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1. Introduction
In recent years, there have been a tremendous development in the study of nonlinear waves and
a class of nonlinear wave equations which arise frequently in applications. The wide interest
in this field comes from the understanding of special waves called solitons and the associated
development of a method of solution to a class of nonlinear wave equations are known as
nonlinear Korteweg-de Vries (KdV) equation. The Kdv equation describes the motion of long,
unidirectional, nonlinear water waves on a channel. In fact the KdV equation is a fundamental
model of the weakly nonlinear waves in the weakly dispersive media. It is a good model for
describing wave phenomena in plasma dynamics. Washimi and Taniuti [21] established in 1966,
that the KdV equation governs the propagation of small-amplitude ionacoustic waves. When
the surface of the fluid is submitted to a nonconstant pressure, or when the bottom of the layer
is not flat, a forcing term has to be added to the equation. This term is given by the gradient of
the exterior pressure or of the function whose graph defines the bottom. Considering the forcing
term in random, which is a very natural approach if it is assumed that the exterior pressure is
generated by a turbulent velocity field for instance. This random force also is assumed of white
noise type.

Wadati [18] in 1983 studied the diffusion of soliton of the KdV equation under Gaussian
noise and answered the interesting question: ‘How does external noise affect the motion
of solitons?’. He also studied the behaviors of solitons under the Gaussian white noise of
the stochastic KdV equations with and without damping [19]. A Soliton phenomenon is an
attractive field of present day research not only in nonlinear physics and mathematics but also
in fiber optics and communication engineering. A nonlinear partial differential equation which
describes wave propagation in random media was also studied by Wadati [20]. The stochastic
KdV equation arises when modelling the propagation of weakly nonlinear waves in a noisy
plasma [4]. Physically speaking, the analytic solutions of the stochastic KdV models, especially
the solitonic solutions, might help us to understand the physical stochastic mechanisms such
as fluid dynamics and plasma physics. Many authors have been studied the stochastic KdV
equations [3,7,21]. From a mathematical point of view, this equation is recognized as a simple
canonical equation for such phenomena because it combines some of the simplest types of
dispersion with nonlinearity. When using a convenient set of coordinates and after rescaling the
unknown, it can be written as

∂w
∂t

(x, t)+σw(x, t)
∂w
∂x

(x, t)+ ∂3w(x, t)
∂x3 = ξ , (1.1)

where σ is a real number, ξ is white noise type, w is the amplitude or velocity, x is often
proportional to distance in the direction of propagation and t is proportional to elapsed time.
Because σ= 0, (1.1) becomes the stochastic third order dispersion equation.

Mathematical control theory forms a part of application oriented mathematics that deals
with the basic principles underlying the analysis and design of control systems. In deterministic
case, Russell [14] studied the exact controllability and stabilizability of the KdV equation and
Zhang [23] studied the exact boundary controllability of the KdV equations. Many authors
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have studied on the controllability problems of third-order dispersion equation [1,13,17] and
references therein. Chalishajar et al. [2] studied the sufficient conditions for the controllability
of nonlinear integro-differential third order dispersion equation. But the concept of exact
controllability is very limited for many partial differential equations, the approximate
controllability is more appropriate for these control systems instead of exact controllability.
Muthukumar et al. [9] studied the approximate controllability for semi-linear retarded stochastic
systems in Hilbert spaces. Sakthivel et al. [15] proved the approximate controllability of the
nonlinear third-order dispersion equation under the assumption that the corresponding linear
system is approximately controllable, and the results are obtained by using fixed point approach
and semigroup theory. Here, we move from deterministic nonlinear third-order dispersion
equation to stochastic nonlinear third-order dispersion equation for the study of controllability.
Motivated by the studies [1, 2, 9, 10, 13, 15, 17], the approximate controllability of stochastic
nonlinear integrodifferential third-order dispersion equations remains an untreated topic in the
literature and hence we are studying the approximate controllability of stochastic nonlinear
integrodifferential third order dispersion equations by using the Hypothesis (H3) in [15].

In this paper some preliminaries, notations are discussed, and we prove the approximate
controllability results using Schauder fixed point theorem and an example is discussed at the
end.

