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Abstract. In this article, a Multi Objective Linear Fractional Programming (MOLFP) problem with
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formulations is studied. We use box uncertainty set for MOLFP problem and propose an approach to
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1. Introduction
Multi Objective Linear Fractional Programming (MOLFP) problem is one of the interesting
subjects of nonlinear optimization that has been attracted the attention of many researches in
the last few decades. It can be described in mathematical terms as follows

max z(x)= [z1(x), z2(x), . . . , zk(x)]

s.t. x ∈ X = {x ∈ Rn : Ax ≤ b, x ≥ 0} (1)
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In which X is a convex and bounded set, and

zi(x)= pT
i x+αi

qT
i x+βi

= Ni(x)
D i(x)

, i = 1,2, . . . ,k, (2)

pi, qi ∈ Rn, αi,βi ∈ R

and also

x ∈ Rn, b ∈ Rm, A ∈ Rm×n and D i(x)> 0 ∀ i. (3)

MOLFP problem has been used in wide variety of application such as engineering, business,
management, finance, production planning, economics and others. Generally MOLFP problem
has been used for modeling real-world problems such as inventory/sales, profit/cost, debt/equity
and others. There are many methodologies in the literature to solve MOLFP problems [4], [12],
[13], [15] and [17]. Zimmermann [19] proposed a fuzzy approach to Multi Objective Linear
Programming (MOLP) problems. Duran Toksarı [6] proposed an approach for fuzzy MOLFP
problem using Taylor series. Sulaiman et al. [18] presented transformation technique for solving
MOLFP problems by transforming into a single objective linear fractional program.

Due to uncertainty in the real physical world and phenomena’s, we need to work with some
techniques which deals with uncertainty. Robust Optimization (RO) is found very effective
and efficient in this regard that has been shown as a specific and relatively new approach
for handling optimization problems with uncertain data that has used in many applications.
The very early work on robust optimization in 1970s is due to Soyster [16], who was one of the
first researchers to investigate explicit to this approach. He considered a Robust Counterpart
(RC) and proved that the model is feasible under perturbations. Ben-Tal and Nemirovski [1], and
El-Ghaoui et al. [7] have introduced ellipsoidal uncertainties to the RO literature which caused
in conic quadratic robust counterparts for linear formulations. In fact ellipsoidal uncertainties
can be used to approximate more complicated uncertainty sets. Janak et al. [11] and Lin et
al. [14] extended RO formulation of LP problems with uncertain data to Mixed Integer Linear
Programming (MILP) problems. Bertsimas and Sim [2] developed the theory of the RO for
discrete programming and LP problems. Hasanzadeh et al. [10] used an interactive method
(weighted Tchebycheff) to solve the robust format of the multi objective R&D project portfolio
selection programming with imprecise information. Goberna et al. [8] investigated the problem
of robust solutions to MOLP problems with uncertain data in which the uncertainty happens
both in the constraints and objective functions.

In the current study we have applied a box uncertainty in RO procedure that based on
uncertainty approach to solve MOLFP problem with imprecise coefficients in the objective
functions by reducing it into a LP problem. The developed approach in this study extends the
RO concepts to MOLFP problem for solving such problem under uncertainty in the coefficients
of the objective functions.

2. Preliminaries
In this section, some basic definitions and concepts of Linear Fractional Programming (LFP)
along with box uncertainty with RO is introduced.
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The general format of Linear Fractional Programming (LFP) [4] may be written as

max
pT x+α

qT x+β
(4)

s.t. x ∈ X = {x ∈ Rn : Ax ≤ b, x ≥ 0}

where p, q ∈ Rn, A ∈ Rm×n, α,β ∈ R.
For some values of x ∈ X may be qT x+β = 0. For convenience, assume that LFP satisfies
qT x+β> 0.
The general RC formulation of a LP problem [3] may be written as

max cT x

s.t. ãT
i x ≤ b, ∀ ai ∈ ui (5)

x ≥ 0

where ai represents the ith Constraint’s coefficient of the uncertain data where ãi ∈ ui ∈ Rn.
Then, ãT

i x ≤ bi , ∀ ãi ∈ ui if and only if max
{ãi∈ui}

ãT
i x ≤ bi , ∀ i.

