3] we have the following theorem:

Theorem 4.9. Let ϕ ∈ L2(R+) be a compactly supported solution of equation (4.12)
such that bϕ(0) = 1. Suppose that the mask m0 satisfies

|m0(ω)|2 + |m0(ω+ 1/2)|2 = 1 for all ω ∈ [0, 1/2). (4.13)

Then the following are equivalent:

(i) The function ϕ generates a multiresolution analysis in L2(R+).
(ii) The mask m0 has no bloking sets.

Under the hypotheses of Theorem 4.8 the orthogonal wavelet ψ in L2(R+) can be
defined (see [3]) by the formula:

ψ(x) =
2n−1∑

k=0

(−1)k c̄k⊕1ϕ(2x ⊕ k), x ∈ R+. (4.14)

Combining this result with Theorem 4.4 and Theorem 4.5, we can construct
frames for L2(R+). Let us illustrate this by the following example:
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EXAMPLE 4. The scaling function ϕ, which was introduced in [13], is a solution
of equation (4.12) with n= 2 and

c0 =
1+ a+ b

2
, c1 =

1+ a− b

2
, c2 =

1− a− b

2
, c3 =

1− a+ b

2
, (4.15)

where 0 < |a| < 1, |b| =
p

1− |a|2. This function generates a multiresolution
analysis in L2(R+), possesses the self-similarity property:

ϕ(x) =

¨
(1+ a− b)/2+ bϕ(2x), 0≤ x < 1,

(1− a+ b)/2− bϕ(2x − 2), 1≤ x ≤ 2

and it is represented by a lacunary Walsh series:

ϕ(x) = (1/2)1[0,1)(x/2)(1+ a
∞∑

j=0

b jw2 j+1−1(x/2)), x ∈ R+.

In the case where a = 1, b = 0 the Haar function φ = 1[0,1) is obtained from (4.12)
and (4.15). On the other hand, for ϕ = D1/2, by Theorem 4.5 we have

ϕ(x) =
1

2

3∑

k=0

ϕ(2x ⊕ k), x ∈ R+.

Observing that ϕ(x) = 2−11[0,1)(x/2) and ϕ(x) = ϕ(x ⊕ 1), we may write
ϕ(x) = ϕ(2x) + ϕ(2x ⊕ 3), which corresponds to the values a = 0 and b = 1
in (4.15). Then the interval [1/2, 1) is a blocking set. Furthermore, if ϕ = D1/2,
we obtain formally from (4.14) that ψ(x) =−ϕ(2x ⊕ 1) +ϕ(2x ⊕ 2). Since

bψ(ω) = 2−11[0,1)(ω)[w2(ω/2)−w1(ω/2)] =−1[1/4,1/2)(ω),

we get by Theorem 4.4 that ψ generates a Parseval frame for L2(R+).

Remark 4.10. Suppose that ϕ ∈ L2(R+) is a compactly supported solution of
equation (4.12), ϕ is continuous at 0 and bϕ(0) 6= 0. As above, assume that m0

satisfies (4.13) and ψ is defined by (4.14). Then {ψ jk} is a tight frame for L2(R+)
with frame bound |bϕ(0)|2 (cf. [1], [12]). Moreover, if m0 has a blocking set, then
{ψ jk} is not a basis in L2(R+).
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