2. Preliminaries
In this paper, we study the approximate controllability of stochastic nonlinear integrodifferential
third order dispersion equations in Hilbert spaces described by

∂w(x, t)
∂t

+ ∂3w(x, t)
∂x3 =Bu(x, t)+F

(
t,w(x, t),

∫ t

0
g(t, s,w(x, s))ds

)
+G

(
t,w(x, t),

∫ t

0
h(t, s,w(x, s))ds

)
∂β(t), t > 0 .

w(x,0)= 0 (2.1)

on the domain t ∈ [0,b]= J , 0≤ x ≤ 2π, with the periodic boundary conditions
∂kw(0, t)
∂xk = ∂kw(2π, t)

∂xk ,k = 0,1,2 (2.2)

where the state variable w(·, t) takes values in a Hilbert space H = L2(0,2π) with the inner
product 〈·, ·〉 and the norm ‖·‖, and the control function u(·) is given in L2(J,U), a Banach
space of admissible control functions, with U = L2(0,2π) as a Banach space. The notation
L2(0,2π) is the space of real valued measurable {Ft}-adapted process f = { f (x)}0≤x≤2π such
that E

∫ 2π
0 | f (x)|2 dx <∞ (the subscript 2 means that f is square integrable function). From

the practical point of view, we restrict the distributed control u(x, t) so that the quantity
[w]= ∫ 2π

0 w(x, t)dx is conserved and in order to conserve this quantity, we define the bounded
linear operator B is defined as (Bu)(x, t) = {

g(x)u(x, t)−∫ 2π
0 g(s)u(s, t)ds

}
where g(x) is a

piecewise continuous non-negative function on [0,2π] such that [g]= ∫ 2π
0 g(s)ds = 1, for more

details [13]. In [13], Russel et al., discussed the bounded linear operator B and exponential
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decay rates with distributed controls of restricted form and for the equation with boundary
dissipation F : J ×H×H → H, g : J× J ×H → H, G : J ×H×H →L (H), h : J× J ×H → H are
nonlinear functions.

The mathematical construction of β can be described as follows(see [3,6–8,10,16,22] and
references therein). Let (Ω,F ,P) be a complete probability space furnished with a complete
family of right continuous increasing sub σ algebras {Ft, t ∈ J} satisfying Ft ⊂F and a filtration
{Ft, t ∈ [0,b]} generated by a one dimensional Wiener process {β(s) : 0 ≤ s ≤ t} defined on the
probability space (Ω,F ,P). The Wiener process β on L2(0,2π) by setting β=∑∞

k=0βkek , where
{ek}k∈N is an orthonormal basis of L2(0,2π) and {βk}k∈N be a sequence of real valued one
dimensional standard Browian motions mutually independent over (Ω,F ,P). Let ψ ∈ L (H)

and define ‖ψ‖2 = Tr(ψ∗ψ)=
∞∑

k=1
‖ψek‖2, where L is the space of all Hilbert schmidt operators.

C (J,L2(Ω : H)) denotes the space of all continuous functions from J into L2(Ω : H) satisfying
the condition supt∈JE‖x(t)‖2 <∞, where E is the expectation with respect to the probability
measure P .

Let A denote the operator Aw =−w′′′ on the domain D(A)⊂ L2(0,2π) consisting of functions
in H3(0,2π) satisfying the boundary conditions of (2.2). By Lemma 8.5.2 of Pazy [12], A is
infinitesimal generator of C0-semigroup T(t) , t ≥ 0 isometries on L2(0,2π). Then for all w ∈ D(A)

〈Aw,w〉H = 〈−w′′′,w〉

=
∫ 2π

0
−w′′′ ·wdx

= (−ww′′)2π
0 −

∫ 2π

0
−w′′ ·w′dx

=−(−w′w′)2π
0 +

∫ 2π

0
−w′ ·w′′dx

= (−ww′′)2π
0 −

∫ 2π

0
−w ·w′′′dx

=
∫ 2π

0
w ·w′′′dx

= 〈w,w′′′〉
=−〈Aw,w〉.

Also, there exists a constant M > 0 such that ‖T(t)‖ ≤ M, t ∈ J .

Throughout this paper, we impose the following hypotheses:

(H1) The function F : J×H×H → H satisfies the following conditions:

(i) The function F : J ×H ×H → H satisfies the Lipschitz condition and there exists
a constant M1 > 0, such that ‖F(·,w(x1, ·), y1)− F(·,w(x2, ·), y2)‖2 ≤ M1(‖w(x1, ·)−
w(x2, ·)‖2 +‖y1 − y2‖2) for every xi, yi ∈ H, i = 1,2.