Definition 2.1. Consider U = {ξ | ‖ξ‖ρ ≤Ψ} contains of the uncertain data vectors, if ρ =∞,
then U = {ξ | |ξ j| ≤Ψ} is the box uncertainty set. In which Ψ is a parameter that control the size
of the U . Note that, if Ψ= 1, then the box uncertainty set represent an interval uncertainty
set [20].

Theorem 2.1. Let U = {ξ | |ξ j| ≤ Ψ} is a box uncertainty set, and let ãx ≤ b be a constraint
that the left hand side (LHS) coefficients are subject to uncertainty. Then, the corresponding
RC constraint of ãx ≤ b is reduced to ax+max

ξ∈U
(ξâx) ≤ b that can be written in the following

equivalent constraint:

ax+Ψ(â|x|)≤ b , (6)

where â denotes the constant perturbation around a.

Proof. See [20].

Theorem 2.2. Let U = {ξ | |ξ j| ≤Ψ} is a box uncertainty set, consider the LFP problem as defined
in (4), where the coefficients of the objective function are all under uncertainties. Then, the
corresponding RC of the uncertain LFP is equivalent as the following problem:

min z

s.t. pT y+αt+Ψ(p̂T y+ α̂t)≤ z

qT y+βt+Ψ(q̂T y+ β̂t)= 1 (7)

A y−bt ≤ 0

y≥ 0, t ≥ 0

Proof. For a given LFP.

min
p̃T x+ α̃

q̃T x+ β̃

Journal of Informatics and Mathematical Sciences, Vol. 11, No. 2, pp. 115–125, 2019



118 Solving Multi Objective Linear Fractional Programming Problem. . . : M. Ganji and M. Saraj

s.t. Ax ≤ b (8)

x ≥ 0

in which

p̃ = p+ p̂ξp, ξp ∈U

q̃ = q+ q̂ξq, ξq ∈U

α̃=α+ α̂ξα, ξα ∈U (9)

β̃=β+ β̂ξβ, ξβ ∈U

where p, q,α and β denotes the nominal value parameters, p̂, q, α̂ and β̂ denotes the true value
parameters and constant perturbation around their nominal value parameters and also ξp , ξq ,
ξα and ξβ are independent random variables. Now by letting

t = 1
q̃T x+ β̃

and y= xt (10)

and using the Charnes-Cooper transformation [5], we get a LP in the following form:

min p̃T y+ α̃t

s.t. q̃T y+ β̃t = 1 (11)

A y−bt ≤ 0

y≥ 0, t ≥ 0

The above problem can be further equivalently transformed as follows:

min z

s.t. p̃T y+ α̃t ≤ z (12)

q̃T y+ β̃t = 1

A y−bt ≤ 0

y≥ 0, t ≥ 0

By substituting (9) in (12), and for immunize the problem (12) against infeasibility with
uncertainty set U , we have

min z

s.t. pT y+αt+ max
ξp,ξα∈U

(p̂Tξp y+ α̂ξαt)≤ z (13)

qT y+βt+ max
ξq,ξβ∈U

(q̂Tξq y+ β̂ξβt)= 1

A y−bt ≤ 0

y≥ 0, t ≥ 0

Now by using Theorem 2.1, we have

min z

s.t. pT y+αt+Ψ(p̂T |y|+ α̂|t|)≤ z (14)

qT y+βt+Ψ(q̂T |y|+ β̂|t|)= 1
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A y−bt ≤ 0

y≥ 0, t ≥ 0

Since y and t ≥ 0, the above problem is equivalent to

min z

s.t. pT y+αt+Ψ(p̂T y+ α̂t)≤ z (15)

qT y+βt+Ψ(q̂T y+ β̂t)= 1

A y−bt ≤ 0

y≥ 0, t ≥ 0.

3. Robust Optimization and its Application to MOLFP Problem
MOLFP problem play a very important role rather than primary in optimization literature.
Since the objective functions in MOLFP are in conflicts with each other, therefor we use the
concept of Pareto optimality which is also called efficient solution to the problem.

Definition 3.1. Consider the MOLFP problem as defined in (1), a point x∗ ∈ Rn is called an
efficient solution if there exists no x ∈ Rn such that Ni(x)

D i(x) ≥ Ni(x∗)
D i(x∗) , i = 1,2, . . . ,m and Ni(x)

D i(x) > Ni(x∗)
D i(x∗) ,

for at least one i, otherwise x∗ is inefficient. The set of all efficient points is called efficient set
solution.

Theorem 3.1. Consider the MOLFP problem as defined in (1), if x∗ is an optimum solution of

max

{
k∑

i=1
wi

(
Ni(x)− (zi)∗ (D i(x))

)}
s.t. Ax ≤ b (16)

x ≥ 0

where wi ≥ 0,
k∑

i=1
wi = 1, and

(zi)∗ = Ni(x∗)
D i(x∗)

=max
x∈X

Ni(x)
D i(x)

, i = 1,2, . . . ,k. (17)

Then x∗ is an efficient solution of the MOLFP problem (1).

Proof. See [9].

Theorem 3.2. Let U = {ξ | |ξ j| ≤Ψ} is a box uncertainty set. Consider the MOLFP problem as
defined in (1), where the coefficients of the objective functions are all under uncertainties. Then,
the corresponding RC of the uncertain MOLFP is equivalent to the following LP problem:

max z

s.t.

{
k∑

i=1
wi

((
n∑

j=1
pT

i jx j +αi +Ψ
(

n∑
j=1

p̂T
i jx j + α̂i

))
− (zi)∗

(
n∑

j=1
qT

i jx j +βi +Ψ
(

n∑
j=1

q̂T
i jx j + β̂i

)))}
≥ z

(18)

Ax ≤ b
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x ≥ 0

Proof. Let the coefficients of the objective functions of the MOLFP problem (1) are all under
uncertainties. In other words, suppose that

max z(x)= [z1(x), z2(x), . . . , zk(x)]
s.t. x ∈ X = {x | Ax ≤ b, x ≥ 0} (19)

in which

zi(x)= p̃T
i x+ α̃i

q̃T
i x+ β̃i

= Ni(x)
D i(x)

,

where p̃i, q̃i, α̃i, β̃i ∈U , A ∈ Rm×n, b ∈ Rm, x, p̃i, q̃i ∈ Rn, α̃i, β̃i ∈ R and D i(x)> 0,
i = 1,2, . . . ,k. (20)

Now using Theorem 3.1, we have

max

{
k∑

i=1
wi

(
Ni(x)− (zi)∗ (D i(x))

)}
s.t. Ax ≤ b (21)

x ≥ 0

is equivalent to the following problem:

max

{
k∑

i=1
wi

((
n∑

j=1
p̃T

i jx j + α̃i

)
− (zi)∗

(
n∑

j=1
q̃T

i jx j + β̃i

))}
s.t. Ax ≤ b (22)

x ≥ 0

The problem (22) can be equivalently transformed as follows:

max z

s.t.
k∑

i=1
wi

((
n∑

j=1
p̃T

i jx j + α̃i

)
− (zi)∗

(
n∑

j=1
q̃T

i jx j + β̃i

))
≥ z (23)

Ax ≤ b
x ≥ 0

Now with considering

p̃i j = pi j + p̂i jξi j, ξi j ∈U q̃i j = qi j + q̂i jξi j, ξi j ∈U
α̃i =αi + α̂iξiα, ξiα ∈U β̃i =βi + β̂iξiβ, ξiβ ∈U (24)

and by substituting (24) in (23), and also for immunize the problem (23) against infeasibility
with predefined uncertainty set U , we have

max z

s.t.
k∑

i=1
wi


(

n∑
j=1

pT
i jx j +αi + max

ξi j ,ξiα∈U

(
n∑

j=1
p̂T

i jξi jx j + α̂iξiα

))