(ii) The function F : J×H×H → H is continuous and uniformly bounded and there exists
a constant N1 > 0 such that ‖F(t,w(x, s),

∫ t
0 g(t, s,w(x, s))ds)‖2 ≤ N1, for all t ∈ J .
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(iii) The function g : J×J×H → H is continuous and uniformly bounded and there exists
a constant C1 > 0, such that ‖g(t, s,w(x1, t))−g(t, s,w(x2, t))‖2 ≤ C1‖w(x1, t)−w(x2, t)‖2

for every x1, x2 ∈ H

(H2) The function G : J×H×H →L (H) satisfies the following conditions:

(i) The function G : J×H×H →L (H) satisfies the Lipschitz condition and there exists
a constant M2 > 0 such that ‖G(t,w(x1, t), z1)−G(t,w(x2, t), z2)‖2 ≤ M2(‖w(x1, t)−
w(x2, t)‖2 +‖z1 − z2‖2) for every x1, x2, z1, z2 ∈ H.

(ii) The function G : J×H×H →L (H) is continuous and uniformly bounded and there
exists a constant N2 > 0 such that ‖G(t,w(x, s),

∫ t
0 h(t, s,w(x, s)))‖2 ≤ N2, for all t ∈ J .

(iii) The function h : J×J×H → H is continuous and uniformly bounded and there exists
a constant C2 > 0, such that ‖h(t, s,w(x1, t))−h(t, s,w(x2, t))‖2 ≤ C2‖w(x1, t)−w(x2, t)‖2

for every x1, x2 ∈ H

By using the variation of constant formula, there exists a unique mild solution of (2.1)

w(x, t)=
∫ t

0
T(t− s)(Bu)(x, s)ds+

∫ t

0
T(t− s)F

(
s,w(x, s),

∫ s

0
g(s,τ,w(x,τ))ds

)
ds

+
∫ t

0
T(t− s)G

(
s,w(x, s),

∫ s

0
h(s,τ,w(x,τ))ds

)
dβ(s). (2.3)

We define the reachable set of the system (2.1) as defined by Rb(·)= w(·,b;u) : u ∈ L2(J,U).

Definition 2.1. The system (2.1) is approximately controllable on J if Rb(·) dense in L2(Ω;H),
that is Rb(·)= L2(Ω;H), where Rb(·) is the closure of Rb(·).

We define the linear operators S1 from L2(J,H) to H and S2 from L2(J,H) to L2(Ω,H) by
S1q1 =

∫ b
0 T(b− s)q1(s)ds and S2q2 =

∫ b
0 T(b− s)q2(s)dβ(s) for q1, q2 ∈ L2(J,H) (see [5,9]). The

system (2.1) is approximately controllable on J if for any ε> 0 and ξb ∈ L2(Ω;H), there exists a
control u ∈ L2(J,U) such that

E‖ξb −S1F(·,w(x(·), ·), ·)−S2G(·,w(x(·), ·), ·)−S1Bu‖2 < ε.
To this purpose, we need the following hypothesis:

(H3) For any ε> 0 and q1, q2 ∈ L2(J,H), there exists a u ∈ L2(J,U) such that

E‖S1q1 −S2q2 −S1Bu‖2 < ε,
‖Bu‖2

L2(0,t;H) ≤ N
(
‖q1‖2

L2(0,t;H)
+‖q2‖2

L2(0,t;H)

)
, 0≤ t ≤ b,

where N is a constant independent of q1 and q2.

Remark 2.2. In order to verify the aforementioned hypothesis (H3), let U = H, 0< τ< b, and
we define the intercept control operator Φτ on L2(0,b;H) (see [5]) by

Φτu(t)=
{

0, 0≤ t < τ,
u(t), τ≤ t ≤ b,
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for u ∈ L2(0,b;H). For a given q1, q2 ∈ L2(0,b;H), let us choose a control function u satisfying

u(t)=
{

0, 0≤ t < τ,
q1(t)+ q2(t)+ τ

b−τT(t− τ
b−τ (t−τ))

{
q1( τ

b−τ (t−τ))+ q2( τ
b−τ (t−τ))

}
, τ≤ t ≤ b.