− (zi)∗
(

n∑
j=1

qT
i jx j +βi + max

ξi j ,ξiβ∈U

(
n∑

j=1
q̂T

i jξi jx j + β̂iξiβ

))
≥ z (25)
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Ax ≤ b
x ≥ 0

Now by using Theorem 2.1, we can convert the problem (25) to the following form:

max z

s.t.
k∑

i=1
wi

((
n∑

j=1
pT

i jx j +αi +Ψ
(

n∑
j=1

p̂T
i j

∣∣x j
∣∣+ α̂i

))
− (zi)∗

(
n∑

j=1
qT

i jx j +βi +Ψ
(

n∑
j=1

q̂T
i j

∣∣x j
∣∣+ β̂i

)))
≥ z

(26)
Ax ≤ b
x ≥ 0

Since x ≥ 0, the above problem is equivalent to following LP problem:

max z

s.t.

{
k∑

i=1
wi

((
n∑

j=1
pT

i jx j +αi +Ψ
(

n∑
j=1

p̂T
i jx j + α̂i

))
− (zi)∗

(
n∑

j=1
qT

i jx j +βi +Ψ
(

n∑
j=1

q̂T
i jx j + β̂i

)))}
≥ z

(27)
Ax ≤ b
x ≥ 0

4. Results and Discussion
In this section we describe the methodology process and solve a numerical example to illustrate
the methodology and proposed approach.

4.1 Solution Procedure
The solution procedure of MOLFP problem under uncertainty in the coefficients of the objective
functions is describes as follows:

Step 1: Solve each of the objective function on using Theorem 2.2 which yields to different z∗i .

z∗i =max
x∈X

Ni(x)
D i(x)

, i = 1,2, . . . ,k. (28)

Step 2: After obtaining each z∗i from Step 1 and choosing appropriate normalized weights wi ,
on using Theorem 3.2, we convert the MOLFP problem (19) to get a LP problem as given in (27).

Step 3: Find the optimal solution of the LP problem (27) by any usual method.

4.2 Numerical Example
Consider a MOLFP problem with two objectives as follows:

max z(x)=


z1(x)= p̃11x1 + p̃12x2 + α̃1

q̃11x1 + q̃12x2 + β̃1

z2(x)= p̃21x1 + p̃22x2 + α̃2

q̃21x1 + q̃22x2 + β̃2


s.t. x1 − x2 ≥ 1 (29)

2x1 +3x2 ≤ 15
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x1 ≥ 3
x1, x2 ≥ 0

Assume that the objective coefficients p̃i j , q̃i j , α̃i , β̃i are subject to uncertainty and they are
defined as follows:

p̃i j = pi j + p̂i jξi j(
p11 =−3, p12 = 2, p21 = 7, p22 = 1 and p̂i j = 0.1pi j, i, j = 1,2

)
q̃i j = qi j + q̂i jξi j(
q11, q12 = 1, q21 = 5, q22 = 2 and q̂i j = 0.1qi j, i, j = 1,2

)
α̃i =αi + α̂iξiα(
α1,α2 = 0 and α̂i = 0.1αi j, i = 1,2

)
β̃i =βi + β̂iξiβ(
β1 = 3,β2 = 1 and β̂i = 0.1βi, i = 1,2

)
We first calculate (z1)∗ as below

max z1(x)= p̃11x1 + p̃12x2 + α̃1

q̃11x1 + q̃12x2 + β̃1

s.t. x1 − x2 ≥ 1 (30)
2x1 +3x2 ≤ 15
x1 ≥ 3
x1, x2 ≥ 0

Now on letting

t = 1
q̃11x1 + q̃12x2 + β̃1

and y= xt (31)

and using the Charnes-Cooper transformation, we have

max z1 = p̃11 y1 + p̃12 y2 + α̃1t
s.t. q̃11 y1 + q̃12 y2 + β̃1t = 1 (32)

y1 − y2 − t ≥ 0
2y1 +3y2 −15t ≤ 0
y1 −3t ≥ 0
y1, y2, t ≥ 0

The above problem can be rewritten as the following:

max z1 =−3y1 +2y2 +Ψ (−0.3y1 +0.2y2)
s.t. y1 + y2 +3t+Ψ (0.1y1 +0.1y2 +0.3t)= 1 (33)

y1 − y2 − t ≥ 0
2y1 +3y2 −15t ≤ 0
y1 −3t ≥ 0
y1, y2, t ≥ 0
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The optimal solution of the above LP with Ψ= 1 is obtained as

y1 = 0.1957, y2 = 0.1413, t = 0.0543 (34)

Now by substituting (34) in (31) we obtain the optimum solution x∗1 = 3.6, x∗2 = 2.6 with the
optimum value of the objective function as (z1)∗ =−0.6087.

Similarly, we can calculate (z2)∗ as follows:

max z2(x)= p̃21x1 + p̃22x2 + α̃2

q̃21x1 + q̃22x2 + β̃2

s.t. x1 − x2 ≥ 1 (35)
2x1 +3x2 ≤ 15
x1 ≥ 3
x1, x2 ≥ 0

Now on letting

t = 1
q̃21x1 + q̃22x2 + β̃2

and y= xt (36)

and using the Charnes-Cooper transformation, we have

max z2 = p̃21 y1 + p̃22 y2 + α̃2t
s.t. q̃21 y1 + q̃22 y2 + β̃2t = 1 (37)

y1 − y2 − t ≥ 0
2y1 +3y2 −15t ≤ 0
y1 −3t ≥ 0
y1, y2, t ≥ 0

The above problem can be rewritten as the following:

max z2 = 7y1 + y2 +Ψ (0.7y1 +0.1y2)
s.t. 5y1 +2y2 + t+Ψ (0.5y1 +0.2y2 +0.1t)= 1 (38)

y1 − y2 − t ≥ 0
2y1 +3y2 −15t ≤ 0
y1 −3t ≥ 0
y1, y2, t ≥ 0

The optimal solution of the above LP with Ψ= 1 is obtained as

y1 = 0.0974, y2 = 0, t = 0.0130 (39)

Now by substituting (39) in (36) we obtain the optimum solution x∗1 = 7.5, x∗2 = 0 with the
optimum value of the objective function as (z2)∗ = 1.3636.

On using (z1)∗ =−0.6087 and (z2)∗ = 1.3636, the problem (31) is reformulated in a LP model
as the following:

max z
s.t. w1

(
(−3x1 +2x2 +Ψ (−0.3x1 +0.2x2))− (z1)∗ (x1 + x2 +3+Ψ (0.1x1 +0.1x2 +0.3))

)
+w2

(
(7x1 + x2 +Ψ (0.7y1 +0.1y2))− (z2)∗ (5y1 +2y2 +1+Ψ (0.5x1 +0.2x2 +0.1))

)≥ z (40)
x1 − x2 ≥ 1
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2x1 +3x2 ≤ 15
x1 ≥ 3
x1, x2 ≥ 0

The optimal solution of the above LP problem with w1 = w2 = 0.5 and Ψ = 1 is obtained as
x∗∗1 = 3, x∗∗2 = 2.

Finally, the efficient solution of the MOLFP problem (29) is given by z∗∗1 =−0.6250, z∗∗2 = 1.1500.

5. Conclusion
MOLFP problem under uncertainty in the coefficients of the objective functions and relationship
between its robust counterparts is discussed in this article. We used box uncertainty set for
MOLFP problem and proposed corresponding RC formulation by reducing it into a single
objective LP problem. Furthermore, it is shown that the corresponding RC formulation of
MOLFP problem under box uncertainty set is a linear programming problem. Finally in a
numerical example we have shown the methodology and proposed approach.
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