Then u ∈ L2(0,b;H). Let us assume β(t) as one dimensional Brownian motion which satisfies

E‖S1q1 −S2q2 −S1Φτu‖2 < ε.
From the following

E‖Φτu‖2
L2(0,b;H) =E‖u‖2

≤4‖q1‖2
L2(τ,b;H)

+4‖q2‖2
L2(τ,b;H)

+4
∥∥∥ τ

b−τ
∥∥∥2

M2
{∥∥∥q1

( τ

b−τ (t−τ)
)∥∥∥2

L2(τ,b;H)

+
∥∥∥q2

( τ

b−τ (t−τ)
)∥∥∥2

L2(τ,b;H)

}
≤4

(
1+

∥∥∥ τ

b−τ
∥∥∥2

)
‖q1‖2

L2(τ,b;H)
+‖q2‖2

L2(τ,b;H)

it follows that the controller Φτ satisfies Hypothesis (H3).

Lemma 2.3. Assume that the Hypotheses (H1)–(H3) are satisfied, then the system (2.1) has a
solution on J .

Proof. Let Z = {w(x, t) ∈ C (J,L2(Ω;H));w(x,0) = 0} be the space endowed with uniform
convergence topology. On the space Z, we consider the set Br = {w(x, t) ∈ Z;E‖w(x, t)‖2 ≤ r},
where r is a positive constant.
We define the operator Ψ : Z → Z by

(Ψw)(x, t)=
∫ t

0
T(t− s)(Bu)(x, s)ds+

∫ t

0
T(t− s)F

(
s,w(x, s),

∫ t

0
g(s,τ,w(x, s))ds

)
ds

+
∫ t

0
T(t− s)G

(
s,w(x, s),

∫ t

0
h(s,τ,w(x, s))ds

)
dβ(s).

We shall show that the operator Ψ has a fixed point, which is a solution of (2.1).

Step 1. For all t > 0 , there exists a positive constant r∗ such that Ψ maps Br into itself.

E‖(Ψw)(x, t)‖2 ≤ 3M2b[bN(N1 +N2)+bN1 +N2],

where ‖Bu‖2 ≤ N(N1 + N2) (see (H3)). The aforementioned inequality imply that for large
enough r∗ > 0, the following inequality holds

E‖(Ψw)(x, t)‖2 ≤ r∗.

Therefore Ψ maps Br into itself.

Step 2. For t > 0, the operator Ψ maps Br into relatively compact subset of Br . First, we prove
that the set V (t)= {(Ψw)(x, t);w ∈ Br} is relatively compact in L2(Ω;H), for every t ∈ J . The case
t = 0 is obvious. Let 0< ε< t ≤ b, we define

(Ψεw)(x, t)=T(ε)
[∫ t−ε

0
T(t− s−ε)(Bu)(x, s)ds

+
∫ t−ε

0
T(t− s−ε)F

(
s,w(x, s),

∫ t

0
g(s,τ,w(x, s))ds

)
ds
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+
∫ t−ε

0
T(t− s−ε)G

(
s,w(x, s),

∫ t

0
h(t, s,w(x, s))ds

)
dβ(s)

]
.

Because T(t), t > 0 is compact, the set Vε(t) = {(Ψεw)(x, t);w ∈ Br} is relatively compact in
L2(Ω;H). Moreover, for every w ∈ Br , we have

E
∥∥(Ψw)(x, t)− (Ψεw)(x, t)

∥∥2 ≤ E
∥∥∥∥∫ t

t−ε
T(t− s) [(Bu)(x, s)

+F
(
s,w(x, s),

∫ t

0
g(s,τ,w(x, s))ds

)]
ds

+
∫ t

t−ε
T(t− s)G

(
s,w(x, s),

∫ t

0
h(t, s,w(x, s)ds)

)
dβ(s)

∥∥∥∥2

≤ 3M2
{
ε

∫ t

t−ε
[N(N1 +N2)+N1]ds+

∫ t

t−ε
N2ds

}
.

This implies that there are relatively compact sets arbitrary close to the set V (t)= {(Ψw)(x, t);
w ∈ Br} and hence the set V (t) is relatively compact in L2(Ω;H).

Step 3. We prove that the family {(Ψw)(x, t);w ∈ Br} is an equicontinuous on J . Let 0< t1< t2≤b.

E‖(Ψw)(x, t1)− (Ψw)(x, t2)‖2 ≤ E
∥∥∥∥∫ t1

0
[T(t1 − s)−T(t2 − s)]

×
[
(Bu)(x, s)+F

(
s,w(x, s),

∫ t

0
g(s,τ,w(x, s))ds

)]
ds

+
∫ t2

t1

T(t2 − s) [(Bu)(x, s)

+F
(
s,w(x, s),

∫ t

0
g(s,τ,w(x, s))ds

)]
ds

+
∫ t1

0
[T(t1 − s)−T(t2 − s)]

×G
(
s,w(x, s),

∫ t

0
h(s,τ,w(x, s)ds))

)
dβ(s)

+
∫ t2

t1

T(t2 − s)×G
(
s,w(x, s),

∫ t

0
h(s,τ,w(x, s)ds)

)
dβ(s)

∥∥∥∥2

≤ 4b
∫ t1

0
‖[T(t1 − s)−T(t2 − s)]‖2 [N(N1 +N2)+N1]ds

+4M2b
∫ t2

t1

[N(N1 +N2)+N1]ds

+4
∫ t1

0
‖[T(t1 − s)−T(t2 − s)]‖2 N2ds+4M2

∫ t2

t1

N2ds.

The right hand side does not depend on any particular choices of w ∈ Br and tends to zero as
t1 − t2 → 0, because the compactness of T(t) for t > 0 implies the continuity in the uniform
operator topology. Thus, Ψ is equicontinuous on J. Thus Ψ(Br) is equicontinuous and also
bounded. By the Ascoli-Arzela theorem, Ψ(Br) is relatively compact in L2(Ω;H). It is easy to
show that for all t > 0, Ψ is continuous on Z. Hence from Schauder’s fixed point theorem Ψ has
a fixed point. Thus (2.1) has a solution on J .
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Lemma 2.4. Let u1 and u2 be in L2(J,U), then under Hypotheses (H1) and (H2), we have

E‖w(x, t;u2)−w(x, t;u1)‖2 ≤ 3M2t‖Bu2 −Bu1‖2
L2(J,H)

exp
{
3M2b(bMF (1+C1)+MG(1+C2))

}
, 0≤ t ≤ b.

Proof.

E‖w(x, t;u2)−w(x, t;u1)‖2 ≤ 3E
∥∥∥∥∫ t

0
T(t− s)[Bu2(x, s)−Bu1(x, s)]ds

∥∥∥∥2

+3E
∥∥∥∥∫ t

0
T(t− s)[F(s,w(x, s : u2, ),

∫ t

0
g(s,τ,w(x, s : u2))ds

−F(s,w(x, s : u1),
∫ t

0
g(s,τ,w(x, s : u1))ds

∥∥∥∥2

+3E
∥∥∥∥∫ t

0
T(t− s)[G(s,w(x, s;u2),

∫ t

0
h(s,τ,w(x, s : u2))ds)

−G(s,w(x, s;u1),
∫ t

0
h(s,τ,w(x, s : u1))ds)]dβ(s)

∥∥∥∥2

.

≤ 3M2
∫ t

0
E‖Bu2(x, s)−Bu1(x, s)‖2 ds

+3M2(bM1(1+C1 +M2(1+C2))∫ t

0
E‖w(x, s : u2)−w(x, s : u1)‖2 ds,

by using Grownwall’s inequality

≤ 3M2t‖Bu2 −Bu1‖2
L2(J,H) exp

{
3M2b(bM1(1+C1)+M2(1+C2))

}
hence the lemma is proved.

3. Approximate Controllability
Theorem 3.1. Under hypotheses (H1)–(H3), the system (2.1) is approximately controllable on J .

Proof. The system (2.1) is approximately controllable on J if for any ε> 0 and ξb ∈ L2(Ω;H),
there exists a control u ∈ L2(J,U) such that

E‖ξb −S1F(·,w(x(·), ·), ·)−S2G(·,w(x(·), ·), ·)−S1Bu‖2 < ε.
Because D(A) is dense in L2(Ω;H), it is sufficient to prove D(A)⊂Rb(·).

That is, for any given ε> 0 and ξb ∈ D(A), there exists a u ∈ L2(J,U) such that

E‖ξb −w(x,b;u)‖2 < ε.
Because ξb ∈ D(A), there exists a q1 ∈ L2(J,H) such that S1q1 = ξb, for instance, take
q1(s) = (ξb − sAξb). Let u1 ∈ L2(J,U) be arbitrary fixed. Because by assumption (H3), there
exists a u2 ∈ L2(J,U) such that

E‖S1(q1 −F(·,w(x, ·;u1), ·))−S2G(·,w(x, ·;u1), ·)−S1Bu2‖2 < ε

24
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thus

E‖ξb −S1F(·,w(x, ·;u1), ·))−S2G(·,w(x, ·;u1), ·)−S1Bu2‖2 < ε

24 , (3.1)

we can also choose v2 ∈ L2(J,U) such that

E‖S1(F(·,w(x, ·;u2), ·)−F(·,w(x, ·;u2), ·))+S2(G(·,w(x, ·;u2), ·−G(·,w(x, ·;u1), ·))−S1Bv2‖2

< ε

25 , (3.2)

and

‖Bv2‖2
L2(0,t;H) ≤N

{
‖F(·,w(x, ·;u2), ·)−F(·,w(x, ·;u1), ·)‖2

L2(0,t;H)

+ ‖G(·,w(x, ·;u2), ·)−G(·,w(x, ·;u1), ·)‖2
L2(0,t;H)

}
for 0≤ t ≤ b. Therefore, in view of Hypotheses (H1)-(H3) and Lemma 2.4

‖Bv2‖2
L2(0,t;H) ≤ N

{∫ t

0
E

∥∥∥∥F(τ,w(x,τ;u2),
∫ t

0
g(s,τ,w(x,τ : u2))ds)

−F(τ,w(x,τ;u1),
∫ t

0
g(s,τ,w(x,τ : u1))ds)

∥∥∥∥2

dτ

+
∫ t

0
E

∥∥∥∥G(τ,w(x,τ;u2),
∫ t

0
h(s,τ,w(x,τ;u2))ds)

−G(τ,w(x,τ;u1),
∫ t

0
h(s,τ,w(x,τ;u1))ds)

∥∥∥∥2
}

≤ N
{

M1(1+C1)
∫ t

0
E‖(w(x,τ;u2)−w(x,τ;u1))‖2 dτ

+ M2(1+C2)
∫ t

0
E‖w(x,τ;u2)−w(x,τ;u1)‖2 dτ

}
≤ N {M1(1+C1)+M2(1+C2)}×

∫ t

0
E‖(w(x,τ;u2)−w(x,τ;u1))‖2 dτ

≤ N {M1(1+C1)+M2(1+C2)}

×
∫ t

0
3M2τ‖Bu2 −Bu1‖2

L2(J,H) exp
{
3M2b(bM1(1+C1)+M2(1+C2))

}
dτ

≤ N {M1(1+C1)+M2(1+C2)}

×
∫ t

0
3M2 exp

{
3M2b(bM1(1+C1)+M2(1+C2))

} t2

2
‖Bu2 −Bu1‖2

L2(J,H) .

Putting u3 = u2 −v2, we determine v3 such that

E‖S1(F(·,w(x, ·;u3), ·)−F(·,w(x, ·;u2), ·)) +S2(G(·,w(x, ·;u3), ·)−G(·,w(x, ·;u2), ·))−S1Bv3‖2

< ε

25 ,

‖Bv3‖2
L2(0,t;H) ≤N

{
‖F(·,w(x, ·;u3), ·)−F(·,w(x, ·;u2), ·)‖2

L2(0,t;H)

+ ‖G(·,w(x, ·;u3), ·)−G(·,w(x, ·;u2), ·)‖2
L2(0,t;H)

}
,

for 0≤ t ≤ b. Hence by Hypotheses (H1)-(H2), we have

‖Bv3‖2
L2(0,t;H) ≤ N

{∫ t

0
E

∥∥∥∥F(τ,w(x,τ;u3),
∫ t

0
g(s,τ,w(x,τ;u3))ds)
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−F(τ,w(x,τ;u2),
∫ t

0
g(s,τ,w(x,τ;u2))ds)

∥∥∥∥2

dτ

+
∫ t

0
E

∥∥∥∥G(τ,w(x,τ;u3),
∫ t

0
h(s,τ,w(x,τ;u3)ds))

−G(τ,w(x,τ;u2),
∫ t

0
h(s,τ,w(x,τ;u2)ds))

∥∥∥∥2
}

≤ N
{

M1(1+C1)
∫ t

0
E‖(w(x,τ;u3)−w(x,τ;u2))‖2 dτ

+ M2(1+C2)
∫ t

0
E‖w(x,τ;u3)−w(x,τ;u2)‖2 dτ

}
≤ N {M1(1+C1)+M2(1+C2)}

∫ t

0
E‖(w(x,τ;u3)−w(x,τ;u2))‖2 dτ

≤ N {M1(1+C1)+M2(1+C2)}

×3M2 exp
{
3M2b(bM1(1+C1)+M2(1+C2))

}∫ t

0
τ‖Bu3 −Bu2‖2

L2(J,H) dτ

≤ N {M1(1+C1)+M2(1+C2)}

×3M2 exp
{
3M2b(bM1(1+C1)+M2(1+C2))

}∫ t

0
τ‖Bv2‖2

L2(J,H) dτ

≤ (N {M1(1+C1)+M2(1+C2)}

×3M2 exp
{
3M2b(bM1(1+C1)+M2(1+C2))

}
)2

∫ t

0

τ3

2
‖Bu1 −Bu2‖2

L2(J,H) dτ

≤ (N {M1(1+C1)+M2(1+C2)}

×3M2 exp
{
3M2b(bM1(1+C1)+M2(1+C2))

}
)2 t4

2.4
‖Bu1 −Bu2‖2

L2(J,H) .

By proceeding this process, we can obtain a sequence {un}n≥1 such that un+1 = un−vn and from

‖Bun −Bun+1‖2
L2(0,t;H) ≤ ‖Bvn‖2

L2(0,t;H)

≤ {
N(M1(1+C1)+M2(1+C2))3M2

×{
exp3M2b(bM1(1+C1)+M2(1+C2))

}}n−1

× t2n−2

2.4 . . . (2n−2)
‖Bu2 −Bu1‖2

L2(0,t;H)

≤
{(

N(M1(1+C1)+M2(1+C2))3M2

· {exp3M2b(bM1(1+C1)+M2(1+C2))}

)
2

}n−1

× 1
(n−1)!

‖Bu2 −Bu1‖2
L2(0,t;H)

it follows that

∞∑
n=1

‖Bun+1 −Bun‖2
L2(J,H) ≤

∞∑
n=0

{(
N(M1(1+C1)+M2(1+C2))3M2

·exp{3M2b(bM1(1+C1)+M2(1+C2))}t

)
2

}n

× 1
n!

‖Bu2 −Bu1‖2
L2(0,t;H) ≤∞ .
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Therefore, there exists u∗ ∈ L2(J,H) such that lim
n→∞Bun = u∗ in L2(J,H). From (3.1) and (3.2),

it follows that

E
∥∥∥∥ξb −S1F(·,w(x, ·;u2),

∫ t

0
g(s,τ,w(x,τ;u2))ds)

−S2G(·,w(x, ·;u2),
∫ t

0
h(s,τ,w(x,τ;u2))ds)−S1Bu3

∥∥∥∥2

= E
∥∥∥∥ξb −S1F(·,w(x, ·;u1),

∫ t

0
g(s,τ,w(x,τ;u1))ds)−S2G(·,w(x, ·;u1),

∫ t

0
g(s,τ,w(x,τ;u1))ds)

−S1Bu2 +S1Bv2 −S1[F(·,w(x, ·;u2),
∫ t

0
g(s,τ,w(x,τ;u2)ds)

−F(·,w(x, ·;u1),
∫ t

0
g(s,τ,w(x,τ;u1))ds)]−S2[G(·,w(x, ·;u2),

∫ t

0
h(s,τ,w(x,τ;u2))ds)

−G(·,w(x, ·;u1),
∫ t

0
h(s,τ,w(x,τ;u1))ds))

∥∥∥∥2

<
(

1
23 + 1

24

)
ε.

Choosing vn ∈ L2(J,U) by hypothesis (H3) such that

E
∥∥∥∥S1[F(·,w(x, ·;un),

∫ t

0
g(s,τ,w(x,τ;un))ds)]−F(·,w(x, ·;un−1),

∫ t

0
g(s,τ,w(x,τ;un−1))ds)

+S2[G(·,w(x, ·;un),
∫ t

0
h(s,τ,w(x,τ;un))ds)

−G(·,w(x, ·;un−1),
∫ t

0
h(s,τ,w(x,τ;un−1))ds)]−S1Bvn

∥∥∥∥2

< ε

2n+2 .

putting un+1 = un −vn, we have

E
∥∥∥∥ξb −S1F(.,w(x, .;un),

∫ t

0
g(s,τ,w(x,τ;un))ds)

−S2G(.,w(x, .;un),
∫ t

0
h(s,τ,w(x,τ;un))ds)−S1Bun+1

∥∥∥∥2

<
(

1
23 + 1

24 + . . .+ 1
2n+2

)
ε, n = 1,2, . . . .

Therefore, for ∈> 0, there exists an integer N such that

E‖S1BuN+1 −S1BuN‖2 < ε

22

and

E
∥∥∥∥ξb −S1F(·,w(x, ·;uN),

∫ t

0
g(s,τ,w(x,τ;uN))ds)

−S2G(·,w(x, ·;uN ,
∫ t

0
h(s,τ,w(x,τ;uN))ds)−S1BuN

∥∥∥∥2

= E
∥∥∥∥ξb −S1F(·,w(x, ·;uN),

∫ t

0
g(s,τ,w(x,τ;uN))ds)

−S2G(·,w(x, ·;uN),
∫ t

0
h(s,τ,w(x,τ;uN))ds)−S1BuN+1 +S1BuN+1 −S1BuN

∥∥∥∥2
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≤ 2
{

E
∥∥∥∥ξb −S1F(·,w(x, ·;uN),

∫ t

0
g(s,τ,w(x,τ;uN))ds)

−S2G(·,w(x, ·;uN),
∫ t

0
h(s,τ,w(x,τ;uN))ds)−S1BuN+1

∥∥∥∥2

+E‖S1BuN+1 −S1BuN‖2}
< 2

(
1
23 + 1

24 + . . .+ 1
2n+2

)
ε+2

( ε
22

)
≤ ε.

Thus, the system (2.1) is approximately controllable on J as N tends to infinity. Hence the
theorem is proved.

4. Example

In this section, we provide a simple example to illustrate the application of our main result.
Consider the following system of partial stochastic nonlinear differential system in Hilbert
spaces of the form

∂z(t, y)=
{−∂3Z
∂y3 (t, y)+µ(t, y)+ 1

2
e−t sin z(t, y)

∫ t

0
g(t, s, z(t, y)d y

}
+ 1

2
cos tz(t, y)

∫ t

0
h(t, s, z(t, y))d y)∂β(s), (4.1)

z(0, y)= 0, 0≤ y≤ 2π, t ∈ [0,1],

∂kz(t,0)
∂yk = ∂kz(t,2π)

∂yk , k = 0,1,2.

Let H = L2(0,2π), β(t) stands for a one dimensional wiener process in H defined on a stochastic
space (Ω,F ,P). Define an operator A on L2(0,2π) with domain D(A) defined by

D(A)=
{

z ∈ H3(0,2π);
∂kz
∂yk (0)= ∂k

∂yk z(2π), k = 0,1,2.
}

Such that Az =− ∂3z
∂y3 . It is well known that A is the infinitesimal generator of a C0-semigroup

(T(t))t≥0 on H and define the bounded linear operator Bu(t, y) = µ(t, y), 0 ≤ y ≤ 2π. Next, we
consider the problem of approximately for the system (4.1) and to treat this system in the
abstract form (1.1) by using the results [8,11]. Moreover the functions

F
(
t, z(t, y),

∫ t

0
g(t, s, z(t, y))d y

)
= 1

2
e−t sin z(t, y)

∫ t

0
g(t, s, z(t, y))d y ,

G
(
t, z(t, y),

∫ t

0
h(t, s, z(t, y))d y

)
= 1

2
cos tz(t, y)

∫ t

0
h(t, s, z(t, y))d y ,

satisfy hypotheses (H1)-(H2). Assume that hypothesis (H3) is satisfied [24]. Further, all the
conditions stated in Theorem 3.1 are satisfied. Hence by Theorem 3.1 the system (4.1) is
approximately controllable.
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5. Conclusion
This article addresses the problem of approximate controllability of stochastic nonlinear
integrodifferential third order dispersion equations. A fixed point approach with semigroup
theory is employed for achieving the existence for the mild solutions of stochastic nonlinear
integrodifferential third order dispersion equations. A new set of sufficient conditions are also
formulated for the approximate controllability of control system.
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